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In recent years, the number of studies on crashes involving large-trucks has increased due 

to its importance to the economy and the higher chance of fatalities. However, none of the 

previous studies has given attention to the spatial concentrations of large-truck crashes. 

Moreover, the literature lacks exploration of granular level land use and urban design 

factors. The current study used the DBSCAN (Density-Based Spatial Clustering of 

Application with Noise) method to identify the spatial concentrations of crashes involving 

large-trucks. Additionally, the study explored housing, population, employment, and road 

network density attributes along with the crash characteristics, roadway attributes, 

location type, traffic conditions, driver’s action and behavior, and environmental factors. 

The association rule analysis was employed to discover the contributory factors that lead 

to no injury, non-severe and severe injuries at the spatial concentrations of crashes 

involving large-trucks. The findings indicated that the rear-end collisions involving drunk 

drivers often lead to severe injuries in large-truck crashes. Non-interstate roads, speed 

limit from 40 to 80 kilometers per hour, high road network density, medium and high 

population density are frequent conditions of non-severe injuries. Lastly, collisions 

between large-trucks and fixed objects, sideswipe same direction collisions, snowy roads, 

clear weather, medium road network and employment density are likely to facilitate no 

injury crashes involving large-trucks. Road traffic authorities can use these insights to 

reduce the frequency and severity of crashes involving large-trucks at their spatial 

concentrations. 

Keywords: 

large-truck crashes, spatial concentrations, 

DBSCAN clustering, association rule mining 

1. INTRODUCTION

The value of shipments moved by the trucks is the highest 

in the United States. From 2012 to 2015, the value of 

shipments moved by the trucks increased by 6.38% 

approximately [1]. The quantity of shipments is more likely to 

increase in the coming years due to the higher demand for 

goods and services. As the quantity of shipments grows, the 

risk of crashes involving large-trucks also increases. A crash 

event involving large-trucks can interrupt traffic flow, and lead 

to severe injuries for drivers, occupants and other vulnerable 

road users (i.e. pedestrians & cyclists). According to the 

National Safety Council, the number of fatal crashes that 

involved large-trucks was 5005 in 2019, which is a 2% 

increase from 2018. A large-truck is typically defined as “any 

medium or heavy truck with gross vehicle weight more than 

10,000 pounds”, excluding the buses and motor homes. The 

unique characteristics such as the size and weight of the large-

trucks, and the fatigue caused by long driving hours in the 

truck drivers increase the chances of severe or fatal injuries in 

crashes. The importance of the large-trucks to the economy, 

and the threats to road safety by the large-trucks validate the 

special attention that has been given to the analysis of large-

truck crashes. 

The number of studies on large-truck-related crashes has 

increased over the years. Most of the studies tried to identify 

the contributory factors that influence the frequency of large-

truck-related crashes [2, 3], the severity of injury in crashes 

involving large-trucks [3-5], and the risk of occurrence of 

large-truck involved crashes [6]. Some studies analyzed the 

crashes involving large-trucks for specific area types (e.g. 

urban, rural, mountainous freeway) [7, 8] or roadway types 

(e.g. cross or t-intersection, freeways, highways) [9-12]. A 

good number of studies have explored and analyzed the spatial 

clusters of traffic crashes [13-16]. However, very few studies 

have analyzed the spatial concentration of crashes involving 

large-trucks. The spatial concentrations of crashes involving 

large-trucks are different than that of other vehicles due to 

their unique characteristics and origin-destination routes of 

large-trucks. Analysis of the spatial concentrations can reveal 

important insights about the crash contributory factors that 

frequently occur together in large-truck crash-prone locations. 

Moreover, the previous studies have rarely explored the land 

use and urban design attributes in their analysis of crashes 

involving large-trucks. The knowledge discovered from the 

analysis of the spatial concentrations of large-truck crashes 

can improve the road safety policies and make the operation 

of the trucking industry safer. The objective of the current 

study is to discover the conditions that influence the different 

levels of injury severity at the spatial concentrations of crashes 

involving large-trucks using data mining methods. 

2. LITERATURE REVIEW

2.1 The contributory factors of crashes involving large-

trucks 

The previous studies have identified a wide variety of 
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factors that influence the frequency, the severity of injury and 

the occurrence of crashes involving large-trucks. The 

categories of the contributory factors include the crash 

characteristics (e.g., collision type), vehicle characteristics 

(e.g., size and weight), driver demographics and actions (e.g., 

age, moving straight), roadway attributes (e.g., alignment, 

grade), land use (e.g., rural & urban), traffic conditions (e.g., 

traffic control & speed limit), and environmental factors (e.g., 

weather, lighting). Dong et al. [3] reported that driver age, 

speed limit, and location type have significant influence only 

on the frequency of crashes involving large trucks. Another 

study developed a driver-focused truck crash prediction model 

and found that age, weight, height, gender, employment 

stability, and previous driving and vehicle history are 

significantly related to the likelihood of truck crash occurrence. 

Different collision type affects the injury outcome of 

crashes involving large-trucks differently under disparate 

conditions. Uddin & Huynh [4], and Zhu & Srinivasan [5] both 

reported that the rear-end collisions decrease the probability of 

major injury. Zhu & Srinivasan [5] also indicated that head-on 

collisions involving large-truck lead to more severe injuries. 

