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Cyber-Physical Systems (CPS) is a rising computing model (computer-based feedback 

control systems) that captures the attention of various people in the field of research and 

industry. However, there are enormous confronts that have to be handled efficiently, i.e. the 

modeling of a secure, feasible, and QoS fulfilled CPS. This research concentrates on 

handling these above-mentioned issues and proposes an intelligent Hierarchical Level 

Structural Framework (iHLSF) by optimizing the system design where security, access 

control, time consumption, and QoS requirements are satisfied by eliminating the 

constraints to achieve system reliability. Here, these constraints are measured as a penalty 

issue that is related to the multi-objective solution during the optimization process. Here, a 

case study is considered with a CPS application to project the efficiency and feasibility of 

the proposed iHLSF. The proposed iHLSF model intends to give better outcomes when 

compared to the other models. The model gives 99.6% accuracy, 99% precision, 100% 

recall and 99.86% F1-score.  
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1. INTRODUCTION

Cyber-Physical Systems include physical processes, 

actuation function, sensing process, and computation and 

communication functionality [1]. Over the past few decades, 

various CPS frameworks are provided by the standard 

National Institute of Standards and Technology (NIST) where 

self-predictive, predicts anomaly, and monitoring is 

considered as the significant and preliminary functionalities of 

CPS operations [2]. In CPS, evaluation and monitoring of 

system fault conditions are crucial for making an appropriate 

decision, therefore influencing the reliability and safety of 

CPS critical missions like smart grids and automotive systems 

[3]. The evaluation service and monitoring factors are 

anticipated for examining the system condition and 

corresponding components. The evaluation term is utilized in 

this work to specify the CPS system's faulty conditions [4]. 

The most critical things with CPS are its heterogeneity, size, 

computability, uncertainty, dynamic behavior and structural 

dependencies. When the model fails to predict the real-time 

faulty conditions, some service failures are encountered which 

drastically outcomes into various system failures and pretends 

to provide reliability and safety [5]. In this investigation, the 

hypothetical condition causes such a system failure and faulty 

conditions which specifies the situation whether there exists 

the faulty condition or not. 

In the real-time environment, owing to the increased CPS 

complexity and the complex operational condition causes an 

uncertain environment. Also, it leads to some rising factors 

and fault detection conditions over MAS [6]. The uncertainty 

definition is based on a certain context. Here, the uncertainty 

definition is specific to point out the probable causes of false 

prediction over system faults. There are diverse uncertainty 

factors that cause faulty prediction outcomes, for instance, 

deficiency in model knowledge, prediction of system failure, 

and noisy environment, and so on [7]. These sorts of 

uncertainties cause faulty conditions over the real-time fault 

environment, potentially leads to risk factors to finance and 

personal safety. For instance, as the parameters of certain 

sensor materials such as semi-conductors may vary when the 

ambient temperature is higher than the threshold value, the 

reduction in sensor prediction accuracy causes false prediction 

and biased data of faulty environment [8]. These fault 

detection factors trigger the decision-making process. An 

implication related to decision-making conditions leads to 

offline maintenance with the potency of huge financial loss for 

all product lines [9]. The reliable prediction process results in 

the growth of the CPS development process. Also, it is crucial 

to identify an effective way to compute the fault detection 

impact.  

For instance, in military applications, conflicting entities 

like vessels, weapons, or vehicles are considered as CPS as 

they are determined as physical objects towards the 

computational ability [10]. Network-based models are 

connected with various conflicting objects; therefore, it is 

determined as a corresponding force that acquires information 

dominance and explains superior situational wellness towards 

the battlefield. Therefore, NCW is considered as the 

networking environment of CPS composed of huge large-scale 

CPS and provides a communication system for it [11]. For 

instance, the military CPS applications are connected to the 

network layer with certain network architecture and perform 

tactical functionality based on a better understanding of the 

situational factors, modeling a course of action, and 

maintaining tactical decisions [12]. For this cause, the network 

model is examined to compute the robust and timely 
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information sharing for mission achievements.  

The network-centric model relies on the organic evaluation 

of multiple domains, i.e. CPS over the cyber-physical 

environment and the corresponding communication factors 

rely on the information domain [13]. Based on this, the model 

requires a hierarchical level system framework which is 

utilized for the analysis and modeling of complex CPS. The 

analysis of CPS provides better insight into the functionality 

of the model in the real-time environment [14]. Some 

experimental analysis is performed to find the functional and 

operational capabilities of the hierarchical CPS model and 

predict the system-level vulnerability, i.e. cyber-attacks. For 

the past few years, various defence CPS mechanisms are 

modeled for network-centric analysis. It is noted that most of 

the approaches require two enhancements based on the system 

model and analysis factors. For instance, certain investigations 

are analyzed with the integration of these approaches indeed 

of system-level models [15]. System model is the baseline 

factor to initiate the process whereas analysis can be done after 

the formation of the system model. Thus, both are essential. 

The penalty performance eliminates the adoption of CPS 

simulation over the practical real-time scale. However, some 

other shortcomings rely on the model or the simulation 

outcomes. It does not show how these communications and 

operational environment influences the model based on 

empirical outcomes.  

