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 Recently, a new Artificial Intelligence (AI) paradigm, known as Federated Learning (FL), 

has been introduced. It is a decentralized approach to apply Machine Learning (ML) on-

device without risking the disclosure and tracing of sensitive and private information. 

Instead of training the global model on a centralized server (by aggregating the clients’ 

private data), FL trains a global shared model by only aggregating clients’ locally-computed 

updates (the clients’ private data remains distributed across the clients’ devices). However, 

as secure as the FL seems, it by itself does not give the levels of privacy and security 

required by today’s distributed systems. This paper seeks to provide a holistic view of FL’s 

security concerns. We outline the most important attacks and vulnerabilities that are highly 

relevant to FL systems. Then, we present the recent proposed defensive mechanisms. 

Finally, we highlight the outstanding challenges, and we discuss the possible future research 

directions. 
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1. INTRODUCTION 

 

In recent years, improvements in the implementation of 

Machine Learning (ML) models, have significantly increased 

the adoption of this technology in a wide range real-world 

systems that revolutionize almost all industries [1-6]. Despite 

ML's enormous success, many domains can only desire to 

benefit from it, but are unable to do so due to two significant 

obstacles: (1) concerns about clients’ data privacy, as well as 

the laws and regulations that govern them, and (2) inability to 

develop a ML model because of insufficient data or high 

training overheads. 

In order to overcome these obstacles, Federated Learning 

(FL) [7] emerges as an effective technique to exploit 

distributed data and computing resources, in order to 

collaboratively train ML models, while adhering to laws and 

regulations, and protecting users’ data security and privacy. As 

consequent, ML algorithms have become further integrated in 

the devices of end users. This new paradigm in ML, famous as 

“privacy-by-design”, allows a number of clients’ devices to 

train a ML model collaboratively. A key feature would be that 

the clients’ private data remain stored on the client’s device. 

By conducting model training at the clients’ devices, aggregate 

analytics could be accomplished without having to collect the 

clients’ data themselves [8]. 

However, as secure as the FL seems, it by itself does not 

give the levels of privacy and security demanded by today’s 

distributed systems requirements [9]. Beyond fundamental 

and FL-specific restrictions, the security of FL systems 

themselves are essential for developing networks where users 

can collaborate, learn, and most importantly trust. FL systems 

are vulnerable to a slew of new attacks and threats that target 

each stage of training and deployment process. Attackers can 

exploit flaws in FL systems in a variety of ways. For example, 

an attacker may maliciously corrupt training data or local 

model updates on clients’ devices before sending them to the 

central server. He may also intercept the model updates 

exchanged between the central server and the clients’ devices 

and replace them with malicious model updates. In order to 

overcome these security threats, many researchers have 

proposed mechanisms that defend against FL attacks and 

vulnerabilities. 

 

1.1 Contributions 

 

In this paper, we seek to provide a holistic view of FL’s 

security concerns. The main contributions of this paper are 

presented as follows: 

 

• We outline the most important vulnerabilities and 

attacks in FL environments, such as poisoning attacks, 

inference attacks, communication attacks, and free-

riding attacks. 

• We present the recent proposed security mechanisms 

that defend against the security attacks and threats in 

FL systems. 

• We highlight the outstanding challenges, and we 

address the future research opportunities to improve the 

security of FL systems. 

 

1.2 Paper organization 

 

This paper is organized as follows. The basics of FL are 

introduced in Section 2. The major attacks and threats that are 

relevant to FL settings are presented in Section 3. The recent 

proposed security defensive mechanisms that defend against 

the security attacks and threats are summarized in Section 4. 

Section 5 identifies the research challenges and discusses the 

future directions towards a robust and secure FL. Finally, 

Section 6 gives conclusion remarks. 
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2. BASICS OF FEDERATED LEARNING 

 

FL [7-13] is a ML-based framework in which numerous 

clients cooperate to solve a ML problem, under the supervision 

and the coordination of a central server usually referred to as 

FL server. In other words, “it is a distributed ML strategy that 

generates a global model by learning from multiple 

decentralized edge clients. FL enables on-device training, 

keeping the client’s local data private, and further, updating 

the global model based on the local model updates” [14]. 