Several studies suggested that the number of vehicles and the 

characteristics of large-truck also significantly affect the injury 

severity of crashes. Zheng et al. [17] and Chen F. & Chen S. 

[18] reported that large-trucks with weights over 20,000 lbs 

and hazardous material cargo increase the likelihood of severe 

injury, respectively. Moreover, Chen F. & Chen S. [18] and 

Islam et al. [8] discovered that there are significant differences 

between the single-vehicle and multiple-vehicle crashes 

involving large-trucks. Roads with a right curve also increase 

the odds of injury in large-truck crashes [6]. With regards to 

traffic conditions, Uddin & Huynh [4] reported that speed 

limits between 45 to 60 mph increase the odds of no injury 

under normal weather conditions, and speed limits over 65 

mph increases the odds of major injury under rainy weather.  

The effects of driver’s age on the injury severity of crashes 

involving large-trucks have been inconsistent in the past 

studies. For example, Pahukula et al. [19] reported that young 

drivers are more likely to decrease the chances of no injury 

large truck crashes. On the other hand, Chen et al. [20] found 

that young drivers are more likely to be associated with 

incapable injuries and fatalities. A few studies have explored 

the impacts of different environmental factors on the injury 

severity of large-truck crashes. Naik et al. [21] have explored 

the weather impacts on the injury severity of large-truck-only 

crashes. The results of the study indicated that wind speed, rain, 

humidity, and air temperature have an association with the 

injury of single-vehicle large-truck crashes. Another study 

analyzed the injury severity of large-truck crashes under 

different lighting conditions on the rural and urban roadways 

of Ohio, USA [9]. The study concluded that the age and gender 

of occupants, types of trucks, speed, annual average daily 

traffic, curve roadways, and adverse weather have different 

effects on the injury severity under different lighting 

conditions. Concerning the effects of land use, Islam & 

Hernandez [11] indicated that crashes involving large-trucks 

in rural areas are likely to result in fatal injuries. In contrast, 

crashes in urban areas reduced the chances of incapacitating 

injuries. However, the categorization of crash locations into 

rural or urban put them in a broad definition of land use. The 

current study explored the more granular land use (e.g., 

population, housing, & employment density) and urban design 

(e.g., road network density) attributes, which rarely has been 

explored in previous studies.  

2.2 The methodologies used for analysis of large-truck 

crashes 

 

Until now, the majority of the studies have used statistical 

models to analyze crashes involving large-trucks. Dong et al. 

[3] used the negative binomial model to identify the factors 

that influence the frequency of large-truck crashes. Most of the 

studies that analyzed the injury severity of large-truck crashes 

have used the discrete-outcome models because typically the 

injury severity levels in crash data are reported as discrete 

values [22]. The commonly used discrete-outcome models for 

injury severity analysis are multinomial logit, ordered 

logit/probit, random parameters logit/probit model, and 

Bayesian binary logit model [4, 10, 19, 23]. However, the non-

linear relationship between the contributory factors and injury 

severity makes the application of statistical models 

questionable. Moreover, several studies have reported that 

there are substantial correlations among the contributory 

factors. And, the effects of the contributory factors are difficult 

to estimate due to the correlations among the contributory 

factors [24]. Considering these limitations, a few studies have 

used the machine learning models such as classification and 

regression tree (CART) [25, 26], and gradient boosting 

decision tree [17]. However, a crash event occurs due to 

simultaneous or subsequent interactions of several 

contributory factors. The dependent and independent model 

structure only captures the effects of an individual 

contributory factor on the frequency or injury severity of 

crashes. The ARM technique not only can discover the set of 

crash contributory factors that often occur together in certain 

types of crashes but also identify the direction of associations 

among them. However, the application of the ARM technique 

for the analysis of road traffic crashes has been limited. Hong 

et al. [27] have used the ARM technique to analyze the risk 

factor of truck-involved crashes that occurred on the 

expressways of South Korea. Another study used the 

association rules to analyze the characteristics and 

contributory factors of work-zone crash casualties [28]. The 

current study used the ARM technique to discover the 

contributory factors that are likely to facilitate different levels 

of injury severity at the spatial concentration of crashes 

involving large-trucks. In addition to the commonly explored 

crash contributory factors, this study explored the granular 

level land use and urban design attributes. The following part 

of the study includes a description of the crash contributory 

factors, the methodologies, the results, the discussion, and the 

conclusion. 

 

 

3. DATA DESCRIPTION 

 

The final data set was aggregated using two different data 

sources. One is the crash data set, and another is the smart 

location data set. The crash data set include only road crashes 

involving the large-trucks that occurred between 2014 to 2019 

in the state of Pennsylvania of the United States (US) [29] 

Each crash record included a wide variety of variables, which 

were distributed in multiple tables separately. The data tables 

are link-able using the crash record number (CRN). For this 

study, the crash, vehicle, roadway, and flag data tables were 

retrieved, and the commonly used contributory factors for the 

analysis of crashes involving large-trucks were selected.  