Therefore, this article intends to provide a solution for the 

problem using based on the evaluation of the impact of diverse 

uncertainties and faulty environment over CPS. This work 

contributes some essential factor that tackles the issues in three 

diverse folds. Initially, a problem is framed and specifies 

certain issues based on the consequences of an uncertain 

environment that occurs due to the vulnerabilities over the 

CPS model. Next, an intelligent hierarchical level structural 

framework (iHLSF) is proposed by optimizing the system 

design where security, access control, energy consumption, 

and QoS requirements potentially outcomes in the detection 

process. Finally, based on certain uncertain factors over the 

network model, the probabilistic outcomes are measured using 

metrics like accuracy, recall, F1-score, confusion matrix, and 

so on. The ultimate objective of this work is to model an 

efficient hierarchical level structural framework for CPS to 

handle the uncertainty that occurs over the network model 

which leads to system vulnerabilities.  

The work is organized as: In section 2, an elaborate analysis 

is performed over various prevailing approaches and 

frameworks to examine the uncertainty measure and system 

vulnerabilities. The drawback related to it is measured and 

helps to derive a solution. In section 3, a novel and intelligent 

hierarchical level structural framework is designed for the CPS 

model to measure the faulty condition over the network due to 

the system vulnerability. In section 4, the numerical results 

attained with the model evaluation are provided with a detailed 

study which is followed by the conclusion in Section 5. The 

ideas to enhance the model and the limitations of the proposed 

system are given in this section. 

 

 

2. RELATED WORK 

 

Various potential threats can influence both the cyber and 

physical environments. The security condition over CPS is 

significant in the stages like operation, deployment and design. 

However, as CPS is utilized on various objects in the crucial 

network environment, factors for protecting the CPS systems 

have turned to be extremely essential. Similarly, the 

distributive nature of CPS is also another factor that needs to 

be considered while realizing safety and security measures 

during the CPS design phase. One foremost perspective is 

when the complex CPS is specified as the P2P network model 

with key concepts of computational complexities that serve as 

the access node and gateways for local CPS segments. Wang 

et al. [16] anticipate an architectural model for security factors 

that tasks related to it. It is known as a control element that 

plays the predominant role in security-based administration 

executing the intermediate or external security policies 

(between distributive elements over CPS) for the CPS. Indeed, 

of the external security policies of conflicting resolution and 

internal security policy management needs to be considered. 

Liu et al. [17] consider a system for critical infrastructure 

protection model known as hydro-electric dam specification. 

Here, the author examines the unauthorized network 

utilization and anticipates various countermeasures 

correspondingly that includes device reconfiguration and the 

measure of critical data storage integrity. The people and 

objects are specified as the agents and assets specifically in 

CPS. The factors associated with the security model are 

specified by Preuveneers et al. [18]. Moreover, the work lacks 

in the prediction of attack types. 

The modern cyber-physical system needs a sub-system or 

components-based security model to compute the probe 

sequences for the entire system even when the components are 

compromised by the vulnerabilities. A desirable amount of 

investigations discusses the probable attacks over the control 

system to acquire access to the CPS physical system. The 

samples of the SCADA system and the design policies are 

initiated before the commencement of the globally 

interconnected systems. As an outcome from the SCADA 

systems based on web-technologies and encounters 

compatibility issues associated with the integration of modern 

communication network cooperation. The further penalty 

related to the SCADA system convergence with a global and 

corporative network is some types of security threats like 

knowledge availability, non-secure remote connectivity, and 

so on. Therefore, based on these points, the evaluation of the 

third party offers diverse maintenance services that have to be 

constrained based on the changes encountered in the system. 

Zhao et al. [19] model a centralized administration to handle 

the insecurity factors based on the remote connectivity as 

unauthorized privileges. Chen et al. [20] discuss a security 

framework that tries to offer a perspective on the field of CPS 

security. It is composed of a 3D or 3D axis: CPS components, 

system, and security specifically. Some essential deliverances 

of this model are the partition of CPS components on cyber, 

physical, and hybrid with both physical and cyber parts and 

the security dimensionality initiates the attack notations, threat, 

control, and vulnerabilities. Moreover, this framework does 

not specify the threat mitigation strategy; methods and an 

approach concentrate on the threats and give the least attention 

to the safety monitor of the security model. When the security 

model is regulated with proper prediction techniques, then the 

rate of prediction is increased.  

Schneble and Thamilarasu [21] discuss some traditional 

approaches over the security model and it is completely 

concentrated on the entire system model. It provides the least 

attention to the component security and sub-system security 

model. It is extremely essential to differentiate the system 

faults owing to the attacks or intrusions. Based on this, the 
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vulnerability evaluation method for an industrial system is 

anticipated by the author. In this context, some multi-agent 

strategies for detection and attack prediction over the smart 

grids are also considered by Loukas et al. [22]. The faulty 

separation and attack process is assisted by certain conditions 

for state monitoring examination by collecting system 

information and logs. The consequences of avalanche effects 

over the complex systems are measured by Chakraborty et al. 

[23]. The author examines the factors affecting the sub-system 

and element and shows drastic consequences over the 

complete system model. Moreover, the generalized 

methodology given by the author gives service infra-structure 

and secure network model as anticipated by CISCO. It is 

composed of various elements: improvements, management, 

testing, response and monitoring, security process, and 

security policies. These security processes use some 

preliminary steps for performing essential measures based on 

valid security policies. Response and monitoring rely on 

certain permanent knowledge that extracts the information 

from the environment and the systems are deployed over it. 