From a privacy perspective, FL complies with the “privacy-

by-design” guidelines made by the European Union Agency 

for Network and Information Security (ENISA) [15] since the 

clients’ private data are held locally and are not transferred to 

the FL server (the client’s device uses meaningful data to 

update the local models, and model updates are aggregates of 

the client’s private data). This has made FL a more privacy-

friendly technique, attracting many communities to use it 

instead of the standard ML technique based on centralized data 

collection and centralized model training. 

In order to understand the different FL security aspects 

presented in later sections, we give in this section a non-

exhaustive overview of different concepts, techniques, and 

approaches used to implement this AI paradigm in practice. 

 

2.1 Federated learning implementation 

 

FL can be viewed as an iterative learning process in which 

the global model is improved with each round. FL process 

flow follows three steps [16]: 

 

• Model initialization: each client’s device receives the 

initial ML model from the FL server. 

• Local model training: each client’s device trains its 

own model with the client’s local training data. 

• Aggregation of local models: the FL server collects 

updated model weights, and then it aggregates them to 

the global model, which is subsequently updated to 

replace each client’s local model. 

 

 
 

Figure 1. A schematic diagram of FL process flow 

 

As shown in Figure 1, FL is in a continuous iterative 

learning process that repeats the above steps (steps 2 and 3) to 

maintain the global model updated across all the participants. 

 

2.2 Network topology in federated learning 

 

Based on network topology, the FL can be categorized into 

two classes: (1) Centralized FL, and (2) Fully decentralized FL 

[17]. 

 
 

Figure 2. Fully decentralized FL 

 

 
 

Figure 3. Data partition in FL 

 

2.2.1 Centralized federated learning 

As shown in Figure 1, even though FL is typically 

considered as a decentralized approach, a centralized server is 

required to collect clients’ model updates and aggregate them 

to the global model. Unlike in traditional ML systems where 

the global model is trained on a centralized server by 

aggregating the clients’ private data, the centralized server in 

FL trains the global model by only aggregating clients’ 

updates. The Gboard keyboard application (developed by 

Google) is an example of centralized FL systems. 

 

2.2.2 Fully decentralized federated learning 

As shown in Figure 2, no central server is required in fully 

decentralized FL systems. In this type of FL systems, 

participants improve their models by sharing information with 

their neighbors using Peer-2-Peer (P2P) communications. 

 

2.3 Data partition in federated learning 

 

As shown in Figure 3, the distribution of data among clients 

classifies FL into three classes: (1) Vertical Federated 

Learning (VFL), (2) Horizontal Federated Learning (HFL), 

and (3) Federated Transfer Learning (FTL). The three classes 

are defined as follows [10]: 

 

2.3.1 Vertical Federated Learning 

VFL is frequently used when two datasets need to share 

identical sample IDs, but different feature spaces. An example 

for VFL approach would be a scenario from business domain, 

where a client A (Amazon) has information about customers’ 

book purchases on Amazon, and client B (Goodreads) has 

information about customers’ book reviews. Using these two 
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sets of datasets from different feature spaces, one may better 

serve the customers by using book reviews information to 

provide better book recommendation to the customers 

browsing Amazon’s books. 

 

2.3.2 Horizontal Federated Learning 

In this class, there is some overlap between the features of 

data dispersed over multiple participants, while the data are 

fairly distinct in sample space. Clients in this type of FL share 

similar features in terms of domain, usage style of derived 

statistical information, or any other FL outcome. An example 

for HFL approach would be a scenario from medical domain, 

where multiple hospitals are collaborating to train a ML model 

(using medical images) for detecting cancer cells. Due to the 

laws and constraints of private medical data, medical images 

cannot be shared as is. However, with FL, information on such 

sensitive data may be safely transmitted through a secure 

aggregated update from each hospital. 

