
Machine Learning-Based Malware Software Detection Based on Adaptive Gradient Support

Vector Regression

Lavanya Bharathi*, Shanthi Chandrabose

Department of Computer Science, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai 600117,

Tamil Nadu, India

Corresponding Author Email: lavanya84tvm@gmail.com

https://doi.org/10.18280/ijsse.120105 ABSTRACT

Received: 30 November 2021

Accepted: 15 January 2022

Malware Software detection is one of the key steps in developing the anti-malware

software in computer systems. In the existing system, malware detection had been

performed inefficiently with poor detection accuracy. The previous methods were not

efficient enough to detect malware in terms of low efficiency, low overhead, and poor

security. The proposed method uses the Machine learning approaches for Malware

software detection based on the Adaptive Gradient Support Vector Regression (AGSVR)

to overcome these issues. Initially, the pre-processing stage reduces the imbalanced data

and missing values based on the Adaptive Normalized Data Analysis (ANDA) using the

specified dataset. Secondly, features extracted from the pre-processing stage are used for

the training and testing of dataset using the Adaptive Static Feature Analysis (ASFA)

algorithm. Each selected feature value is extracted and stored with the associated category

of specified dataset. Absolute rights are established based on the values assigned to the

Malware software detection system. Finally, the analysis of the selected features is done

using the classification based on the training and testing of malware data. The

classification is based on the Adaptive Gradient Support Vector Regression (AGSVR)

algorithm. Recognition is an approach to mutual identification that is useful for

distinguishing between malicious and non-malicious applications. Then, the extracted

information is used to classify malicious and benign applications that use machine

learning-based AGSVR classification algorithm. The simulation results show the

improved sensitivity and specificity, reduced error rate, high accuracy and reduced time

complexity in the proposed method which is better than the previous method.

Keywords:

malware software detection, Adaptive

Gradient Support Vector Regression

(AGSVR), Adaptive Normalized Data Analysis

(ANDA), Adaptive Static Feature Analysis

(ASFA), machine learning

1. INTRODUCTION

Malware is a virus program that is create4d in order to infect

the computer system. Malware detection is one of the biggest

challenges to protect the important data in our computer

system. Malicious software show millions of samples and one

of the non-profit claims is about 1.5B of malware models. The

largest sample collection to avoid detection, and other

technologies is done mainly through falling hashes of

polymorphic malware variants, mutations, semen, malware

examples, and common signatures used by anti-virus detection.

The scale of the malware set is unlikely to slow 1M / day and

then expands at about 400K / day. As a result, industry and

academia are interested in doing malware analysis [1]. Since

the variant detected is an increasingly serious threat data set,

the research community has put a considerable amount to

understand the system.

This malware application is designed to allow the reuse of

malware detection code. Without direct pairwise comparison,

the proposed method can calculate the similarity between large

malware sample data set. The signature of the blocks that has

been extracted from a malware sample is used to create variant

malware signatures which allow the creation of derivative data

sets from other signatures. Therefore, the source of malware is

also due to the reuse of detection method and a conventional

mutation detection tool of block-level code. The experiment

results in malware while maintaining the ability to explore the

reuse approach show that have the advantage in comparison

time and the accuracy of detection of malware variants.

A malicious software program developed by a computer

system is infected by cyber-attacks that exploit security

vulnerabilities. These extraordinary financial and political

motives reward the owner of the malware as they have many

network computers, so they can compromise by consuming

more energy to achieve their malicious goals. Malware is

deployed on a computer infected by cyber-attacks, and it is a

malicious software program. This software and malware are

political to obtain a financial reward that has been created at

an alarming rate. This malware, infected with the entire

network's security, will be sent to obtain sensitive information.

Systems that are affected by this software and malware are

called a bot [2-5]. Malware programmers write a BOT or

proxy program to use as a technology virus in the various

regions on the Internet and install the automaton in the infected

computer system.