The testing phase includes constant system validation and it 

reacts to threats like time-to-response factors. Finally, 

improvement and management stages attempt to organize and 

effectually examine the use of security properties with the 

further measure on security gaps.  

Shi et al. [24] model a CPS with the crucial factor that 

includes requirements of complexity, dynamism, and 

heterogeneity which needs to be considered adequately and 

fulfil the requirements. The CPS model shows some span of 

information for the transfer of process modeling. Khaitan and 

McCalley [25] consider this context of security model W.R.T. 

strategies planning, modeling, and unified approach to safety 

issues and threat security are also discussed. Moreover, 

independent modeling types and certain issues are more 

applicable for this process. It has to be more determinate and 

facilitates appropriate help to acquire better solution, 

executable and provable manner. Wang et al. [26] possess five 

diverse modeling approaches that are applied over the 

complex system environment like knowledge-based, agent-

based, coupling component model, Bayesian network model, 

system dynamical model. From the above-mentioned model, 

the dynamical system model is used for the analysis of the 

entire system for a certain time where all the system 

components interact with one another to get a feedback loop. 

In this manner, the behavioral variation of the components can 

influence other elements and the outcomes influence the entire 

system. Similarly, the Bayesian network model tries to depict 

the entity features over another entity model or other events 

that influence the system [27, 28]. Some coupled component-

based modeling approaches are used and these components 

from various disciplines attain a complete solution. While in 

the case of agent-based modeling, the complete system-based 

entity model and the specification are given with the 

interacting agents via specific characteristics over the entire 

system [29, 30]. At last, the knowledge-based modeling uses 

logic tools and a knowledge base model to extract solutions. 

Here, an intelligent hierarchical structural model is designed 

to deal with the security issues and pretends to fulfil the QoS 

requirements. 
 

 

3. METHODOLOGY 
 

This section discusses the proposed intelligent hierarchical 

structural level framework (iHSLF) for CPS to avoid 

uncertainty over the network layer using novel feature 

selection and classification approaches.  

 

3.1 Dataset description 

 

Here, the NSL-KDD dataset is used as the dataset uses 20% 

instances as training data with the overall 25, 192 instances, 

and the remaining samples are used as testing datasets with a 

total of 22, 544 instances. It has 42 attributes among them, 41 

attributes are classified as four diverse classes. Figure 1 

depicts the flow diagram of the proposed model. 

1) Basic (B) features: TCP/IP connection attributes for 

detecting delays.  

2) Traffic (T) features: Features are related to window 

interval and it possesses two well-known features like same 

service and same host. The service feature tests the total 

number of links for a certain time interval that possess the 

same services.  

3) Host (H) features: Attributes are provided to assess the 

attacks that remain for 2 seconds. It analyzes the total 

connections towards the destination in 2 seconds. 

4) Content (C) features: Attributes are recommended by 

domain knowledge with moment interval.  

This dataset consists of four diverse (traffic) categories with 

23 attack types and some features: 

1) Denial of Service (DoS): The attackers use network 

resources and make it busy; thereby, the users (authoritative) 

cannot access the available resources. 

2) User-to-Root (U2R): The passwords are sniffed and 

apply attack the host to access the legitimate user. Some 

vulnerability is applied to access the system. 

3) Remote-to-Local (R2L): Messages are transmitted by 

the attackers over the remote location to the host by applies 

vulnerabilities. 

 

 
 

Figure 1. Flow diagram of the proposed model 
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Table 1. Dataset records 

 

Dataset 
Number of records 

Total Normal DoS Probe U2R R2L 

KDD (train + 20% samples) 25, 192 13, 449 9234 2289 11 209 

KDD training 125, 973 67, 343 45, 927 11, 656 52 995 

KDD testing 22, 544 9711 7458 2421 200 2654 

 

Table 2. Dataset labels and attributes 

 
No. Label Name No. Label Name 

1 B Duration 10 C hot 

2 B protocol_type 11 C num_failed_logins 

3 B Service 12 C Logged_in 

4 B src_bytes 13 C num_compromised 

5 B dst_bytes 14 C root_shell 

6 B Flag 15 C su_attempted 

7 B Land 16 C Num_root 

8 B wrong_fragment 17 C Num_file_creations 

9 B urgent 18 C Num_shell 

 

19 C Num_access_files 

20 C Num_outbound_cmds 

21 C Is_hot_logins 

22 C Is_guest_logins 

No. Label Name No. Label Name 

23 T Count 32 H dst_host_count 

24 T Serror_rate 33 H Dst_host_srv_count 

25 T Rerror_rate 34 H Dst_host_same_srv_rate 

26 T Same_srv_rate 35 H Dst_host_diff_srv_rate 

27 T Diff_srv_rate 36 H Dst_host_same_src_port_rate 

28 T Srv_count 37 H Dst_host_srv_diff_host_rate 

29 T Srv_serror_rae 38 H Dst_host_serror_rate 

30 T Srv_rerror_rate 39 H Dst_host_srv_serror_rate 

31 T Srv_diff_host_rate 40 H Dst_host_rerror_rate 

 
41 H Dst_host_srv_rerror_rate 

42 --- class 

 

Table 3. Attack categories 

 

Attacks Attacks in every category 

DoS Teardrop, smurf, pod, Neptune, land, back 

Probes Port sweep, nmap, ipsweep, satan 

R2L Warezmaster, multi-hop, warezclient, spy, phf, passwd, imap, ftp write 

U2R Root kit, perl, load module, buffer overflow 

 

Table 4. Attack Distribution 

 
Attacks Training set % Testing set % 

DoS 45927 3645 7460 3353 

Probes 11656 925 2421 1073 

R2L 995 78 2885 1279 

U2R 52 41 67 29 

Total 125973 100 22544 100 

 

4) Probe: The network is being scanned by the attackers to 

capture the information and makes network violation. Table 1 

and Table 2 depict the dataset records, labels, and attributes of 

the NSL-KDD dataset. Table 3 shows four different attack 

categories. 