First, the crash records that include only large-trucks were 

selected from the vehicle data table. The vehicle, crash, flag, 
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and roadway data tables were merged using the CRN. There 

were multiple crash records with the same CRN because some 

crash events involved more than one injured person. We kept 

the crash record with the highest level of injury severity. The 

injury severity variable in the collected crash data has five 

categories. They are no injury (0), possible injury (4), 

suspected minor injury (3), suspected serious injury (2), and 

killed or fatal injury (1). The numbers in the brackets indicate 

the index used in the raw data set to label the categories of 

injury severity. The readers can find the definitions of different 

levels of injury severity in the following link [30]. According 

to the data dictionary for the crash data set of Pennsylvania, 

when there is no visible injury, and only complaints of pain, it 

is categorized as possible injury. To make to levels of injury 

severity more discrete and reduce the complexity of the 

association rules, we have put possible injury and suspected 

minor injury into one category as non-severe injuries. 

Moreover, since the proportion of killed or fatal injuries 

crashes is significantly low, we have put suspected serious 

injury and fatal injury into the category severe injuries. Such a 

strategy was used in some previous studies as well [4, 31]. The 

no injury category was left as it was in the raw data set. The 

crash records without the geographic coordinates, and with 

values such as “reported as unknown” or “unknown” were 

replaced with null values. All the records with null values were 

removed from the data set to avoid discrepancy. Then, the 

numerical variables were binned into intervals, and each 

interval was labeled based on the characteristics of the 

variables. The geographic coordinates, latitude, and longitude 

were left in their original format. 

The smart location database is a publicly available data 

product and service provided by the United States 

Environmental Protection Agency. The population, household, 

employment, and road network density attributes were 

selected from the smart location database. These attributes 

were calculated for every census block group (CBG) of the 

USA. For details about the database, readers are requested to 

follow [32]. These attributes were binned into low, medium, 

and high-density intervals. The geographic coordinates, 

latitude, and longitude of the crash records, and the CBG’s 

geographic area coordinates were used to identify which crash 

event belonged to which CBG. Then, each crash record was 

attributed with its corresponding CBG population, housing, 

employment, and road network density. The final data set 

included 39,464 crash records and 23 contributory factors. 

Table 1 describes the contributory factors. 

 

Table 1. Distribution of the contributory factors 

 
Contributory factors Nominal Values Frequency (%) 

1. Collision type Rear-end  10782 (27.32%) 

 Angle  9515 (24.11%) 

 Hit fixed object 6874 (17.42%) 

 Sideswipe same direction 5491 (13.91%) 

 No collision 3061 (7.76%) 

 Others  1284 (3.25%) 

 Head-on  1256 (3.18%) 

 Sideswipe opposite direction  1201 (3.04%) 

2. Vehicle movement Going straight 21402 (54.23%) 

 Negotiating curve 5382 (13.64%) 

 Turning  3736 (9.47%) 

 Stopped in traffic lane 2699 (6.84%) 

 Changing lanes merging 2570 (6.51%) 

 Others 2214 (5.61%) 

 Slowing/stopping in lane 1461 (3.7%) 

3. Drinking driver No 38360 (97.2%) 

 Yes 1104 (2.8%) 

4. Aggressive driving No 36924 (93.56%) 

 Yes 2540 (6.44%) 

5. Roadway alignment  Straight  32836 (83.2%) 

 Curved 6628 (16.8%) 

6. Roadway grade Level  28747 (72.84%) 

 Downhill  5669 (14.36%) 

 Uphill  4040 (10.24%) 

 Others  1008 (2.55%) 

7. Intersect type  Mid-block  28122 (71.26%) 

Four-way intersect 5554 (14.07%) 

T-intersection  3656 (9.26%) 

Ramp  1185 (3%) 

Others (y-intersection, multi-leg 

intersection, roundabouts etc.) 

947 (2.40%) 

8. Interstate highway No 28668 (72.64%) 

 Yes 10796 (27.36%) 

9. Signalized intersection No 34655 (87.81%) 

 Yes 4809 (12.19%) 

10. Housing density Low (<85th percentile) 38207 (96.81%) 

 Medium (between 85th - 95th percentile) 934 (2.36%) 

 High (>95th percentile) 323 (0.83%) 

11. Population density  Low (<75th percentile) 37001 (93.76%) 

 Medium (between 75th -95th percentile) 2159 (5.47%) 

 High (>95th percentile) 304 (0.78%) 
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12. Employment density Low (<85th percentile) 33575 (85.08%) 

 Medium (between 85th -95th percentile) 3819 (9.68%) 

 High (95th percentile) 2070 (5.24%) 

13. Road network density Medium (between 25th - 75th percentile)  18356 (46.51%) 

 Low (<25th percentile) 17561 (44.46%) 

 High (>75th percentile) 3547 (8.99%) 

14. Location type  Rural  22244 (56.36%) 

 Urban 17220 (43.63%) 

15. Traffic control  No 29346 (74.36%) 

 Yes 10118 (25.64%) 

16. Speed limit 80 – 130 kmh 19923 (50.48%) 

 40 – 80 kmh  18712 (47.42%) 

 0 – 40 kmh  829 (2.1%) 

17. Road surface condition  Dry  28557 (72.36%) 

 Wet  6369 (16.14%) 

 Snow  2184 (5.53%) 

 Ice/frost   1412 (3.58%) 

 Others  942 (2.39%) 

18. Hour of day 11 am–4 pm 12953 (32.82%) 

 6 -11 am 12836 (32.53%) 

 0 7388 (18.72%) 

 0 6287 (15.93%) 

19. Weather Clear  30417 (77.08%) 

Rain  4759 (12.06%) 

Snow  3379 (8.56%) 

Others  909 (2.30%) 