 

2.3.3 Federated Transfer Learning 

FTL is typically used when FL participants have little 

overlap in both sample and feature spaces. FTL enables to 

move the knowledge of one domain (the source domain) to 

another domain (the target domain) to achieve better learning 

results. An example for FTL approach would be a scenario of 

training a book recommendation model from the user’s past 

browsing behavior. 

 

2.4 Aggregation algorithms in federated learning 

 

The aggregation algorithm can be defined as the logic that 

combines the locally-computed updates from all the clients 

participating in the training phase [18]. These algorithms play 

a cornerstone role in any FL system. For that, several 

aggregation algorithms have been proposed in the literature. 

We present in the following some of the most used aggregation 

algorithms: 

 

2.4.1 FedAvg 

The Federated Averaging algorithm (FedAvg) is regarded 

as the de facto optimization algorithm in the federated setting. 

This aggregation algorithm, implemented by Google [7], runs 

Stochastic Gradient Descent (SGD) in parallel on K devices, 

where K is a small fraction of the total clients’ devices in the 

FL network. After that, the clients’ devices communicate their 

model updates to a FL server, where the global model is built 

using averaging logic to compute the weighted sum of all the 

received updates. Although FedAvg has shown empirical 

success in heterogeneous settings, it does not entirely address 

the underlying challenges associated with heterogeneity [19]. 

 

2.4.2 FedProx 

To address the challenges of heterogeneity in FL 

environments, Li et al. [19] proposed FedProx. As stated by 

the authors, “FedProx algorithm can be viewed as a 

generalization and re-parametrization of FedAvg”. They 

proposed to add a proximal term to the local subproblem that 

helps to effectively limit the impact of variable local updates, 

and thus improve the stability of the method. Moreover, they 

proved that FedProx achieves better convergence and stability 

compared to FedAvg in heterogeneous FL environments. 

 

2.4.3 SMC-Avg 

A secure aggregation algorithm, called Secure Multi-Party 

Computation Averaging (SMC-Avg) was proposed by 

Bonawitz et al. [20, 21]. SMC-Avg algorithm is based on the 

concept of the Secure Multi-party Computation (SMC), which 

aggregates private values of clients’ models without revealing 

information about their private values. SMC-Avg algorithm is 

suitable to deal with the problems of the mobile device-based 

FL networks. 

 

 

3. SECURITY ATTACKS IN FEDERATED LEARNING 

 

While FL comes with privacy guarantees regarding the 

protection of private data in ML settings, exchanging the 

model updates, as well as the large number of training 

iterations and communications expose the FL system to 

curious and malicious attackers [22-24]. Several attacks are 

already identified against FL systems. In this section, we 

present the most important attacks and vulnerabilities in FL 

environments. We categorize attacks against FL systems into 

four groups: poisoning attacks, inference attacks, 

communication attacks, and free-riding attacks. Table 1 

summarizes the properties of attacks on FL settings. 

 

3.1 Poisoning attacks 

 

Typically, these attacks are undertaken by the insiders on 

FL systems [17, 25]. They try to prevent a model from being 

learned at all, or to bias the model to produce inferences that 

are suitable to the attacker. Regarding the attacker’s 

capabilities, we classify poisoning attacks into two types: data 

poisoning attacks and model poisoning attacks [26]. 

 

Table 1. Summary of attacks on FL systems 

 

Attacks Key idea 

Source of attacks 

Compromised 
Communication 

Distributed 

nature of FL Clients Server 

Poisoning attacks 
Manipulate client’s data or local model to bias the global 

model performance/accuracy 
✓ ✓ - - 

Inference attacks 

Analyze the clients’ updates in the goal of illegitimately 

gain knowledge about FL process and use this knowledge 

to extract meaningful insights about the training data  

✓ ✓ ✓ - 

Communication 

attacks 

Intercept the clients’ updates, then replace them with faulty 

or malicious updates. Moreover, communication 

bottlenecks can drastically destabilize the FL system 

- - ✓ ✓ 

Free-riding 

attacks 

Craft fake local updates with the purpose of acquiring the 

global shared model without really participating to the FL 

process 

✓ - - - 
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Figure 4. An example of data poisoning attack in FL systems 