Table 4 depicts the training dataset composes 53% normal 

data against 0.78% and 0.041% of R2L and U2R respectively. 

Similarly, the testing dataset is composed of 43.07% of normal 

data against 12.79% of R2L and 0.29% U2R respectively. The 

dataset imbalance influences the classifier performance highly 

during the prediction of vulnerabilities over the CPS model. 

The imbalanced samples give minority data of any class (lesser 

samples) which includes the performance of the system with 

reduced prediction rate of minority classes. 

3.2 Darwinian particle swarm optimization 

 

To be specific, the model goal is to overcome the curse over 

feature dimensionality with the selection of optimal bands of 

the classifier model [31]. The selection of more appropriate 

features is a complex task encountered in the classification 

process. Thus, the feature selection process intends to 

maximize the overall accuracy and it expressed as in Eq. (1): 
 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝐶𝑖𝑖

𝑁𝑐
𝑖

∑ 𝐶𝑖𝑗
𝑁𝑐
𝑖𝑗

∗ 100 (1) 

 

where, 𝐶𝑖𝑗 is the number of features allocated to class ′𝑗′ that 

belongs to class ′𝑖′, 𝐶𝑖𝑖 specifies the number of features which 

is appropriately assigned to the class ′𝑖′ and 𝑁𝑐 is the number 

of classes. Here, optimal features are chosen via an 

optimization process where the solution acquires a fitness 

value from the SVM classifier during sample validation. The 

optimization process is performed using PSO algorithms. The 

significance of the model helps to model diverse variations of 

PSO and pretends to overcome the drawbacks related to it. One 

among the model is Darwinian PSO (D-PSO) that runs various 
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PSO algorithm parallel using a diverse swarm, natural 

selection mechanism, and testing problem. When the search 

intends to give the sub-optimal solution, the search is 

completely discarded [32]. The swarms are rewarded and 

stagnates are punished by particle elimination and reduction of 

swarm life. The novelty of the work relies on factional 

computation to manage the convergence rate. The fractional 

order considers the infinite number of features with local 

operators and memory of past events. The characteristics of 

this model well-suited with this phenomenon like dynamical 

particle trajectories [33]. The fractional computation is shown 

by ′𝑡′, where the fitness value is used for the computation of 

particle success. Here, the movement of the particles ′𝑛′ over 

multi-dimensional space based on velocity (𝑣𝑛(𝑡))  and 

position (𝑥𝑛(𝑡))  with huge dependency over global best 

(𝑔′(𝑡)) and local best (𝑥𝑛
′ (𝑡)). It is mathematically expressed 

as in Eq. (2) and Eq. (3): 

 

𝑣𝑛
𝑠[𝑡 + 1] = 𝑤𝑛

𝑠[𝑡 + 1] + 𝜌1𝑟1(𝑔′(𝑡) − 𝑥𝑛
𝑠[𝑡])

+ 𝜌2𝑟2(𝑥𝑛
′ [𝑡] − 𝑥𝑛

𝑠[𝑡]) 
(2) 

 

𝑤𝑛
𝑠[𝑡 + 1] = 𝛼𝑣𝑛

𝑠[𝑡] +
1

2
𝛼(1 − 𝛼)𝑣𝑛

𝑠[𝑡 − 1] 

+
1

6
𝛼(1 − 𝛼)(2 − 𝛼)𝑣𝑛

𝑠[𝑡 − 2] 

+
1

24
𝛼(1 − 𝛼)(2 − 𝛼)(3 − 𝛼)𝑣𝑛

𝑠[𝑡 − 3] 

(3) 

 

The anticipated fractional computation model for feature 

selection performs parallel running of diverse swarms over the 

search space, where ′𝑠′ is the number of the swarm. Here, ′𝜌1′ 
and ′𝜌2′ coefficients are allocated weights with inertial global 

best and local bests while determining new velocity. ′𝜌1′ and 

′𝜌2′ are typically constant integer values with cognitive and 

social components with 𝜌1 +  𝜌2 < 2.  Moreover, various 

outcomes are attained by allocating various values for all 

components. The fractional coefficient will influence the past 

events with the determination of newer velocity, i.e. 0 < 𝛼 <
1. With ′ ∝ ′ smaller value, particles eliminate the prior events; 

therefore eliminating the system dynamically and suspected to 

stuck at local solutions. It is known as exploitation behavior. 

With higher values of ′ ∝′, particles show diversified behavior 

which facilitates exploration of some novel solutions and 

enhances the performance. It is known as exploration behavior. 