20. Lighting  Daylight  28414 (72%) 

Dark-unlighted  6348 (16.09%) 

Dark-lighted  3180 (8.06%) 

Dawn  926 (2.35%) 

Dusk  423 (1.07%) 

Others  173 (0.44%) 

21. Injury Severity  No injury 21938 (55.59%) 

Non-severe Injuries 15441 (39.12%) 

Severe Injuries 2085 (5.28%) 

22. Latitude Numerical  

23. Longitude Numerical  

 

 

4. METHODOLOGIES 

 

4.1 DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) 

 

Ester et al. [33] introduced the DBSCAN method to 

discover clusters in large spatial databases with noise. Most of 

the crash data include the geographic coordinates of the crash 

location. The DBSCAN clustering method can use the 

geographic coordinates to discover the regions with a high 

concentration of crashes. Also, roads are not always straight. 

There are intersections and curves in the road networks. Since 

DBSCAN can identify clusters with different shapes, it is 

suitable for application on road crash data. Multiple studies 

have applied DBSCAN clustering on road crash data [34, 35].  

The DBSCAN algorithm has two major input parameters, 

which determine the density of a region. One is the Eps or ε 

neighborhood, which specifies the radius from a point to form 

the dense region. And, another is the MinPts, which specifies 

the number of points required to label an area around a point 

as a dense region. The DBSCAN clustering method uses these 

two input parameters to estimate the density around a point. It 

should be noted that for this study, a point indicates the 

geographic latitude and longitude coordinates of a crash event 

involving large-truck. Below, the cluster formation process of 

the DBSCAN algorithm is described in the context of road 

crash data.  

Step 1: The algorithm selects an arbitrary point that has not 

been visited. 

Step 2: Counts the number of crash events within the ε 

neighborhood of the point that was selected at step 1.  

Step 3: If the number of crash events is equal to or more 

than the MinPts then the initially selected point is considered 

a core point. From the ε neighborhood of this core point, the 

cluster formation starts. On the other hand, if the number of 

crash events within the ε neighborhood of the point selected at 

step 1 is less than the MinPts then the algorithm moves to the 

closest point and repeats step 2. The algorithm may label the 

point selected at step 1 as noise or will make it a part of a 

cluster later, whose core point is within its ε neighborhood.  

Step 4: The ε neighborhood of crash events or points within 

the initially identified cluster also become part of the cluster. 

If two core points are within each other’s ε neighborhood, then 

the two clusters are joined.  

Step 5: The process above continues for other point in the 

crash data, and ends when all the points in the crash data are 

visited. 

 

 
 

Figure 1. DBSCAN clustering 
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An illustration of the process of cluster formation by 

DBSCAN clustering on a road section would more helpful. 

Figure 1 above illustrates a segment of road, which is indicated 

by the space between the parallel black lines. The rectangular 

light gray shapes are markers like in the roads. For the figure 

above, let’s assume the MinPts = 6. In the figure above, the 

red stars are core points (i.e. P,Q & R), since there are six crash 

events within the ε neighborhood of those red stars. The 

dashed line from the core points to the border of circle 

indicates the Eps. The green points are called border point 

because they are within the ε neighborhood of the core points. 

One of the features of DBSCAN clustering is that a point is 

also part of a cluster if it close to many points from that cluster. 

Therefore, the three circles in the figure together indicate a 

cluster. The yellow stars are noise because they are not within 

the ε neighborhood of core points (P,Q & R).  

 

4.2 Association Rule Mining (ARM) 

 

The ARM technique is based on the market basket data 

analysis. It was first proposed by Agrawal et al. [36] to identify 

the frequent sets of items bought together in a transaction data 

of a supermarket. The technique is simple, and the association 

rules discovered by the technique are easy to explain. Let, D = 

{T1, T2, T3, ……., Tn} be a set of transactions, and I = {I1, 

I2, I3, ……..., In} be a set of items. Assume A and B are two 

items. A rule discovered by the association rule analysis for 

the aforementioned items is shown as “A⟶B”, where A is the 

antecedent, and B is the consequent. A rule can have multiple 

items as antecedent and consequent. In the context of market 

basket data analysis, the rule means if a customer buys A in a 

transaction, then the customer is more likely to buy B as well 

in the same transaction. For this study, a crash record was 

treated as a transaction in the market basket data. The nominal 

values of the crash contributory factors were treated as items 

of a transaction like in the market basket data. In this study, 

we have employed the commonly used Apriori algorithm 

because it is simple, and easy to explain, unlike other 

parametric and non-parametric methods. Generally, the apriori 

algorithm requires two steps. First, it iteratively scans the 

whole database for the frequent itemsets. In the second step, it 

generates association rules from the frequent itemsets. Support, 

confidence, and lift are the three important indicators of strong 

association for the rules generated by the apriori algorithm. 

 

4.2.1 Support 

The support indicates the proportion of the considered item 

in the data set. Support for a rule like A→B means the 

proportion of data records where A and B occur together. 

Generally, it is determined based on the characteristics of the 

data, and domain knowledge. The support is calculated using 

the following equation. Here, N is the total number of crash 

records. The support for a rule such as A⟶B is the same as 

B⟶A. Therefore, we need another measure, which considers 

the direction of the association. 