 

 
 

Figure 5. A taxonomy of attacks on FL systems 

 

3.1.1 Data poisoning attacks 

They are attacks that compromise the clients’ training data 

to distort the output of the global model at inference time. As 

shown in Figure 4, an adversary participant may adversarially 

manipulate existing inputs or add poison instances to corrupt 

the global model’s output [27]. As shown in Figure 5, we 

recognize two classes of attacks in this category: 

Clean-label attacks. In this category of attacks, the 

adversary assumes that data are certified as belonging to the 

correct class, so, he cannot change the label of any input data, 

and he must craft the poisoned training data to appear as 

correctly labeled as the non-corrupted data. Tolpegin et al. [27] 

achieved 100% attack success rate on the dog-vs-fish 

classification task using the feature collision technique, where 

the attacker exploits the high complexity and nonlinearity of 

the function f that propagates an input X through the neural 

network to the last layer, it is possible to find an example (a 

dog’s picture) that “collides” with the target (fish class) in 

feature space, while simultaneously being close to the base 

instance b (dog class) in input space. 

Dirty-label attacks. In this category of attacks, the adversary 

participant can add, remove, or change any data samples he 

intends to misclassify with the desired target label into the 

training set. A very known example of dirty-label poisoning 

attack is label-flipping [28, 29] which has been demonstrated 

to be effective in traditional ML settings and become a feasible 

strategy to implement in FL settings. 

3.1.2 Model poisoning attacks 

They are attacks where malicious clients directly change the 

learning rule and affect gradients that they share with the FL 

server during the training process [26]. We can recognize 

several techniques in this category: 

Gradient manipulation attacks. In this type of attacks, 

adversaries perform adversarial manipulations of the training 

process by manipulating local model gradients to compromise 

the global model performance and reduce the overall accuracy 

[26]. This technique can be used for example to modify an 

image classifier so that it assigns an attacker-chosen label to 

images with certain features or force a word predictor to 

complete certain sentences with an attacker-chosen word [22]. 

Training rule manipulation attacks. In this type of attacks, if 

the attackers have access to the model, they may be able to 

manipulate its output such that it has the same distribution as 

correct model updates, making the attack undetectable [30]. 

For example, Bhagoji et al. [31] added a penalty term to the 

objective function in order to reduce the distance between the 

wrong and the correct weight update distributions. This 

modification helped to successfully achieve a non-detectable 

targeted model poisoning attack. 

Backdoor attacks. These attacks can be viewed as a type of 

model poisoning attacks. A malicious participant trains its 

local model with poisoned data and uploads the locally-

computed updates to the FL server, embedding a backdoor to 

the global model after unwitting aggregative optimization [32]. 

Bagdasaryan et al. experiment on how backdoor attacks is 

implemented [22, 33]. 

 

3.2 Inference attacks 

 

These attacks are adversarial algorithms that are capable of 

extracting meaningful insights about the training data via 

analysis of locally-computed updates [30, 34]. Inference 

attacks fall into four categories: 

 

3.2.1 Membership inference attacks 

Under this category, attackers aim to identify whether a 

specific sample belongs to a given class represented by the 

model and/or whether a specific sample was used to train the 

model [35]. For instance, an adversary can determine whether 

a given patient profile was used to train a classifier associated 

with a disease. 

 

3.2.2 Properties inference attacks 

Under this category, attackers attempt to induce properties 

of other clients’ private data that are independent of the 

features which characterize the FL model classes [35]. For 

instance, a property inference attack would be for facial 

recognition models, if a class corresponds to a certain 

individual, the adversary task would be determining whether 

the individual wears glasses or not [36]. 

 

3.2.3 Training inputs and labels inference attacks 

These attacks are much destructive than previous ones since 

they can not only determine the label of the FL model classes 

but also the client’s training inputs. The authors showed that 

the proposed optimization algorithm can obtain both the 

training inputs and the labels in just a few rounds [37, 38]. 