When the exploration level is extremely high, then the 

algorithm takes a long time to predict the global solutions 

where the value of ′ ∝ ′  ranges from 0.6-0.8. ′𝑟1′  and ′𝑟2′ 
parameters are random vectors among 0 and 1. The objective 

of feature selection shows that the particle dimension should 

be equal to the number of features. The position dimension 

[dim (𝑥𝑛[𝑡]] and velocity dimension [dim (𝑣𝑛[𝑡]] is equal to 

the number of features, i.e. [dim(𝑣𝑛[𝑡]] =  [dim(𝑥𝑛[𝑡]] =  𝑙. 

The particle velocity is represented with an 𝑙 −dimensional 

vector. The particles specify the position of binary values, i.e. 

′0′ and ′1′ where ′0′ specifies absence of features and ′1′ is 

feature occurrence. The particle updation is expressed as in Eq. 

(4): 

 

∆𝑥𝑛
𝑠[𝑡 + 1] =

1

1 + 𝑒−𝑣𝑛
𝑠 [𝑡+1]

 (4) 

 

The particles specify the position in binary values, i.e. ′0′ 
and ′1′. It is specified as in Eq. (5): 

 

𝑥𝑛
𝑠[𝑡 + 1] = {

1 ∆𝑥𝑛
𝑠[𝑡 + 1] ≥ 𝑟𝑥

0 ∆𝑥𝑛
𝑠[𝑡 + 1] < 𝑟𝑥

 (5) 

 

where, 𝑟𝑥  is the random dimensional vector with a random 

number among 0 and 1. The particles move in multi-

dimensional space based on the position 𝑥𝑛
𝑠  [𝑡]  from the 

discrete-time system. Consider, that the attack scenario 

comprises 4 categories, i.e. 𝑙 = 4. It specifies that the particles 

are defined based on the current position and velocity in 4D-

space, i.e. dim 𝑣𝑛[𝑡] = dim 𝑥𝑛[𝑡] = 4. It provides a straight 

ward understanding of the swarm particles. It is probable to 

observe the iterations and time 𝑡 = 1, the particle is eliminated 

with the elimination of the third position, i.e. 𝑥1 [1] = [1101] 
where particle 2 eliminates the first and fourth band, i.e. 

𝑥2 [1] = [0110] . The overall accuracy measure of these 

particles is represented as 65% and 69% for particles 1 and 2 

specifically. Consider two particles where particle 2 is 

determined as the best performance of the swarm (See Figure 

2). Therefore, the particle 1 attraction induces particle velocity 

and position for successive iterations.  

 

 
 

Figure 2. Fractional DPSO functionality 

 

3.3 Case study 

 

In the attack scenario, the application of the anticipated 

model relies on feature selection. Some shortcomings 

encountered in the existing models are addressed using this 

feature reduction model. Here, the attributes and the 

corresponding values are considered as threshold. The 

attributes give a wider range of threshold values modeled for 

feature bank evaluation. The anticipated feature selection 

approach predicts the most selective features based on 

classification accuracy with corresponding validation samples. 

The feature selection approach not only resolves the 

shortcomings of the existing approach; however, but also 

diminishes the feature redundancy and handles the curse of 

dimensionality. The preliminary workflow of the model is 

given as: 

1) Construct the feature bank composed of raw input data 

and the attributes are attained based on the network flow.  

2) In some cases, principal components, i.e. components 

with cumulative variance are maintained and features are 

considered to a certain range. 

3) The raw data is concatenated into a stacked vector where 

the training samples are partitioned into two diverse categories: 

training and validation samples.  

4) The anticipated feature selection model is applied and the 

fitness of the particles is computed by the overall prediction 
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accuracy of SVM for sample validation. After the completion 

of a certain iteration, the feature selection model predicts the 

most essential information over the validation samples.  

 

 
 

Figure 3. Hierarchical structural level framework 

 

5) SVM is considered with the entire set of testing and 

training samples and the classification map is achieved. 

Therefore, efficient classification is achieved and mapped. 

The classification process is discussed in the section given 

below (Figure 3).  

It is observed that PCA can be substituted by other feature 

extraction approaches and gives promising outcomes to handle 

the disadvantages of prevailing approaches.  

 

3.4 Hierarchal Prototype classifier for structural 

framework 

 

The architectural model of the proposed classifier model is 

analyzed and the computational complexity of the model is 

reduced. Consider, {𝑥} = {𝑥1, 𝑥2, … , 𝑥𝑘 , … } is a data stream in 

′𝑁′  dimensional samples with different classes and ′𝐾′ 
instances. The samples are subdivided into subsets and the 

class labels are {𝑥}𝐾
𝑖 = {𝑥1

𝑖 , … , 𝑥𝐾
𝑖 } . It is composed of 

pyramidal hierarchies and it is trained parallel with the data 

samples in a self-organized manner (See Figure 2). The 

hierarchical prototype model derives data indirect manner over 

a top-down manner. The upper layers of the hierarchical model 

include generalized information which is more representative 

and abstractive [34]. However, the lower-level layers also 

contain essential information and nearer to the observed values. 

The layers of the prototype model are connected with 

intermediate layers and specify the local peak of multi-modal 

data distribution [35]. The prototype layers are connected with 

one or more intermediate layers. The procedure of this model 

is to predict the prototypes and self-organize them 

hierarchically from training samples of the class separately. 