 

𝑆 = 𝑃 (𝐴 ∩ 𝐵) 𝑁⁄  (1) 

 

4.2.2 Confidence 

Confidence is a measure that takes into account the 

direction of a rule and helps to differentiate between the rules 

such as A⟶B and B⟶A. The confidence of rule A⟶B is 

defined by the ratio of occurrence of A and B together to the 

occurrence of A only. The confidence value of rule A⟶B 

indicates that the chance of occurrence of B increases with the 

occurrence of A. The confidence value is calculated using Eq. 

(2). However, the support and confidence alone cannot explain 

the significance of a rule. 

 

𝐶 = 𝑃 (𝐴 ∩ 𝐵) 𝑃⁄ (𝐴) (2) 

 

4.2.2 Lift 

The lift (L) measures the strength of an association rule. The 

lift is the ratio between the confidence and the expected 

confidence of an association rule. The occurrence of A and B 

together with the occurrence of B is considered the expected 

confidence. The lift value ranges from 0 to ∞. The chances of 

A and B occurring together is more than expected when the 

rule A⟶B has a lift greater than 1. A lift lower than 1 indicates 

the opposite. There is no association between the items when 

the lift value is equal to 1. The lift is calculated using Eq. (3). 

 

𝐿 = 𝑃 (𝐴 ∩ 𝐵) 𝑃⁄ (𝐴) × 𝑃(𝐵) (3) 

 

Unfortunately, there is no standard rule to determine these 

parameters. The minimum support value ranged from 10 to 40 

percent in some studies that used the ARM technique for road 

crash analysis [37-39]. However, using such high minimum 

support will leave out interesting rules which may include rare 

but important crash items. In some studies, the minimum 

support ranged from 0 to 5 percent [40-42]. It is fair to say that 

the criteria to set the minimum support value is subjective. It 

should be noted that the nominal values of the crash 

contributory factors are mentioned as the crash items in this 

study. 

 

 

5. RESULTS 

 

The current work was set in motion to discover the set of 

crash items that influence no injury, non-severe, and severe 

injuries at spatial concentrations of crashes involving large-

trucks. Figure 2 illustrates the whole process of analysis of this 

study.  

 

5.1 Spatial concentrations of crashes involving large-

trucks 

 

There is no standard rule or criteria to determine the Eps and 

the MinPts of the DBSCAN clustering method. The value of 

these parameters depends on the domain and expertise of the 

user. Selecting a MinPts value of 2 or 3 will lead to the 

formation of spatial concentrations of very small sizes. On the 

other hand, the total length of public roads was 120,590 miles 

(194,149,900 meters) in Pennsylvania until January 2020 [43]. 

And, the total number of crashes involving large-trucks was 

7038 in 2019. Therefore, the approximate rate of crashes 

involving large-truck per 100 meters of the public road is 

0.000036. Though this is a simple way to estimate the 

distribution of crashes involving large-trucks across the whole 

state of Pennsylvania, it can aid in estimating the MinPts for 

the current analysis. Selecting a MinPts that is significantly 

higher than the rate of crashes involving large-trucks per 100 

meters is likely to identify very few numbers of spatial 

concentrations because in some places the crashes are 

distributed across much wider areas. Also, we observed that 

selecting a MinPts value of 7 or 8, identified fewer spatial 

concentrations where the proportion of severe injuries was 
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over the threshold. Moreover, if the value of Eps is high such 

as 200 or 300 meters, then the corresponding road and 

environment characteristics of the crashes in the spatial 

concentrations may vary too much. Considering the 

aforementioned facts and issues, the MinPts and Eps were set 

to 6 and 100 meters, respectively. The DBSCAN method 

identified 362 spatial concentrations. It should be noted that 

the distance between the crash locations was calculated using 

the widely used Euclidean distance. 

For practical purposes, considering the temporal 

characteristics of spatial concentrations is important. In a 

period of six years, a few crashes may occur at certain 

locations for random reasons. To account for the temporal 

stability of the spatial concentrations, the six years were 

converted into three periods. The spatial concentrations that 

included crashes from the three periods were considered. After 

removing the spatial concentrations with low temporal 

stability, the number of spatial concentrations was 289. 

Moreover, the proportion of severe injuries crashes is 

comparatively low in the crash data of large-trucks, which 

obscures the overall analysis process. To obtain a more 

balanced data set, the spatial concentrations were categorized 

into three groups based on the proportion of severe injuries 

crashes. The group-1 included the spatial concentrations, 

where the proportion of severe injuries crashes was less than 5 

percent. The group-2 included spatial concentrations with 

more than or equal to 5 percent but less than 15 percent of 

severe injuries crashes. The spatial concentrations that 

involved more than 15 percent of severe injury crashes were 

put in group-3. The following Table 2 describes the 

distribution of different levels of injury severity in the different 

groups of spatial concentrations. 

 

Table 2. Description of the spatial concentrations 

 
Category of Spatial 

Concentrations 

Proportion of Severe 

Injuries Crashes 

Number of 

Crashes 

Group-1  0.05% 1968 

Group-2  10.06% 527 

Group-3 20.09% 219 

 

5.2 Data preparation for ARM 

 

The data sets need to be transformed into a set of 

transactions that are similar to the market basket data before 

applying the Apriori algorithm. The current study has used the 

python library called “mlxtend”, which offers the Apriori 

algorithm along with the tools to prepare the data set for the 

application of the ARM technique. After transforming the data 

sets, the dimensions of the group-1, group-2, and group-3 data 

set changed to (1968, 75), (527, 73), and (219, 74), 

respectively. Table 3 shows a portion of the group-3 data set 

after transformation for the readers.  
 