Detecting the signature malware in any system is the unique

challenges to grant permissions and limited users with limited

resources [6-10]. It provides a unique opportunity to connect

to the metadata required for each application. The work aims

to detect malicious applications based on machine learning

techniques using real world android applications. Our system

will extract relevant application features with the help of well-

International Journal of Safety and Security Engineering
Vol. 12, No. 1, February, 2022, pp. 39-45

Journal homepage: http://iieta.org/journals/ijsse

39

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.120105&domain=pdf

known feature selection techniques. We consider different

categories of android application in the system and investigate

the API calls and permission mode of application.

Deployment of applications on mobile devices is part of the

overall malware detection and prevention process. Is used to

detect the installation of the application and to uninstall

restrictions and malicious application of the interruption of

other applications that include the Android application. The

main contribution is as follows. 1) Using a minimum of system

resources that does not require the application to run the active

detection of malicious application of lightweight deployment.

Since there is no escalation, it has the authority 2) to prevent

malicious software. A system has been used to confirm the

uninstallation of the root privileges of users and applications;

however, the deployed application detects default permissions.

3) Reaction of malware protection function can respond to

install and update broadcasting system. It is not required to

scan all of the downloaded items; it has a chance to run;

regardless of any other authority that shall be obtained before

it is installed, it still will be able to remove the malware.

Proposed Adaptive Gradient Support Vector Regression

(AGSVR) can deploy the actual on a device of the plurality of

malware detector, real-time malware detection framework.

Adaptive Gradient Support Vector Regression (AGSVR) is

designed as part of the operating system as it has two modules

for monitoring and testing. A plurality of sub-detectors can be

installed to improve the safety of the system. Sub detector

monitors the use of the analysis in a monitoring module for

detecting run-time information for malware. They report their

analysis results to the Adaptive Gradient Support Vector

Regression (AGSVR) detector. The detector is decided at the

time to mark the application as malware. A framework like

Adaptive Gradient Support Vector Regression (AGSVR) can

help third parties through the application market, and users

publish their detection technology.

The rest of paper is organized as follows: section 2 describes

the pros and cons of the existing solutions available for

malware detection. Section 3 describes about the materials and

methods used in the work. Section 4 discusses the results of

the proposed work by comparing it other state-of-the-art

methods. Section 5 conclude the work.

1.1 Problem statement

Malwares are created by the adversaries in order to harm the

computer system. This malware is the biggest challenges for

many organizations to safeguard their computing resources.

Due to this, many solutions have been emerged to detect and

eliminate malware from the system. Despite many security

frameworks available for removing malwares, still it is highly

challenging to cyber space. Many researchers have provided

various mechanisms for malware detection and many anti-

malware software are available. But still malware attacks

happen in a large number. Most of the research available for

malware detection are based on machine learning strategies.

Some of the common machine learning algorithms used in the

existing works are decision tree, Convolutional Neural

Network, SVM, regression etc., However, all the algorithms

only focused on basic security features. There are no broad

ways for the efficient detection of malware. In this work, we

apply AFSVR algorithm to classify the malicious and benign

patterns. First, we perform feature selection using ANDA, then

the relevant features are extracted using ASFA.

2. RELATED WORKS

Malware is becoming a serious threat to more and more

embedded systems, such traditional software solutions such as

anti-virus and patch program is still evolving, has been very

successful in the defense advanced malicious program. Li et al.

[11] proposed a real time protection for malware detection.

The work recognizes the signatures of malware using past

behaviors and samples with the help machine learning

approaches. Authors compare the proposed work with other

works in terms of accuracy, detection rate, and energy. The

work claims the proposed system is better than other works.

However, the work done for feature extraction will increase

the computational overhead. Kim et al. [12], proposed a

security framework to detect malware in android applications.

The work uses multi model deep learning techniques for

malware detection. The work also uses multiple features to

classify the samples and only relevant feature are extracted.

The performance evaluation of the work is done by comparing

the detection accuracy of proposed work with existing models.

The work improved the detection accuracy in detecting the

malware programs. However, the framework does not

consider dynamic features for classification process. Hence,

the performance of the detection in static features are

questionable. Ma et al. [13], proposed a detection system for

malware in android applications. The authors constructed a

control flow graph using FlOWDROID to perform taint

analysis. Then the work extracts the information with two

stages training stage and detection stage. Standard metrics

were considered to evaluate the performance of the work.