 

3.2.4 GANs-based inference attacks 

Under this category, powerful attacks can be performed 

through Generative Adversarial Networks (GANs). GANs 
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have been recently proposed by Hitaj et al. [39] and are still 

being intensively developed. The architecture of GANs is 

composed of two models: Discriminator D and Generator G. 

The GAN-based attacks exploit the real-time nature of the FL 

process which allows the attacker to train a GAN generating 

synthetic samples that are statistically representative of the 

training data. It should be noted that GANs generate these 

samples without having the right to access clients’ private data. 

The GAN is first initialized with random noise, and at each 

round, it is trained to mimic the inputs in the training set of the 

discriminative network. Figure 6 shows an example of GANs-

based inference attack. 

 

3.3 Communication attacks 

 

As mentioned above, FL is based on an iterative learning 

process in which the global model is improved with each 

round. In order to update the shared global model and maintain 

it updated across all the participants, a large number of 

communication messages should be exchanged between the 

FL server and all the participants over a given network 

(typically, a FL process achieves stability and convergence 

after a large number of communication iterations). Thus, a 

non-secure communication channel is considered an open 

vulnerability. Moreover, the communication bottlenecks can 

drastically destabilize the FL system [17, 40, 41]. 

 

3.3.1 Man-In-The-Middle attacks 

In this type of attacks, the Man-in-the-Middle (MITM) 

intercepts the model updates exchanged between the 

participants and the FL server and replaces them with 

malicious updates [42]. Typically, a MITM attack is carried out 

through interfering with real networks or by creating fake 

networks that the MITM controls. After that, the compromised 

communication is frequently stripped of any encryption in 

order to steal, modify or redirect the model updates [43]. This 

attack is difficult to detect because the attacker may be silently 

observing or re-encrypting the hijacked communication to its 

designed destination once saved or modified. 

 

 
 

Figure 6. An example of GANs-based inference attack in FL systems 

 

 
 

Figure 7. Communications bottlenecks in FL systems 

 

3.3.2 Communications bottlenecks 

As shown in Figure 7, communication bottlenecks can 

drastically destabilize the FL system because they increase the 

number of participants who drop out. Further, discarding 

clients depending on their connection state causes eventual 

biases in the global shared model and affects the aggregation 

of individual updates. Furthermore, techniques that seek to 

decrease the communication overhead [44-46], such as 

compression, can be exploited in a destructive way to inject 

noise in individual updates and deteriorate their quality. 

 

3.4 Free-riding attacks 

 

 
 

Figure 8. An example of free-riding attack in FL systems 

 

Free-rider attacks consist in crafting fake local updates with 

the purpose of acquiring the global shared model without 

really participating to the FL process [47, 48]. Free-rider is 

generally referred to an individual who benefits from services, 

53



 

public goods, or resources, of a communal nature, but do not 

pay for them [49]. In free-riding attacks, there could be two 

main motives to submit fake updates: (1) a client may want to 

save local CPU cycles or other computing resources, also, (2) 

a client may not have the required data, or is concerned about 

data privacy violations, so that local data are not available for 

model training [48]. As shown in Figure 8, the strategy of a 

free-rider, to obtain the final aggregated model, consists in 

participating in FL cycle by mimicking local updating through 

the sharing of opportune crafted parameters. 

 

 

4. DEFENSES IN FEDERATED LEARNING 

 

Recent studies into FL security have tried to stress-test 

existing techniques for preventing private information 

extraction and model corruption. In this section, we present a 

review of the recent proposed mechanisms that defend against 

the security attacks and threats raised in Section 3. Figure 9 

and Table 2 summarize the prominent types of defensive 

mechanisms in FL. 