Table 3. An example of data set prepared for ARM 
 

Collision type-

Sideswipe 

Same 

Direction 

Hour of 

day – 10 

PM -6 

AM 

Roadway 

alignment - 

straight 

Vehicle 

movement – 

Going 

Straight 

Maximum 

Severity - 

Severe 

False True True False False 

False False False False False 

False False True True True 

False False True False True 

True True True False False 

 

5.3 Rule mining 
 

The apriori algorithm requires three input parameters, 

which are the minimum support, the maximum length for the 

set of items, and a metric to rank the rules. After reviewing the 

data distribution and past studies, the minimum support (S) 

was set to 1.50%. Also, setting the S value too high will leave 

out interesting rules including crash items such as the severe 

injury and drinking driver. Ordonez et al. [44] suggested some 

constraints to discover important rules and leave out redundant 

rules. The proposed constraints include maximum association 

size, an attribute grouping constraint, and 

antecedent/consequent rule filtering constraint. In this study, 

we have limited the length of association size to 4. Since injury 

severity is the consequence of a crash, we have considered 

only the rules where the consequent is any level of the injury 

severity (e.g. no injury, non-severe injuries, severe injuries). 

The rules were ranked according to their lift value, which was 

set to 1.2 in this study. Under the aforementioned constraints, 

the number of rules generated for the group-1, group-2, and 

group-3 spatial concentrations of crashes involving large-

trucks are 1733, 4051, and 4343, respectively. The following 

sections discuss the top five rules with consequent as severe 

injuries, non-severe injuries, and no injury for each group of 

spatial concentrations. 

 

 
 

Figure 2. Process flowchart 
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Table 4. Rules with consequent as the severe injuries 

 
Spatial cluster Index Antecedents of Severe Injuries Support Confidence Lift 

Group-2 1 {lighting – dark-lighted, roadway alignment – straight, speed limit – 40 to 80 km/h} 1.52% 36.36% 3.62 

 2 {lighting - dark-lighted, road condition -dry, speed limit – 40 to 80 km/h,} 1.52% 36.36% 3.62 

 3 {lighting – dark-lighted, road condition – dry, interstate - no} 1.71% 34.62% 3.44 

 4 {lighting – dark-lighted, employment density – low, speed limit – 40 to 80 km/h} 1.71% 32.14% 3.2 

 5 {lighting – dark-lighted, roadway grade – level, speed limit – 40 to 80 km/h} 1.52% 32.00% 3.18 

Group-3 6 {drinking driver – yes, road network density – medium, collision type - rear-end} 1.83% 100.00% 4.98 

 7 {intersect type – others, roadway alignment – straight, roadway grade - level} 2.28% 100.00% 4.98 

 8 {intersect type – others, signalized intersection – no, roadway alignment - straight} 1.83% 100.00% 4.98 

 9 {intersect type – others, roadway grade – level, speed limit – 40 to 80 km/h} 1.83% 100.00% 4.98 

 10 {intersect type – others, roadway alignment – straight} 2.28% 83.33% 4.15 

 

Table 5. Rules with consequent as the non-severe injuries 

 
Spatial cluster No Antecedents of Non-Severe Injuries Crashes Support  Confidence  Lift 

Group-1 11 {collision type – rear-end, lighting – dark-lighted, traffic control - absent} 1.63% 68.09% 1.66 

 12 {collision type – rear-end, road network density – high, vehicle movement - straight} 2.44% 66.67% 1.63 

 13 {collision type – rear-end, vehicle movement – straight, hour of day – 16 to 22 Pm}  1.52% 66.67% 1.63 

 14 {collision type – rear-end, employment density – high, vehicle movement - straight} 1.88% 66.07% 1.62 

 15 {collision type – rear-end, lighting – dark-lighted, weather - clear} 1.63% 65.31% 1.6 

Group-2 16 {vehicle movement – straight, population density – high, interstate - no} 1.90% 100.00% 2.74 

 17 {vehicle movement – straight, population density – medium, speed limit – 40 to 80 

km/h} 

1.71% 100.00% 2.74 

 18 {vehicle movement – straight, road network density – high, interstate - no} 1.90% 90.91% 2.5 

 19 {vehicle movement – straight, road network density – high, speed limit – 40 to 80 

km/h} 

1.71% 90.00% 2.47 

 20 {intersect type – four-way, road network density - high} 1.52% 88.89% 2.44 

Group-3 21 {employment density – medium, road condition - wet} 1.83% 100.00% 2.61 

 22 {traffic control – absent, intersect type - four-way} 1.83% 100.00% 2.61 

 23 {road network density – low, vehicle movement – slowing/stopping in lane} 1.83% 100.00% 2.61 

 24 {employment density – medium, aggressive driving – no, road condition - wet} 1.83% 100.00% 2.61 

 25 {vehicle movement – slowing/stopping in lane, aggressive driving – no, hour of day – 

6 to 11 AM} 

2.28% 100.00% 2.61 

 