Authors claims that the detection accuracy is improved with

98.5% classification accuracy than the other available work.

However, the work considers only two classifications to detect

the malware in applications which cannot guarantee the

improvement in the proposed work. Li et al. [14] performs

malware detection based on domain generation algorithm

involving machine learning techniques. There are two phases

in the algorithm classification phase and clustering phase. The

work can effectively cluster the malicious domain from the

available domains and performs efficient detection. However,

it is very difficult to analyze the performance of the work in

variable length domain.

Li et al. [15] proposed a classification method for malware

detection based on factorization machine. The work evaluates

the performance based on DREBIN and AMD datasets. The

work achieves 100% precision score and 99% precision score

on AMD datasets.

Machine learning-based solutions have been used for the

automatic detection of malware on the successful Android

mobile phone [16]. However, the machine learning model, a

powerful hostile embodiment made by carefully perturbing the

selection to the normal input, is missing. Gong et al. [17],

discuss about robust detection methods to identify malware

attacks. As part of this work, authors perform machine

learning based detection to identify the malware program. The

authors analyzed the challenges in ML based detection

schemes with collaborative approach in real time environment.

The work concludes that the machine learning approach is

more effective than any other approaches in performing

efficient classification.

From the above analysis, we identified the performance of

static detection model and dynamic detection mode. We

understand that the static detection model performs well in

malware detection process. However, it cannot cope up with

40

the dynamic nature of classification approach using machine

learning strategies. Dynamic approach for malware detection

can effectively detect malware at runtime but it cannot be run

in smart phone directly. Distribution characteristics of

malware are mostly observed in previous works of detection

of detecting Android malware machines to the assumption that

no change over time. The work also identified that the chances

of vulnerability are found in permission model of android

applications. In this work, we perform efficient feature

extraction based on AGSVR and ANDA.M Then, training and

testing is done for the extracted features using ASFA. The

work then uses the features in machine learning algorithms to

perform the detection process efficiently.

3. MATERIALS AND METHOD

With the rapid advancement of data technology, the rapid

growth of malicious code has become one of the biggest cyber

security threats. The efficiency of a malware detection system

depends on the characteristics of the malware to effectively

differentiate how analytics technologies extract it. There are

different ways to set up your analytical environment with

different static and dynamic tools. The proposed Adaptive

Gradient Support Vector Regression (AGSVR) method is used

to categorize the malware software detection machine learning

methods to low complexity and high speed. Malware detection

techniques are provided using machine learning algorithms.

There are various challenges in developing malware

classifiers. Finally, effective malware detection systems are to

be created by dealing with software issues of malware

detection.

Figure 1 shows the Malicious software detection classified

into the proposed method using the Adaptive gradient support

vector Regression (AGSVR) algorithm. In the pre-processing

stage, the imbalanced data is handled using the Adaptive

Normalized Data Analysis (ANDA)and in the second stage,

the features are extracted using the Adaptive Static Feature

Analysis (ASFA)and classified as Malicious or Non malicious.

3.1 Preprocessing using Adaptive Normalized Data

Analysis (ANDA)

Feature selection is the important task in the preprocessing

stage. Only relevant and suitable features need to be

considered to detect malware programs efficiently [18-20].

There are several factors to consider when creating a login

feature package from an Android app. Using machine learning

algorithms to detect malware for Android, a good feature set

of training is necessary for machine learning algorithms. It

includes data pre-processing, data product pre-processing,

cleaning, normalization, modification data etc. Its selection is

the final training set. A single array of data would be fine if

each set of pre-processing algorithms has better performance,

but this would not happen. Therefore, the Adaptive

Normalized Data Analysis (ANDA) algorithm data set is

presented for each step because pre-processing facilitates the

reach of the best performance data set. The work uses dataset

from https://ocslab.hksecurity.net/andro-autopsy. There are 2

lakhs android applications collected from the dataset. We then

classify the dataset in to malware applications and benign

applications. The work considers different categories of

android application in the system and investigate the API calls

and permission mode of application.

The input database contains a call array of worms, viruses,

and Trojan horses. At this point, the original file is executed

after extracting an array of attributes from the executable.