The observed samples of the classes (𝑥𝑘
𝑖 (𝑘 = 1,2, … , 𝑘𝑖 , …) are 

normalized and expressed as in Eq. (6): 

 

𝑥𝑘
𝑖 =

𝑥𝑘
𝑖

||𝑥𝑘
𝑖 ||

 (6) 

 

where, ||𝑥𝑘
𝑖 || = √∑ (𝑥𝑘,𝑗

𝑖 )
2𝑁

𝑗=1 . It is a normalization process 

that converts the Euclidean distance among the samples in 

cosine dissimilarity distance measure and the outcomes 

improve the competency of the HP classifier model for dealing 

with high-dimensional complex issues. The preliminary 

sample with 𝑖𝑡ℎ class is adopted for predicting the hierarchical 

model and considers it as the prototype for all layers. It is given 

as in Eq. (7): 

 

𝑀𝑙
𝑖 → 1; 𝑝

𝑙,𝑚𝑙
𝑖

𝑖 → 𝑥
𝑘𝑖
𝑖 ;  𝑆

𝑙,𝑀𝑙
𝑖𝑖 → 1 (7) 

 

where, 𝑆
𝑙,𝑀𝑙

𝑖𝑖 is the number of samples related with 𝑝
𝑙,𝑚𝑙

𝑖
𝑖 . The 

sub-ordinate relationships among the prototypes are 

established hierarchically. It is expressed as in Eq. (8): 

 

ℒ0
𝑖 → {𝑝

1,𝑀𝑙
𝑖

𝑖 } (8) 

 

The collections of the immediate subordinates are 

initialized using Eq. (9): 

 

ℒ0
𝑖 → {𝑝

𝐿,𝑀𝑙
𝑖

𝑖 } (9) 

 

The hierarchical model is established and the resembling 

chain with 𝑝
1,𝑀𝑙

𝑖
𝑖  is considered as starting node and 𝑝

𝐿,𝑀𝑙
𝑖

𝑖  is the 

ending node. The proposed classifier model is constantly self-

evolving over the system level structural model and updates 

the meta-parameters over the streaming data under uncertain 

conditions. When the data samples (𝑥
𝑘𝑖
𝑖  (𝐾𝑖 → 𝐾𝑖 + 1)) are 

observed and the system updates the process is initiated from 

the topmost layer. Initially, the prototypes are identified via 

the following expression Eq. (10): 

 

𝜂𝑙
∗ = {

arg max
𝑝∈ℒ0

𝑖
((𝑥

𝐾𝑖
𝑖 − 𝑝||             𝑖𝑓 𝑙 = 1             

arg max
𝑝∈ℒ_(𝑙−1,𝑛𝑙−1

∗
((𝑥

𝐾𝑖
𝑖 − 𝑝|| 𝑖𝑓 𝑙 = 2,3, … , 𝐿

 (10) 

 

It is observed that the proposed hierarchical structural 

model predicts the number of prototypes with the learning 

process where complex problems are considered inevitable. 

Based on the analysis, Eq. (10) drastically enhances the 

computational efficiency of the prototype model by 

diminishing the searching range from the entire data space 

towards the small group of neighborhood prototypes. It 

drastically eliminates the computational resources as the 

majority of the prototypes are away from 𝑥𝐾𝑖
𝑖 . the anticipated 

model predicts the nearest prototype effectively compared to 

alternative models. During the validation process, the 

classifier model describes the class labels of the given sample. 

Here, the layers of the classifier are considered for 

classification purposes. The upper layers are more 

representative and adopted for coarse and efficient 

classification purposes. However, the lower level possesses 

essential information and it is adopted for performing effectual 

classification process.  

 

 
 

Figure 4. Layered hierarchical architecture 
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Consider the 𝑙𝑡ℎ layer of (𝑙 = 1,2, … , 𝐿) which is used for 

certain unlabelled data samples specified by 𝑥𝑘 with the local 

decision-making process in a hierarchical manner (See Figure 

4). It helps to produce the confidence score 𝜆𝑖(𝑥𝑘) is based on 

the similarity among 𝑥𝑘 and the nearest prototypes are chosen 

at the initial layer with ‘nearest prototype’. Two optimal 

searching methods are used for computation and it is expressed 

as in Eq. (11): 

 

𝜆𝑖(𝑥𝐾) = max
𝑝∈{𝑝}𝑙

𝑖
𝑒−||𝑝−𝑥𝑘||

2

 (11) 

 

where, {𝑝}𝑙
𝑖 = {𝑝𝑙,1

𝑖 , 𝑝𝑙,2
𝑖 , … , 𝑝

𝑙,𝑀𝑙
𝑖

𝑖 }  specifies the collective 

prototypes over the hierarchical layer. The hierarchies produce 

confidence score on 𝑥𝑘 and the class labels are determined as 

in Eq. (12) and Eq. (13): 

 

𝑙𝑎𝑏𝑒𝑙(𝑥𝑘) → 𝑐𝑙𝑎𝑠𝑠 𝑖 ∗ (12) 

 

𝑖∗ → 𝑎𝑟𝑔 max
𝑖=1,2,…,𝐶

(𝜆𝑖(𝑋𝑘)) (13) 

 