Table 6. Rules with consequent as the no injury 

 
Spatial cluster Index Antecedents of No injury Crashes Support  Confidence  Lift 

Group-1 26 {vehicle movement – straight, speed limit – 40 to 80 km/h, collision type – hitting 

fixed object} 

3.25% 94.12% 1.59 

 27 {speed limit – 40 to 80 km/h, collision type – hitting fixed object, roadway grade - 

level} 

2.85% 93.33% 1.58 

 28 {vehicle movement – turning, road network density – low, signalized intersection - 

yes} 

1.98% 92.86% 1.57 

 29 {roadway alignment – straight, speed limit – 40 to 80 km/h, collision type – hitting 

fixed object} 

3.76% 92.50% 1.57 

 30 {speed limit – 40 to 80 km/h, employment density – low, collision type – hitting 

fixed object} 

2.49% 92.45% 1.57 

Group-2 31 {collision type – sideswipe same direction, intersect type -ramp} 1.52% 100.00% 1.87 

 32 {road network density – medium, road condition – snow} 1.90% 100.00% 1.87 

 33 {collision type – sideswipe same direction, aggressive driving – no, intersect type - 

ramp} 

1.52% 100.00% 1.87 

 34 {road network density – medium, aggressive driving – no, road condition - snow} 1.52% 100.00% 1.87 

 35 {collision type – rear-end, weather – clear, road condition - wet} 1.52% 100.00% 1.87 

Group-3 36 {roadway alignment – straight, employment density – medium, collision type - 

angle} 

1.83% 100.00% 2.41 

 37 {employment density – medium, roadway grade – level, collision type - angle} 1.83% 100.00% 2.41 

 38 {employment density – medium, weather – clear, collision type – angle} 1.83% 100.00% 2.41 

 39 {collision type -sideswipe same direction, employment density – low, hour of day – 

6 to 11 AM} 

1.83% 100.00% 2.41 

 40 {collision type – sideswipe same direction, interstate – yes, employment density - 

low} 

4.11% 100.00% 2.41 

 

5.3.1 Severe injuries 

In the Table 4, rules #1-5 and #6-10 show the top five rules 

with consequent as the severe injuries for group-2 and group-

3 spatial concentrations, respectively. Since the proportion of 

severe injuries is less than the minimum support in group-1, 

there were no rules with consequent as severe injuries in 

crashes of group-1. The confidence and lift values for rules#1-

5 were comparatively lower than that of rules#6-10. Rule#6 

indicated that the chances of severe injuries are 100% for the 

rear-end collisions involving drunk drivers in the medium road 
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network density areas. These assumptions reinforced the 

findings of previous studies where rear-end collisions [8], and 

drinking & driving [25] led to severe injuries in most of the 

cases. The set of antecedents in rules #7-9 also have a 100% 

probability of leading to severe injuries. In the set of those 

antecedents, intersect type – others (i.e. y-intersection, multi-

leg intersections, roundabout, etc.) is a frequent crash item. In 

addition, rule#1, #2, #4, and #5 indicated that large-truck 

crashes under dark-lighted conditions and on roads with a 

speed limit between 40 to 80 km/h have moderate chances of 

leading to severe injuries. Along with the aforementioned 

crash items, dry roads, non-interstate roads, roadways with 

straight alignment and level grade lead to severe injuries in 

some cases. Some previous studies also reported that large-

truck crashes that occur under dark-lighted conditions [5] and 

on dry road surfaces [17] have some probability of leading to 

severe injuries. Areas with low employment density and 

medium road network density may facilitate severe injuries in 

some cases. In low employment density areas, due to less 

traffic congestion, drivers are likely to drive at a higher speed, 

which has the possibility of leading to severe injuries. 
 

5.3.2 Non-severe injuries 

A variety of crash items and their combinations have the 

probability of leading to non-severe injuries. In Table 5, 

rules#11-15, #16-20, and #21-25 shows the top five rules with 

non-severe injuries as the consequent of the crashes in the 

group-1, group-2, and group-3 spatial concentrations, 

respectively. The confidence and lift values for the rules#11-

15 are significantly lower than that of rules#16-25. According 

to rules#11 and #15, rear-end collisions involving large-trucks 

under dark-lighted conditions in absence of traffic control or 

clear weather have significant chances of leading to non-

severe injuries. Rules#12 and #14 indicated that large-trucks 

going straight before rear-end collision in areas with high road 

network or employment density have more than 66% chance 

of leading to non-severe injuries. Rear-end collisions 

involving large-trucks that were going straight during 16 to 22 

PM also have significant chances of resulting in non-severe 

injuries. The previous studies have reported inconsistent 

effects of rear-end collisions on the injury severity of crashes 

involving large-trucks. Uddin & Huynh [4] indicated that rear-

end collision decreases the likelihood of major injuries (fatal 

and disabling) under normal weather conditions. On the other 

hand, Chen & Zhang [45] found that rear-end collisions 

involving large-trucks are associated with severe injuries. 

Table 5 indicates that rules#16 and #15 have the highest 

confidence and lift values. These rules indicated that large-

trucks going straight prior to the collision in areas with 

medium or high population density on non-interstate roads or 

on roads with a speed limit between 40 to 80 km/h lead to non-

severe injuries in almost all cases. Other crash items that are 

hugely frequent in non-severe injuries involving large-trucks 

are high road network density, and four-way intersects. 

Behnood & Mannering [22] and Islam & Hernandez [23] also 

reported that large-trucks going straight prior to the collision 

are inclined to non-severe injuries.  