Attributes that there are datasets to extract and then extract

each data after loading the dataset. Sample processing is also

done to categorize worms, viruses, Trojan horses, or data types

as usual. We apply the feature selection in the dataset using

ANDA and the performance of the proposed algorithm was

examined based on confusion matrix. The procedure for the

proposed method in preprocessing is given in algorithm 1.

Algorithm 1: Adaptive Normalized Data Analysis (ANDA)

Input: Initialize the data

Output: Reduced Missing values

Step 1: ID- Input the dataset

Step 2: ED- Extract the dataset

For a= 0: ID do

 ED  Separate each data;

End for;

Step 3: RPCA → using for selecting and computing the

threshold values.

Step 4: Normalization scales features

Normalization 𝑋2 𝑥−min(𝑥)

max(𝑥)−min⁡(𝑥)
 (1)

Figure 1. Proposed architecture for malicious software detection

41

Step 4: CD  Categorizing of data

 For a = 0; ED do

 If ED.a == Worm

 CD = Worm;

 Else if ED. a = = Trojan

 CD = Trojan;

 Else if ED. a = = Virus

 CD = Virus;

 Else

 CD = Normal;

 End if;

End for;

where, ANDA-Adaptive Normalized Data Analysis, in the

pre-processing algorithm, uses the malware dataset to handle

the missing values and imbalanced data. Training and testing

data facilitate computing and selecting the instance for the

dataset attribute values.

3.2 Extracting the features for Adaptive Static Feature

Analysis (ASFA) algorithm

Extracting the features of information such as effective data,

filters, and process names is very important as they are the

most important binary files. The information can be used to

detect malware software systems. First, it is necessary to

explain the relationship between data and feature selection,

which begins to function due to avoidable confusion. The

process of machine learning covers pre-processing rather than

choosing the data feature. Facility selection is a component of

data pre-processing used to improve machine learning skills

by removing inappropriate or redundant features using the

Adaptive Static Feature Analysis (ASFA) algorithm. Feature

Extraction aims to reduce the number of features in a database

by creating new features (and not excluding original features).

Features from these new lower boxes can summarize the

information contained in the original package of features. In

this way, a version of these original features can be created for

both the original data. Steps for ASFA feature extraction is

given in algorithm 2.

Algorithm 2: Feature Extraction using Adaptive Static

Feature Analysis (ASFA)

Input: A = {Ax}, the set of all Dataset (n)

Output: B = {Bx,y}, set of feature in the dataset, the row

vector features of the original data.

Step 1: Begin

Step 2: Using ALCA → for extracting the features in the

original data set

 For x= 1 to n do

Decompile the Ax

Generate the extracting feature f (151-bit) from Manifest

 Generate the API features a (3262-bit)

from sources;

 End for

 For y = 1 to 151 do

 B x, y = a y;

 End for

 For y = 152 to 3413 do

 B x, y = f y;

 End for

Step 3: πa is usually frequencies of the training set:

Π a=
𝑁𝑜.𝑜𝑓.𝑠𝑎𝑚𝑝𝑙𝑒𝑐𝑙𝑎𝑠𝑠𝐴

𝑇𝑜𝑡𝑎𝑙𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (2)

Step 4: End procedure

where, ALCA- Adaptive Linear Component Analysis, API-

Application programing interface, n- Number of datasets, Ax

– Input values, B x,y – features of row and column values is

used for the dataset analysis of the original information to

extract the features based on this algorithm. It helps in

removing the inappropriate values and selecting the processing

data in the Malware software dataset. The API ensures that this

process is an application that uses the A path, so it can combine

API with permissions to create more representative and

comprehensive feature extraction that reflects the behavior of

3413 bits (151 extracting feature functions + 3262 API

functions), which is much less complex and each malware The

detection system can also be developed for each application.

3.3 Classification using Adaptive Gradient Support Vector

Regression (AGSVR)

To theft sensitive information or unauthorized access to

private networks, different malwares are created for different

purposes. Malware software that attempts to perform

malicious activities on the computer is a software program. It

will detect any malware and notify of the action used by

intrusion detection systems to prevent them. The Soft

Computing Technology section detects the provided datasets

that allow packets or files to come through the network. Here,

the details are focused using Adaptive Gradient Support

Vector Regression (AGSVR) with a high accuracy detection

system in various forms such as Malware software system.

