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Malware Software detection is one of the key steps in developing the anti-malware 

software in computer systems. In the existing system, malware detection had been 

performed inefficiently with poor detection accuracy. The previous methods were not 

efficient enough to detect malware in terms of low efficiency, low overhead, and poor 

security. The proposed method uses the Machine learning approaches for Malware 

software detection based on the Adaptive Gradient Support Vector Regression (AGSVR) 

to overcome these issues. Initially, the pre-processing stage reduces the imbalanced data 

and missing values based on the Adaptive Normalized Data Analysis (ANDA) using the 

specified dataset. Secondly, features extracted from the pre-processing stage are used for 

the training and testing of dataset using the Adaptive Static Feature Analysis (ASFA) 

algorithm. Each selected feature value is extracted and stored with the associated category 

of specified dataset. Absolute rights are established based on the values assigned to the 

Malware software detection system. Finally, the analysis of the selected features is done 

using the classification based on the training and testing of malware data. The 

classification is based on the Adaptive Gradient Support Vector Regression (AGSVR) 

algorithm. Recognition is an approach to mutual identification that is useful for 

distinguishing between malicious and non-malicious applications. Then, the extracted 

information is used to classify malicious and benign applications that use machine 

learning-based AGSVR classification algorithm. The simulation results show the 

improved sensitivity and specificity, reduced error rate, high accuracy and reduced time 

complexity in the proposed method which is better than the previous method.  
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1. INTRODUCTION

Malware is a virus program that is create4d in order to infect 

the computer system. Malware detection is one of the biggest 

challenges to protect the important data in our computer 

system. Malicious software show millions of samples and one 

of the non-profit claims is about 1.5B of malware models. The 

largest sample collection to avoid detection, and other 

technologies is done mainly through falling hashes of 

polymorphic malware variants, mutations, semen, malware 

examples, and common signatures used by anti-virus detection. 

The scale of the malware set is unlikely to slow 1M / day and 

then expands at about 400K / day. As a result, industry and 

academia are interested in doing malware analysis [1]. Since 

the variant detected is an increasingly serious threat data set, 

the research community has put a considerable amount to 

understand the system. 

This malware application is designed to allow the reuse of 

malware detection code. Without direct pairwise comparison, 

the proposed method can calculate the similarity between large 

malware sample data set. The signature of the blocks that has 

been extracted from a malware sample is used to create variant 

malware signatures which allow the creation of derivative data 

sets from other signatures. Therefore, the source of malware is 

also due to the reuse of detection method and a conventional 

mutation detection tool of block-level code. The experiment 

results in malware while maintaining the ability to explore the 

reuse approach show that have the advantage in comparison 

time and the accuracy of detection of malware variants. 

A malicious software program developed by a computer 

system is infected by cyber-attacks that exploit security 

vulnerabilities. These extraordinary financial and political 

motives reward the owner of the malware as they have many 

network computers, so they can compromise by consuming 

more energy to achieve their malicious goals. Malware is 

deployed on a computer infected by cyber-attacks, and it is a 

malicious software program. This software and malware are 

political to obtain a financial reward that has been created at 

an alarming rate. This malware, infected with the entire 

network's security, will be sent to obtain sensitive information. 

Systems that are affected by this software and malware are 

called a bot [2-5]. Malware programmers write a BOT or 

proxy program to use as a technology virus in the various 

regions on the Internet and install the automaton in the infected 

computer system. 

Detecting the signature malware in any system is the unique 

challenges to grant permissions and limited users with limited 

resources [6-10]. It provides a unique opportunity to connect 

to the metadata required for each application. The work aims 

to detect malicious applications based on machine learning 

techniques using real world android applications. Our system 

will extract relevant application features with the help of well-
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known feature selection techniques. We consider different 

categories of android application in the system and investigate 

the API calls and permission mode of application. 