 

 
 

Figure 9. An overview of defensive mechanisms in FL 

systems 

 

4.1 Differential privacy 

 

The basic goal of Differential Privacy (DP) is to ensure that, 

with high probability, no single record in a given client’s 

dataset can be meaningfully discriminated from the other 

records [50-52]. The basic idea behind this technique is to 

introduce noise to the client’s sensitive attributes before 

sharing individual updates with the FL server [52]. As a 

consequence, each client’s privacy is protected. Meanwhile, 

the statistical data quality loss caused by the introduced noise 

of each client is rather minor compared with the greater data 

privacy protection. In FL environment, DP distorts client 

updates so that the existence or absence of any given record in 

a client’s private data has no major impact on the update 

shared by the client. 

Based on DP, McMahan et al. [53] proposed DP-FedAvg, a 

noised version of FedAvg (presented earlier in Section 2.4.1) 

that satisfies user-level differential privacy. The main goal of 

DP-FedAvg is to provide a strong guarantee that the trained 

model protects the privacy of clients’ data without affecting 

model quality. Later, Augenstein et al. [54] proposed DP-

FedAvg-GAN with the purpose to protect the clients’ training 

data against GANs-based attacks.  

Ma et al. showed that DP can be used as defense against 

data poisoning attacks [55-57]. Further, Bagdasaryan et al. [22] 

demonstrated that DP applied to clients’ models can 

successfully defend against backdoor attacks, but the required 

noise levels significantly baffle the model’s learning ability 

(i.e., the more we apply noise the higher we protect data but 

the utility decreases drastically). Furthermore, Lecuyer et al. 

[58] studied the possibility of using DP as a defense 

mechanism against inference attacks. 

 

4.2 Secure multi-party computation 

 

This technique (SMC) was originally proposed with the 

purpose of creating methods for distrustful parties to jointly 

compute a function over their inputs while keeping them 

private [59]. In FL environment, SMC, which is based on 

cryptographic methods, is used to protect the privacy of client 

data. 

In this direction, Google proposed a secure aggregation 

algorithm [60] that securely aggregates the clients’ updates by 

using SMC to compute the weighted averages of received 

updates. Upon receiving a sufficient number of clients’ 

updates, the FL server can decrypt the average update. This is 

possible because client updates are transferred via additive 

secret sharing. As a consequence, the clients’ private data are 

protected. 

In the same direction, Xu et al. [61] proposed a privacy- 

preserving approach, called VerifyNet, that aim to realize 

secure gradient aggregation and verification. This approach 

employs a double-masking method (based on Shamir’s secret 

sharing and homomorphic hash function) making it difficult 

for malicious adversaries to infer training data. Moreover, 

VerifyNet guarantees that the clients may verify the FL 

server’s results, ensuring the FL server’s reliability. 

 

Table 2. Summary of defensive mechanisms in FL systems 

 
Defensive mechanisms Key idea Attacks 

Differential Privacy 
Introduce noise to the client’s sensitive data before sharing individual updates 

with the FL server 

Data poisoning attacks 

Backdoor attacks 

Inference attacks 

Secure Multi-party 

Computation 
Encrypt clients’ uploaded parameters 

Inference attacks 

MITM attacks 

Anomaly detection Analyze clients’ updates to identify misbehaving clients 

Free-riding attacks 

Model poisoning attacks 

Data poisoning attacks 

Robust aggregation Detect malicious individual updates during training process 

Inference attacks 

Model poisoning attacks 

Data poisoning attacks 

Federated distillation Transfer knowledge from a fully trained model to another model 

Communications 

bottlenecks 

MITM attacks 

Inference attacks 

GANs-based attacks 
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Although SMC-based methods [60-64] provide a secure 

aggregation of the protected clients’ updates, they induce 

significant extra communication overhead among clients 

which may be unaffordable for some devices and networks. 

Moreover, they make countermeasures to security attacks 

(such as model poisoning attacks) ineffective, and attacks 

become difficult to detect by the FL server. 