The steps for AGSVR is given in algorithm 3. Most

applications call their operating system various APIs, known

to require the Android operating system. Once we compiled a

small file into an Android application, we further scrutinized

every small file included in our list, thus using SmsManager.

send text message malicious API calls (or Wifi-Manager

setWifi-Enabled) for each such application.

Algorithm 3: Adaptive Gradient Support Vector

Regression (AGSVR)

Input: Malware software training and testing data

Output: Determine the calculated accuracy

Step 1: Handle SRC= Nt Open File;

Step 2: Handle section Handle + NtCreatesection(Section

Handle);

If (QueryAttributesFile>TF)

While (Stopping condition is not met) do

 Implement AGSVR training step for each data values

AGSVR→Calculating weights 𝑇𝐹𝑥𝑦 = 𝑊𝑥,𝑦/𝑇𝑥,𝑦 (3)

Implement AGSVR to classify the testing data values

𝑇𝐹𝑖 = log
𝑁

𝑁𝑖
+ 1 (4)

End While

End If

Return Accuracy

Step 3: End

where, AGSVR-Adaptive Gradient Support Vector

Regression, W-weight values, TF-Time Frequency as in Eqns.

(3) and (4)., analyzes the classification accuracy based on the

42

malware software detection to the implementation of training

and testing data analysis of the optimal values.

4. DISCUSSION

The proposed implementation results and performances

have been tested using selected dataset and the selected

features are trained using machine learning algorithm to

identify the accuracy of Malware detection using the proposed

method. Test case measurements are calculated by the true and

false positions of the error rate performed during processing.

The test results have been compared to the Adaptive Gradient

Support Vector Regression (AGSVR) Method. The analysis is

done based on Sensitivity, specificity, accuracy, Error Rate

and Time complexity in the proposed system.

We consider F-measure and accuracy to measure the

performance of the proposed algorithm with other state of the

algorithm such as:

Accuracy: Malware detection is done with the help of

benign applications and malware applications. For all

prediction steps, the proportion of correct predication is its

accuracy. Accuracy is given by

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑋 + 𝑌

M⁡classes
 (5)

F-measure: The work also uses F-measure to evaluate

precision and recall. These two methods can be used to

compare the proposed model with other existing models. F-

measure is given by

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = ⁡
2 ∗ 𝑃 + 𝑅

𝑃 + 𝑅
 (6)

where, P and R are precision and recall respectively.

4.1 Experimental setup

To identify the performance of our proposed work, AGSVR

is implement on different categories of android application

extracted from the dataset. Then, the work identified the

suitable detection model and compare the proposed model

with other models such as GCRNC, KNN, Naïve Bayesian,

and LCS. In the first part of experiment, feature selection is

performed on different features to select relevant features for

malware detection. Next, selected features are trained using

machine learning approaches to analyze the performance with

accuracy and F-measure. Table 1 shows the parameters used

in the proposed model.

Table 1. Simulation parameters for the proposed system

Parameters used Values processed

Input dataset Malware software Dataset

simulation language Python

Simulation tool Anaconda

Number of data 1000

Trained data 700

Testing data 300

F-measure and Accuracy are used in evaluating the

proposed method with other models such as LCS, GCRNC,

Naïve Bayesian and KNN. The outcome of the experiment

shows that the proposed method provides improved results

compared to the previous method results.

Figure 2. Analysis of the sensitivity

Figure 2 describes the Sensitivity performance of the

proposed and existing methods the proposed Adaptive

Gradient Support Vector Regression (AGSVR) improves the

sensitivity up to 90.1%, which is better than the previous

method of Gradient Conventional Recursive Neural Classifier

(GCRNC).

Figure 3. Analysis of the specificity

Figure 3 describes the Specificity performance of the

proposed and existing methods; the proposed Adaptive

Gradient Support Vector Regression (AGSVR) improves the

specificity up to 88.2%, which is better than the previous

method of Gradient Conventional Recursive Neural Classifier

(GCRNC).