Deployment of applications on mobile devices is part of the 

overall malware detection and prevention process. Is used to 

detect the installation of the application and to uninstall 

restrictions and malicious application of the interruption of 

other applications that include the Android application. The 

main contribution is as follows. 1) Using a minimum of system 

resources that does not require the application to run the active 

detection of malicious application of lightweight deployment. 

Since there is no escalation, it has the authority 2) to prevent 

malicious software. A system has been used to confirm the 

uninstallation of the root privileges of users and applications; 

however, the deployed application detects default permissions. 

3) Reaction of malware protection function can respond to 

install and update broadcasting system. It is not required to 

scan all of the downloaded items; it has a chance to run; 

regardless of any other authority that shall be obtained before 

it is installed, it still will be able to remove the malware. 

Proposed Adaptive Gradient Support Vector Regression 

(AGSVR) can deploy the actual on a device of the plurality of 

malware detector, real-time malware detection framework. 

Adaptive Gradient Support Vector Regression (AGSVR) is 

designed as part of the operating system as it has two modules 

for monitoring and testing. A plurality of sub-detectors can be 

installed to improve the safety of the system. Sub detector 

monitors the use of the analysis in a monitoring module for 

detecting run-time information for malware. They report their 

analysis results to the Adaptive Gradient Support Vector 

Regression (AGSVR) detector. The detector is decided at the 

time to mark the application as malware. A framework like 

Adaptive Gradient Support Vector Regression (AGSVR) can 

help third parties through the application market, and users 

publish their detection technology. 

The rest of paper is organized as follows: section 2 describes 

the pros and cons of the existing solutions available for 

malware detection. Section 3 describes about the materials and 

methods used in the work. Section 4 discusses the results of 

the proposed work by comparing it other state-of-the-art 

methods. Section 5 conclude the work.  

 

1.1 Problem statement 

 

Malwares are created by the adversaries in order to harm the 

computer system. This malware is the biggest challenges for 

many organizations to safeguard their computing resources. 

Due to this, many solutions have been emerged to detect and 

eliminate malware from the system. Despite many security 

frameworks available for removing malwares, still it is highly 

challenging to cyber space. Many researchers have provided 

various mechanisms for malware detection and many anti-

malware software are available. But still malware attacks 

happen in a large number. Most of the research available for 

malware detection are based on machine learning strategies. 

Some of the common machine learning algorithms used in the 

existing works are decision tree, Convolutional Neural 

Network, SVM, regression etc., However, all the algorithms 

only focused on basic security features. There are no broad 

ways for the efficient detection of malware. In this work, we 

apply AFSVR algorithm to classify the malicious and benign 

patterns. First, we perform feature selection using ANDA, then 

the relevant features are extracted using ASFA. 

2. RELATED WORKS 

 

Malware is becoming a serious threat to more and more 

embedded systems, such traditional software solutions such as 

anti-virus and patch program is still evolving, has been very 

successful in the defense advanced malicious program. Li et al. 

[11] proposed a real time protection for malware detection. 

The work recognizes the signatures of malware using past 

behaviors and samples with the help machine learning 

approaches. Authors compare the proposed work with other 

works in terms of accuracy, detection rate, and energy. The 

work claims the proposed system is better than other works. 

However, the work done for feature extraction will increase 

the computational overhead. Kim et al. [12], proposed a 

security framework to detect malware in android applications. 

The work uses multi model deep learning techniques for 

malware detection. The work also uses multiple features to 

classify the samples and only relevant feature are extracted. 

The performance evaluation of the work is done by comparing 

the detection accuracy of proposed work with existing models. 

The work improved the detection accuracy in detecting the 

malware programs. However, the framework does not 

consider dynamic features for classification process. Hence, 

the performance of the detection in static features are 

questionable. Ma et al. [13], proposed a detection system for 

malware in android applications. The authors constructed a 

control flow graph using FlOWDROID to perform taint 

analysis. Then the work extracts the information with two 

stages training stage and detection stage. Standard metrics 

were considered to evaluate the performance of the work. 