 

4.3 Anomaly detection 

 

This category of defenses (also called outlier detection) uses 

analytical and statistical methods to identify events that do not 

conform to an expected pattern or activity. In order to identify 

misbehaving clients in FL settings, anomaly detection 

mechanisms could be used. For that, the FL server analyzes 

individual updates and their impact on the global shared model 

to discover attacks such as poisoning attacks. However, these 

mechanisms are most likely to fail when it comes to targeted 

backdoor attacks. 

Chen et al. [65] proposed an anomaly detection-based 

technique, in which the FL server can reconstruct the clients’ 

updated models and compare the model performance metrics 

against a validation dataset with respect to the model obtained 

by aggregating all updates except that of the client. After that, 

any client updates that decrease model performance, according 

to some criteria or threshold, are marked as outliers. 

Cao et al. [66] proposed another defense technique called 

Sniper. The proposed approach can recognize honest clients 

and decrease the success rate of poisoning attacks to 2% even 

when multiple attackers are colluded. In Sniper, the FL server 

identifies legitimate clients by solving a maximum clique 

problem in a graph constructed with clients’ shared updates as 

vertices and if the Euclidean distance between two vertices is 

small enough, then there exists an edge between them. The FL 

server then finds the maximum clique in the graph, and 

aggregates vertices (local models) in the clique to get the 

global FL model. 

In another work, Fung et al. [67] presented FoolsGold, a 

novel defensive mechanism to cope with poisoning attacks. In 

their work, the authors defined poisoning sybils as malicious 

clients creating multiple fake identities to mount more 

powerful poisoning attacks on FL and transfer fake updates to 

the FL server. After that, they presented their defensive 

technique that leverages client similarity to identify poisoning 

sybils based on the diversity of client updates, because in the 

distributed learning process, each client’s private data has a 

unique distribution, while sybils aim to the same objective and 

will share updates that appear more similar to each other than 

non-malicious clients. On the contrary to other defensive 

techniques, this mechanism does not require any changes of 

the protocol executed on client-side. In addition, it doesn’t 

need prior knowledge of the number of malicious clients. 

Many other research works have been developed in this 

category [29, 68]. In these studies, the proposed approaches 

aim to detect a deviation in individual updates from each client, 

as well as the verification of honesty of training inputs. 

 

4.4 Robust aggregation 

 

As mentioned above, robust aggregation algorithms play a 

cornerstone role in any FL system, and several algorithms [69-

72] have been proposed in the literature. Theses algorithms are 

used to detect and discard faulty model updates during the 

training process. Moreover, robust aggregation algorithms 

should be able to sustain clients’ dropout and communications 

instabilities. They can also address the challenges of 

heterogeneity in FL environments [19]. 

In addition to algorithms presented in Section 2.4, Lu and 

Fan [71] proposed an aggregation algorithm that uses 

Gaussian distribution to measure clients’ potential 

contributions. Further, they proposed layer-wise optimizing 

steps, so the aggregation works well on different functional 

units in the neural network. Furthermore, they showed that the 

proposed algorithm achieves better convergence and stability 

compared to the well-known aggregation algorithm FedAvg 

[7]. Moreover, this algorithm outperforms FedAvg in terms of 

robustness against attacks. 

 

4.5 Federated distillation 

 

Federated Distillation [73-76] (also called Federated 

Knowledge Distillation) is regarded as an alternative of the 

model compression method. As mentioned above, a large 

number of communication messages should be exchanged 

between all the clients and the FL server to update the global 

shared model and maintain it updated across all the clients. 

However, these exchanged messages can drastically 

destabilize the FL system. For that, federated distillation is a 

compelling FL solution in which a fully trained model 

transfers knowledge to a small model step by step on what 

needs to be done. The idea of sharing knowledge only instead 

of model parameters can be used to improve the security and 

privacy of the clients’ private data. Moreover, this concept 

helps to save communication and reduce computation 

overheads. 

In this direction, Li and Wang [76] proposed an algorithm 

of federated distillation called FedMD. In this algorithm, the 

authors seek to transfer knowledge from a fully trained model 

to a smaller model. Typically, the knowledge is a pre-trained 

model’s logit, transferred to a small model for compression. 