It is essential to analyze the mode with high computational 

efficiency as the upper layers are utilized for classification 

purposes as the layers possess a smaller amount of generalized 

prototypes. The computational efficiency of the classifier is 

reduced as the layers are composed of a huge amount of 

prototypes, high-dimensional and large-scale problems. For 

certain unlabelled samples, sometimes wrong decisions are 

made over the top-down searching process. Assume that the 

𝑙𝑡ℎ  layer of the proposed classifier model is used for 

classification purposes. During the validation process 

(unlabelled data samples), the hierarchical model produces the 

confidence score based on similarity measures. The 

computational complexity is given as 𝑂(𝑁 ∑ (𝑀0
𝑖 +𝐶

𝑖=1

 ∑ 𝑃𝑗,𝑛𝑗
∗

𝑖 .𝑙−1
𝑗=1  During the high dimensional and large scale 

process, the computational is more efficient. While for small-

scale problems, the model is more efficient with leaser 

computational complexity. The outcomes are validated using 

the numerical analysis which is discussed in the section given 

below. 

 

Algorithm 1: 

Input: Data streams 

1. Begin 

2. While data samples available {𝑥}𝑘
𝑖  

3. Normalize the data stream Eq. (6); 

4. If (𝑘𝑖 = 1)𝑡ℎ𝑒𝑛 

5. For 𝑙 = 1 𝑡𝑜 𝐿 do 

6. 𝜂𝑙
∗ =

 {

arg max
𝑝∈ℒ0

𝑖
((𝑥

𝐾𝑖
𝑖 − 𝑝|| 𝑖𝑓 𝑙 = 1

arg max
𝑝∈ℒ_(𝑙−1,𝑛𝑙−1

∗
((𝑥

𝐾𝑖
𝑖 − 𝑝|| 𝑖𝑓 𝑙 = 2,3, … , 𝐿

 

7. End for 

8. For 𝑙 = 1 𝑡𝑜 𝐿 do 

9. Predict the nearest layer using 𝜂𝑙
∗; 

10. If this condition is not fulfilled then; 

11. Update the value; 

12. Else 

13. For 𝑗 = 1 𝑡𝑜 𝐿 do 

14. 𝑝
𝑗,𝑀𝑗

𝑖
𝑖 → 𝑥

𝑘𝑖
𝑖 ; 

15. 𝑒𝑛𝑑 𝑓𝑜𝑟  

16. ℒ0
𝑖 → {𝑝

1,𝑀𝑙
𝑖

𝑖 } 

17. For 𝑗 = 1 + 1 𝑡𝑜 𝐿 do 

18. End for 

19. Break 

20. End if 

21. End for 

22. End if 

23. End while 

24. End process 

 

 

4. NUMERICAL RESULTS AND DISCUSSION 

 

This section discusses the outcome of the proposed model 

to measure the uncertainty that occurs in the CPS. Here, two 

essential processes are carried out and it is known as feature 

selection and classification process. The simulation is done in 

MATLAB simulation environment on Intel Pentium 4 

processor, CPU 3.20 GHz, and 4 GB memory where the 

proposed intelligent hierarchical-level structural model 

provides security, access, and fulfils the QoS requirement 

efficiently. The performance of the hierarchical model is 

compared with various existing approaches like the Deep 

belief (DB) network model, Deep learning-based Recurrent 

Neural Networks, federated self-learning, federated transfer 

learning, and deep FED. Some performance metrics like 

accuracy, precision, recall, F1-score, ROC, error rate, 

execution time, and confusion matrix are evaluated. The 

uncertainty or fault that occurs over the network layer is 

measured with the iHLSF model. These metrics are expressed 

as in Eq. (14) – Eq. (19): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (14) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

 

𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡

1

0

 (16) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100 (17) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (18) 

 

𝑅𝑀𝑆𝐸 =  √[∑(𝑦𝑖 − 𝑥𝑖)
2/𝑁

𝑁

𝑖=1

] (19) 

 

True positive (TP): the proposed hierarchical-level 

structural classifier needs to determine accurately the class 

feature to predict where the attack is identified.  

True Negative (TN): the hierarchical-level structural 

classifier needs to determine the class features are negative 

accurately. 

False Positive (FP): the hierarchical-level structural 

classifier inaccurately determines the normal traffic as an 

attack pattern. 

False Negative (FN): The proposed hierarchical-level 
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structural classifier incorrectly classifies the attack as normal 

traffic.  

 

Table 5. Accuracy comparison 

 
Iterations 100 300 500 800 1000 

DB 79.45 82.33 90.25 95.6 99.4 

Deep learning RNN 60.35 68.9 72.55 81.96 86.9 

federated self-

learning 
70.11 76.25 81.22 86.99 99.09 

federated transfer 

learning 
73.14 79.88 85.2 91.2 99.13 

Deep FED 75.55 80.36 87.48 92.33 99.20 

iHLSF 81.12 85.69 93.25 97.18 99.6 

 

Table 6. Precision comparison 

 
Iterations 100 300 500 800 1000 

DB 83.65 88.74 92.44 96.87 100 

federated self-

learning 
71.44 76.2 82.51 90.66 98.86 

federated transfer 

learning 
76.02 79.2 88.99 93.5 99.34 

Deep FED 81.06 83.99 87.25 93.65 98.86 

iHLSF 86.99 91.25 95.87 97.54 99 

 