Authors claims that the detection accuracy is improved with 

98.5% classification accuracy than the other available work. 

However, the work considers only two classifications to detect 

the malware in applications which cannot guarantee the 

improvement in the proposed work. Li et al. [14] performs 

malware detection based on domain generation algorithm 

involving machine learning techniques. There are two phases 

in the algorithm classification phase and clustering phase. The 

work can effectively cluster the malicious domain from the 

available domains and performs efficient detection. However, 

it is very difficult to analyze the performance of the work in 

variable length domain. 

Li et al. [15] proposed a classification method for malware 

detection based on factorization machine. The work evaluates 

the performance based on DREBIN and AMD datasets. The 

work achieves 100% precision score and 99% precision score 

on AMD datasets.  

Machine learning-based solutions have been used for the 

automatic detection of malware on the successful Android 

mobile phone [16]. However, the machine learning model, a 

powerful hostile embodiment made by carefully perturbing the 

selection to the normal input, is missing. Gong et al. [17], 

discuss about robust detection methods to identify malware 

attacks. As part of this work, authors perform machine 

learning based detection to identify the malware program. The 

authors analyzed the challenges in ML based detection 

schemes with collaborative approach in real time environment. 

The work concludes that the machine learning approach is 

more effective than any other approaches in performing 

efficient classification.  

From the above analysis, we identified the performance of 

static detection model and dynamic detection mode. We 

understand that the static detection model performs well in 

malware detection process. However, it cannot cope up with 
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the dynamic nature of classification approach using machine 

learning strategies. Dynamic approach for malware detection 

can effectively detect malware at runtime but it cannot be run 

in smart phone directly. Distribution characteristics of 

malware are mostly observed in previous works of detection 

of detecting Android malware machines to the assumption that 

no change over time. The work also identified that the chances 

of vulnerability are found in permission model of android 

applications. In this work, we perform efficient feature 

extraction based on AGSVR and ANDA.M Then, training and 

testing is done for the extracted features using ASFA. The 

work then uses the features in machine learning algorithms to 

perform the detection process efficiently. 

 

 

3. MATERIALS AND METHOD 

 

With the rapid advancement of data technology, the rapid 

growth of malicious code has become one of the biggest cyber 

security threats. The efficiency of a malware detection system 

depends on the characteristics of the malware to effectively 

differentiate how analytics technologies extract it. There are 

different ways to set up your analytical environment with 

different static and dynamic tools. The proposed Adaptive 

Gradient Support Vector Regression (AGSVR) method is used 

to categorize the malware software detection machine learning 

methods to low complexity and high speed. Malware detection 

techniques are provided using machine learning algorithms.  

There are various challenges in developing malware 

classifiers. Finally, effective malware detection systems are to 

be created by dealing with software issues of malware 

detection. 

Figure 1 shows the Malicious software detection classified 

into the proposed method using the Adaptive gradient support 

vector Regression (AGSVR) algorithm. In the pre-processing 

stage, the imbalanced data is handled using the Adaptive 

Normalized Data Analysis (ANDA)and in the second stage, 

the features are extracted using the Adaptive Static Feature 

Analysis (ASFA)and classified as Malicious or Non malicious. 

 

3.1 Preprocessing using Adaptive Normalized Data 

Analysis (ANDA) 

 

Feature selection is the important task in the preprocessing 

stage. Only relevant and suitable features need to be 

considered to detect malware programs efficiently [18-20]. 