The knowledge can also be a collection of other small models’ 

logits, in that the collection of forecasts is often more accurate 

than individual predictions. 

 

 

5. CHALLENGES AND FUTURE OPPORTUNITIES 

 

To complete our overview, we discuss the outstanding 

challenges, and we address the future research opportunities to 

improve the robustness of FL environments, summarized in 

the following recommendations: 

 

5.1 Ensuring and building trust 

 

When private data is stored on clients’ devices, FL servers 

have little scope for manual verification. Thus, the question 

that might arise is: how can the FL server trust reports, such 

as model updates, from clients? Cryptographic primitives may 

offer promise for secure calculations using private data. For 

example, Zero-Knowledge Proofs may be used to ensure that 

participants are transferring individual updates with pre-

specified properties to defend against backdoor attacks and 

model corruption attacks, while avoiding the disclosure of 

clients’ private data. However, it is important to understand 

better how to effectively implement and apply these 

cryptographic primitives and protocols, especially in large-

scale FL systems. 
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5.2 Ensuring traceability 

 

Ensuring traceability of the global model throughout the 

lifecycle of the FL process is another major challenge in FL 

settings. For example, if a model parameter is modified or 

updated during the training process, it is important to have 

backward tracking ability to determine which client’s update 

caused that change. In this direction, we believe that 

blockchain can provide attractive solutions for FL due to its 

unique features, such as traceability, immutability, and 

decentralization [77]. By using blockchain, any update events 

and client actions are transparently tracked by all network 

entities. Moreover, a model parameter modification or update 

can be easily traced through blockchain transaction logs [78]. 

 

5.3 Ensuring a trade-off between security/privacy and 

performance/accuracy 

 

As presented in this paper, many defensive approaches for 

FL security have been designed, each of which is proposed to 

address different security/privacy and performance/accuracy 

objectives. However, each one of them has its own pros and 

cons. Thus, the question that might arise is: how to ensure a 

better trade-off between security/privacy and 

performance/accuracy? On the one hand, designing efficient 

FL approaches should not undermine the robustness of the 

proposed mechanisms. If the approach is not secure against the 

different attacks, an attacker can affect the FL process. For 

example, if the encryption level in SMC-based mechanisms or 

the quantity of noise in DP-based mechanisms is not enough, 

the clients that participate to the FL process still suffer from 

the risk of privacy leakage. On the other hand, if the encryption 

level is too high or too much noise added to the exchanged 

updates, the FL model severally suffers from low accuracy. 

 

5.4 Deploying decentralized federated learning 

 

In the traditional FL systems, a third party (which is the FL 

server) is required for system initialization, supervision, and 

global model aggregation. However, a setting where no central 

server is required in the system is a potential framework for 

collaboration among applications that do not trust any third 

party. For example, we can consider a strategy where each 

client that participates to the FL system could be elected as a 

server using a round robin method. It would be interesting to 

explore if existing attacks and vulnerabilities on the traditional 

FL still apply in this decentralized scenario, as well as new 

attack surfaces that may be opened. Therefore, the defensive 

mechanisms of decentralized FL should also be investigated. 

 

 

6. CONCLUSION 

 

As FL is becoming widely used in many practical 

applications that aim to preserve users’ privacy, protecting the 

security of this new paradigm becomes an urgent need. In this 

paper, we have presented a survey on security concerns in FL 

settings. Specifically, we have revisited existing security 

attacks and threats towards FL, such as poisoning attacks, 

inference attacks, communication attacks, and free-riding 

attacks. Furthermore, we have presented the current defensive 

techniques based on differential privacy, secure multi-party 

computation, anomaly detection, robust aggregation, and 

federated distillation. We showed that there is not yet a 

defensive mechanism that fulfills all the security/privacy and 

performance/accuracy objectives and that there is still much 

work to be done. After that, we have presented four interesting 

research topics in this field. We hope that such survey can 

serve as a valuable reference for researchers in both FL and 

security fields. 
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