Table 7. Recall comparison 

 
Iterations 100 300 500 800 1000 

DB 81.45 82.33 89.96 91.25 99.5 

federated 

self-

learning 

71.25 78.54 82.69 89.41 96.76 

federated 

transfer 

learning 

73.89 78.88 83.94 93.89 96.82 

Deep FED 76.58 80.11 85.62 89.7 97.36 

iHLSF 85.7 90.7 95.22 98.47 100 

 

Table 8. F1-score comparison 

 

Iterations 100 300 500 800 1000 

DB 81.22 87.88 92.15 96.64 99.7 

federated 

self-

learning 

71.10 73.55 81.25 92.85 97.78 

federated 

transfer 

learning 

73.25 78.5 86.9 93.2 98.03 

Deep FED 80.05 83.97 91.24 94.55 98.10 

iHLSF 86.74 92.33 96.21 98.53 99.85 

 

The number of iterations for fractional DPSO based feature 

selection approaches is equal to 10. The proposed fractional 

DPSO model is considered as the randomized approach based 

on the population level that runs 30 times and outcomes are 

compared and the capabilities are measured. The parameters 

𝜌1, 𝜌2 and ∝ are initialized by 0.9, 0.9, and 0.7 respectively. 

These sets of features are used by the NSL-KDD dataset for 

independent data distribution. The proposed feature selection 

model outcomes in better execution time are 8.2104 seconds 

and an error rate of 0.041 which is comparatively lesser than 

other approaches. The proposed fractional DPSO model is 

provided to measure the accuracy during sample validation. 

The classification accuracies are evaluated with outcomes 

from other feature selection approaches. The runs are sorted 

increasingly during validation samples. The significance of the 

proposed classifier model (independent variables) gives CPU 

processing time and final overall accuracy (dependent 

variables). Based on the analysis, it is observed that the 

traditional feature selection approaches are more feasible with 

relatively least dimensional cases. When the features are 

increased, the required statistical evaluation is considered in a 

non-wider manner. During the evaluation process, 100, 300, 

500, 800, and 1000 iterations are considered. 

The accuracy is evaluated based on iterations. In the future, 

the models with future improved to enhance the accuracy rate. 

Table 5 depicts the accuracy of the proposed iHLSF model is 

99.6% which is 0.2%, 12.7%, 0.51%, 0.47%, and 0.4% higher 

for proposed iHLSF model for 1000 iterations (See Figure 5). 

Table 6 depicts the precision of the proposed iHLSF model is 

99% which is 1% lesser than DB, 0.14%, higher than federated 

self-learning, 0.34% lesser than federated transfer learning, 

and 0.14% lesser than deep FED for the proposed iHLSF 

model for 1000 iterations (See Figure 6). Table 7 depicts the 

F1-score of the proposed iHLSF model is 100% which is 0.5%, 

3.24%, 3.18%, and 2.64% higher than an existing model for 

1000 iterations (See Figure 7). Table 8 depicts the comparison 

of recall where the proposed iHLSF is 99.85%, 0.15%, 2.07%, 

1.82%, and 1.75% higher than DB, federated self-learning 

model, federated transfer learning model, and deep FED 

model respectively (See Figure 8). Figure 9 depicts the 

confusion matrix of the proposed iHLSF classifier model for 

the target class and output class. Based on Figure 10, the ROC 

curve is plotted based on the True Positive Rate (TPR) and 

False Positive Rate (FPR). The plotting is done among these 

two metrics in a straight line for all the dataset classes where 

the values range from 0 to 1 respectively. 

 

 
 

Figure 5. Accuracy comparison 

 

 
 

Figure 6. Precision comparison 
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Figure 7. F1-score comparison  Figure 8. Recall comparison 

   

 

 

 
   

Figure 9. Confusion matrix  Figure 10. ROC computation 

 

From the extensive analysis, it is known that the anticipated 

model outperforms the existing approaches conventionally. 

The computational efficiency is higher for large-scale, high-

dimensional, and complex CPS problems. It is considered as 

the unique hierarchical level structural model to measure the 

uncertainty that occurs over the network layer of the CPS 

system. The vulnerabilities show huge influence over the 

system model. The proposed classifier model is competent to 

deal with complex issues at various levels of granularity and 

learns the results. The classifier model facilitates the user to 

determine the number of structural levels and selects it as a 

suitable model for decision making. This model is strongly 

feasible and strengthens the ability of the model over real-time 

applications. Thus, the classifier model gives a stronger 

alternative to the conventional approaches. It is highly 

attractive for large-scale CPS problems.  

 

 

5. CONCLUSION 

 

Here, an intelligent hierarchical level structural framework 

is proposed for classifying the threat over the CPS system. The 

model intends to reduce the dimensionality curse and manages 

the convergence rate. The fractional DPSO model 

automatically selects the influencing features to improve 

classification accuracy. The model works faster than the 

existing approaches during the evaluation of the probability of 

the class labels. The model fulfils the research objective by 

improving the security-level, access-level, and QoS 

requirements and reduces the computational complexity. Also, 

the model visualizes the uncertainties and the vulnerability 

using the NSL-KDD dataset. The model gives 99.6% accuracy, 

99% precision, 100% recall and 99.86% F1-score. However, 

some issues need to be addressed in the future as there is no 

scientific way to determine the layers of the classifier model 

to work efficiently over certain CPS problems. 
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