There are several factors to consider when creating a login 

feature package from an Android app. Using machine learning 

algorithms to detect malware for Android, a good feature set 

of training is necessary for machine learning algorithms. It 

includes data pre-processing, data product pre-processing, 

cleaning, normalization, modification data etc. Its selection is 

the final training set. A single array of data would be fine if 

each set of pre-processing algorithms has better performance, 

but this would not happen. Therefore, the Adaptive 

Normalized Data Analysis (ANDA) algorithm data set is 

presented for each step because pre-processing facilitates the 

reach of the best performance data set. The work uses dataset 

from https://ocslab.hksecurity.net/andro-autopsy. There are 2 

lakhs android applications collected from the dataset. We then 

classify the dataset in to malware applications and benign 

applications. The work considers different categories of 

android application in the system and investigate the API calls 

and permission mode of application.  

The input database contains a call array of worms, viruses, 

and Trojan horses. At this point, the original file is executed 

after extracting an array of attributes from the executable. 

Attributes that there are datasets to extract and then extract 

each data after loading the dataset. Sample processing is also 

done to categorize worms, viruses, Trojan horses, or data types 

as usual. We apply the feature selection in the dataset using 

ANDA and the performance of the proposed algorithm was 

examined based on confusion matrix. The procedure for the 

proposed method in preprocessing is given in algorithm 1. 

 

Algorithm 1: Adaptive Normalized Data Analysis (ANDA) 

Input: Initialize the data 

Output: Reduced Missing values 

Step 1: ID- Input the dataset 

Step 2: ED- Extract the dataset 

For a= 0: ID do 

 ED  Separate each data; 

End for; 

Step 3: RPCA → using for selecting and computing the 

threshold values.  

Step 4: Normalization scales features  

 

Normalization 𝑋2 𝑥−min(𝑥)

max(𝑥)−min⁡(𝑥)
 (1) 

 

 
 

Figure 1. Proposed architecture for malicious software detection 
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Step 4: CD  Categorizing of data 

 For a = 0; ED do 

 If ED.a == Worm 

  CD = Worm; 

 Else if ED. a = = Trojan 

  CD = Trojan; 

 Else if ED. a = = Virus 

  CD = Virus;  

 Else  

  CD = Normal; 

 End if; 

End for; 

 

where, ANDA-Adaptive Normalized Data Analysis, in the 

pre-processing algorithm, uses the malware dataset to handle 

the missing values and imbalanced data. Training and testing 

data facilitate computing and selecting the instance for the 

dataset attribute values. 
 

3.2 Extracting the features for Adaptive Static Feature 

Analysis (ASFA) algorithm 

 

Extracting the features of information such as effective data, 

filters, and process names is very important as they are the 

most important binary files. The information can be used to 

detect malware software systems. First, it is necessary to 

explain the relationship between data and feature selection, 

which begins to function due to avoidable confusion. The 

process of machine learning covers pre-processing rather than 

choosing the data feature. Facility selection is a component of 

data pre-processing used to improve machine learning skills 

by removing inappropriate or redundant features using the 

Adaptive Static Feature Analysis (ASFA) algorithm. Feature 

Extraction aims to reduce the number of features in a database 

by creating new features (and not excluding original features). 

Features from these new lower boxes can summarize the 

information contained in the original package of features. In 

this way, a version of these original features can be created for 

both the original data. Steps for ASFA feature extraction is 

given in algorithm 2.  
 

Algorithm 2: Feature Extraction using Adaptive Static 

Feature Analysis (ASFA) 

Input: A = {Ax}, the set of all Dataset (n) 

Output: B = {Bx,y}, set of feature in the dataset, the row 

vector features of the original data.  

Step 1: Begin 

Step 2: Using ALCA → for extracting the features in the 

original data set 

              For x= 1 to n do 

Decompile the Ax 

Generate the extracting feature f (151-bit) from Manifest 

                                   Generate the API features a (3262-bit) 

from sources; 

                  End for 

          For y = 1 to 151 do 

 B x, y = a y; 

           End for 

                          For y = 152 to 3413 do 

 B x, y = f y; 

             End for 

Step 3: πa is usually frequencies of the training set: 

 

Π a= 
𝑁𝑜.𝑜𝑓.𝑠𝑎𝑚𝑝𝑙𝑒𝑐𝑙𝑎𝑠𝑠𝐴

𝑇𝑜𝑡𝑎𝑙𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (2) 