The confidence and lift values of rules#21-25 are equal. The 

set of crash items in those rules has a 100% probability of 

leading to non-severe injuries. The frequent crash items in 

those rules are medium employment density, wet roads, non-

aggressive driving, and vehicles slowing/stopping in lanes. 

Other less frequent crash items are the absence of traffic 

control, four-way intersect, low road network density, and 

hours from 6 to 11 AM.  

5.3.3 No injury 

In Table 5, the rules#26-30, #31-35, and #35-40 show the 

set of antecedents in rules with consequent as no injury in 

crashes involving large-trucks of group-1, group-2, and group-

3 spatial clusters, respectively. The confidence values of 

rules#26-30 ranged from 92 to 95%. Rules#26, 27, 29, and 30 

indicated that collisions between large-trucks and fixed objects 

on roads with a speed limit between 40 to 80 km/h have 

significant chances of leading to no injury crashes. Also, large-

trucks that were turning before the collision at signalized 

intersections in areas with low road network density increase 

the likelihood of no injury crashes. Behnood & Mannering 

[22] also reported that collisions with fixed objects by large-

trucks increase the likelihood of no injury.  

The confidence values of rules#31-40 were equal. But the 

lift values of rules#36-40 were significantly higher than the 

other rules in Table 6. According to rules#31 and #33, the 

probability of no injury is 100% for sideswipe same direction 

collision involving large-trucks on ramp intersect. On the other 

hand, rules#32, and #34 indicated that large-truck crashes on 

snowy roads in areas with medium road network density also 

have a 100% probability of leading to no injury. During snowy 

weather condition, drivers become more aware and drive 

carefully, which probably reduce the chances of injury in 

crashes. Also, non-aggressive driving is more likely to lead to 

no injury crashes. Rule#35 indicated that rear-end collisions 

involving large-trucks on wet roads in clear weather rarely 

lead to injuries.  

Rules#36, #37, and #38 indicated that angle collisions 

involving large-trucks in areas with medium employment 

density on roadways with straight alignment or level grade or 

in clear weather have almost zero percent chance of leading to 

any type of injury. According to rules#39 and 40, the chances 

of no injury increase for sideswipe same direction collisions 

involving large-trucks in areas with low employment density 

during 6 to 11 AM or on interstate roads. 
 

 

6. DISCUSSION AND CONCLUSIONS 
 

The current study employed data mining methods to 

discover the associations between the contributory factors and 

the different levels of injury severity at the spatial 

concentrations of crashes involving large-trucks. This study 

explored the crash characteristics, driver’s actions, road 

geometries, traffic conditions, and environmental factors. 

Additionally, the newly explored attributes included land use 

(e.g. housing, population, and employment density), and urban 

design (e.g. road network density). The application of the 

DBSCAN clustering method identified the spatial 

concentrations of large-truck crashes. The spatial 

concentrations that did not include crashes from the three 

periods were removed. Then, the remaining spatial 

concentrations were divided into three groups based on the 

proportion of severe injury crashes in each spatial 

concentration to obtain data sets that are less biased towards 

the no injury category. The apriori algorithm, which is a 

popular association rule mining technique was employed on 

each group of spatial concentrations to discover the conditions 

that lead to the no injury, non-severe injuries, and severe 

injuries in crashes involving large-trucks.  

The proposed framework has significant practical 

implications. The crash data are generally recorded by police 

officers, who are not specialized in road crash analysis. 

Moreover, it is not possible to inspect all the locations of 
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crashes due to limited resources. Investigation of the spatial 

concentrations of crashes involving large-trucks by road safety 

experts may reveal more relevant crash contributory factors. 

Further, the application of the ARM technique discovered 

different sets of crash items that are responsible for the 

different levels of injury severity in crashes involving large 

trucks. For example, the combination of crash items that 

significantly increases the chances of severe injuries is the 

rear-end collision and drinking & driving. Checking the 

alcohol intoxication level of the drivers passing through those 

locations can reduce the number and severity of the 

aforementioned crashes. Additionally, the findings suggested 

that severe injuries in crashes involving large-trucks are more 

likely to occur on roads with a speed limit between 40 to 80 

km/h, in areas with low employment density and medium road 

network density. Road safety authorities can improve road 

conditions, raise traffic control, and put up warnings such as 

“crash-prone locations” to curve out severe injuries crashes at 

those locations. 

The rear-end collisions and medium or high population 

density both are frequent conditions of non-severe injuries. In 

medium or high population areas, traffic congestion is frequent. 

Such conditions may facilitate rear-end collisions since a lot 

of vehicles travel in close proximity during congestion. Traffic 

authorities can put up signs and warning for drivers to avoid 

driving too close to other vehicles.  

Several sets of antecedents can lead to no injury every time 

they appear together. According to the results, collisions 

between large-trucks and fixed objects, sideswipe same 

direction collision, medium road network or employment 

density, snowy roads, and clear weather have a significant 

chance of leading to no injury crashes involving large-trucks. 

Reinforcing the current traffic controls and signals vigorously 

may reduce the number of no injury crashes involving large 

trucks.  

In summary, the current work was an interesting effort to 

obtain important and hidden insights about the crashes 

involving large-trucks. Future studies may apply another 

clustering algorithm to segment the spatial concentrations into 

more homogeneous groups. Also, future studies may increase 

the maximum number of crash items in the rule, which can 

reveal more insights about the conditions that lead to different 

levels of injury in crashes involving large-trucks. 
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