Step 4: End procedure 

 

where, ALCA- Adaptive Linear Component Analysis, API- 

Application programing interface, n- Number of datasets, Ax 

– Input values, B x,y – features of row and column values is 

used for the dataset analysis of the original information to 

extract the features based on this algorithm. It helps in 

removing the inappropriate values and selecting the processing 

data in the Malware software dataset. The API ensures that this 

process is an application that uses the A path, so it can combine 

API with permissions to create more representative and 

comprehensive feature extraction that reflects the behavior of 

3413 bits (151 extracting feature functions + 3262 API 

functions), which is much less complex and each malware The 

detection system can also be developed for each application. 

 

3.3 Classification using Adaptive Gradient Support Vector 

Regression (AGSVR) 

 

To theft sensitive information or unauthorized access to 

private networks, different malwares are created for different 

purposes. Malware software that attempts to perform 

malicious activities on the computer is a software program. It 

will detect any malware and notify of the action used by 

intrusion detection systems to prevent them. The Soft 

Computing Technology section detects the provided datasets 

that allow packets or files to come through the network. Here, 

the details are focused using Adaptive Gradient Support 

Vector Regression (AGSVR) with a high accuracy detection 

system in various forms such as Malware software system. 

The steps for AGSVR is given in algorithm 3. Most 

applications call their operating system various APIs, known 

to require the Android operating system. Once we compiled a 

small file into an Android application, we further scrutinized 

every small file included in our list, thus using SmsManager. 

send text message malicious API calls (or Wifi-Manager 

setWifi-Enabled) for each such application. 

 

Algorithm 3: Adaptive Gradient Support Vector 

Regression (AGSVR) 

Input: Malware software training and testing data 

Output: Determine the calculated accuracy 

Step 1: Handle SRC= Nt Open File; 

Step 2: Handle section Handle + NtCreatesection(Section 

Handle); 

If (QueryAttributesFile>TF) 

While (Stopping condition is not met) do 

 Implement AGSVR training step for each data values 

 

AGSVR→Calculating weights 𝑇𝐹𝑥𝑦 = 𝑊𝑥,𝑦/𝑇𝑥,𝑦 (3) 

 

Implement AGSVR to classify the testing data values 

 

𝑇𝐹𝑖 = log
𝑁

𝑁𝑖
+ 1 (4) 

 

End While 

End If 

Return Accuracy 

Step 3: End 

 

where, AGSVR-Adaptive Gradient Support Vector 

Regression, W-weight values, TF-Time Frequency as in Eqns. 

(3) and (4)., analyzes the classification accuracy based on the 
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malware software detection to the implementation of training 

and testing data analysis of the optimal values. 

 

 

4. DISCUSSION 

 

The proposed implementation results and performances 

have been tested using selected dataset and the selected 

features are trained using machine learning algorithm to 

identify the accuracy of Malware detection using the proposed 

method. Test case measurements are calculated by the true and 

false positions of the error rate performed during processing. 

The test results have been compared to the Adaptive Gradient 

Support Vector Regression (AGSVR) Method. The analysis is 

done based on Sensitivity, specificity, accuracy, Error Rate 

and Time complexity in the proposed system. 

We consider F-measure and accuracy to measure the 

performance of the proposed algorithm with other state of the 

algorithm such as: 

Accuracy: Malware detection is done with the help of 

benign applications and malware applications. For all 

prediction steps, the proportion of correct predication is its 

accuracy. Accuracy is given by 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑋 + 𝑌

M⁡classes
 (5) 

 

F-measure: The work also uses F-measure to evaluate 

precision and recall. These two methods can be used to 

compare the proposed model with other existing models. F-

measure is given by 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = ⁡
2 ∗ 𝑃 + 𝑅

𝑃 + 𝑅
 (6) 

 

where, P and R are precision and recall respectively.  

 

4.1 Experimental setup 

 

To identify the performance of our proposed work, AGSVR 

is implement on different categories of android application 

extracted from the dataset. Then, the work identified the 

suitable detection model and compare the proposed model 

with other models such as GCRNC, KNN, Naïve Bayesian, 

and LCS. In the first part of experiment, feature selection is 

performed on different features to select relevant features for 

malware detection. Next, selected features are trained using 

machine learning approaches to analyze the performance with 

accuracy and F-measure. Table 1 shows the parameters used 

in the proposed model. 

 

Table 1. Simulation parameters for the proposed system 

 
Parameters used Values processed 

Input dataset Malware software Dataset 

simulation language Python 

Simulation tool Anaconda 

Number of data 1000 

Trained data 700 

Testing data 300 

 

F-measure and Accuracy are used in evaluating the 

proposed method with other models such as LCS, GCRNC, 

Naïve Bayesian and KNN. The outcome of the experiment 

shows that the proposed method provides improved results 

compared to the previous method results. 

 

 
 

Figure 2. Analysis of the sensitivity 

 

Figure 2 describes the Sensitivity performance of the 

proposed and existing methods the proposed Adaptive 

Gradient Support Vector Regression (AGSVR) improves the 

sensitivity up to 90.1%, which is better than the previous 

method of Gradient Conventional Recursive Neural Classifier 

(GCRNC). 

 

 
 

Figure 3. Analysis of the specificity 

 

Figure 3 describes the Specificity performance of the 

proposed and existing methods; the proposed Adaptive 

Gradient Support Vector Regression (AGSVR) improves the 

specificity up to 88.2%, which is better than the previous 

method of Gradient Conventional Recursive Neural Classifier 

(GCRNC). 

 

 
 

Figure 4. Analysis of the accuracy 

 

Figure 4 describes the Accuracy performance of the 

proposed and existing methods. The proposed Adaptive 

Gradient Support Vector Regression (AGSVR) improves the 

accuracy up to 92.2%, which is better than the previous 

methodGradient Conventional Recursive Neural Classifier 

(GCRNC). 
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Figure 5. Analysis of the error rate 
 

 
 

Figure 6. Analysis of the time complexity 

 

Figure 5 describes the Error Rate performance of the 

proposed and existing methods. The proposed Adaptive 

Gradient Support Vector Regression (AGSVR) reduces the 

Error Rate score up to 52.4%, which is better than the previous 

method of Gradient Conventional Recursive Neural Classifier 

(GCRNC). 

Figure 6 describes the performance time complexity of the 

proposed and existing methods. The proposed Adaptive 

Gradient Support Vector Regression (SVR) method reduces 

the time complexity level to 35sec which is better than the 

previous method of Gradient Conventional Recursive Neural 

Classifier (GCRNC). 

 

 

5. CONCLUSION 
 

Despite many proposed solutions, some challenges have 

still not been addressed, especially because of the rapidly 

evolving nature of malware. For complexity in emerging-

malware issues with source code, code obfuscation-related 

difficulties are available and immediately they require special 

attention. In the previous methods, the number of samples, 

especially malware samples, is insufficient and the malware 

properties obtained are not yet represented. The Adaptive 

Gradient Support Vector Regression (AGSVR) method is 

applied to perform malware detection. The performance 

analysis is done by comparing the proposed model with state-

of-the-art models. From the analysis, we observed that the 

reduced computational consumption ensures the enhancement 

of the proposed algorithm, which is higher in other models and 

traditional machine learning methods. In the simulation results, 

the proposed method AGSVR provides better accuracy 

compared to the previous methods. The proposed AGSVR 

improves the sensitivity to 90.1%, specificity to 88.2%, 

accuracy to 90.1%, reduces the error rate to 52.1% and reduces 

the complexity of time in 35Sec using the Malware software 

detection dataset. 
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