Figure 4. Analysis of the accuracy

Figure 4 describes the Accuracy performance of the

proposed and existing methods. The proposed Adaptive

Gradient Support Vector Regression (AGSVR) improves the

accuracy up to 92.2%, which is better than the previous

methodGradient Conventional Recursive Neural Classifier

(GCRNC).

43

Figure 5. Analysis of the error rate

Figure 6. Analysis of the time complexity

Figure 5 describes the Error Rate performance of the

proposed and existing methods. The proposed Adaptive

Gradient Support Vector Regression (AGSVR) reduces the

Error Rate score up to 52.4%, which is better than the previous

method of Gradient Conventional Recursive Neural Classifier

(GCRNC).

Figure 6 describes the performance time complexity of the

proposed and existing methods. The proposed Adaptive

Gradient Support Vector Regression (SVR) method reduces

the time complexity level to 35sec which is better than the

previous method of Gradient Conventional Recursive Neural

Classifier (GCRNC).

5. CONCLUSION

Despite many proposed solutions, some challenges have

still not been addressed, especially because of the rapidly

evolving nature of malware. For complexity in emerging-

malware issues with source code, code obfuscation-related

difficulties are available and immediately they require special

attention. In the previous methods, the number of samples,

especially malware samples, is insufficient and the malware

properties obtained are not yet represented. The Adaptive

Gradient Support Vector Regression (AGSVR) method is

applied to perform malware detection. The performance

analysis is done by comparing the proposed model with state-

of-the-art models. From the analysis, we observed that the

reduced computational consumption ensures the enhancement

of the proposed algorithm, which is higher in other models and

traditional machine learning methods. In the simulation results,

the proposed method AGSVR provides better accuracy

compared to the previous methods. The proposed AGSVR

improves the sensitivity to 90.1%, specificity to 88.2%,

accuracy to 90.1%, reduces the error rate to 52.1% and reduces

the complexity of time in 35Sec using the Malware software

detection dataset.

REFERENCES

[1] Das, S., Liu, Y., Zhang, W., Chandramohan, M. (2015).

Semantics-based online malware detection: Towards

efficient real-time protection against malware. IEEE

Transactions on Information Forensics and Security,

11(2): 289-302.

https://doi.org/10.1109/TIFS.2015.2491300

[2] Roseline, S.A., Geetha, S., Kadry, S., Nam, Y. (2020).

Intelligent vision-based malware detection and

classification using deep random forest paradigm. IEEE

Access, 8: 206303-206324.

https://doi.org/10.1109/ACCESS.2020.3036491

[3] Vinayakumar, R., Alazab, M., Soman, K.P.,

Poornachandran, P., Venkatraman, S. (2019). Robust

intelligent malware detection using deep learning. IEEE

Access, 7: 46717-46738.

https://doi.org/10.1109/ACCESS.2019.2906934

[4] Dai, Y., Li, H., Qian, Y., Yang, R., Zheng, M. (2019).

Smash: a malware detection method based on multi-

feature ensemble learning. IEEE Access, 7: 112588-

112597.

https://doi.org/10.1109/ACCESS.2019.2934012

[5] Gu, J., Sun, B., Du, X., Wang, J., Zhuang, Y., Wang, Z.

(2018). Consortium blockchain-based malware detection

in mobile devices. IEEE Access, 6: 12118-12128.

https://doi.org/10.1109/ACCESS.2018.2805783

[6] Euh, S., Lee, H., Kim, D., Hwang, D. (2020).

Comparative analysis of low-dimensional features and

tree-based ensembles for malware detection systems.

IEEE Access, 8: 76796-76808.

https://doi.org/10.1109/ACCESS.2020.2986014

[7] Pan, Y., Ge, X., Fang, C., Fan, Y. (2020). A systematic

literature review of android malware detection using

static analysis. IEEE Access, 8: 116363-116379.

https://doi.org/10.1109/ACCESS.2020.3002842

[8] Caviglione, L., Choraś, M., Corona, I., Janicki, A.,

Mazurczyk, W., Pawlicki, M., Wasielewska, K. (2020).

Tight arms race: Overview of current malware threats

and trends in their detection. IEEE Access, 9: 5371-5396.

https://doi.org/10.1109/ACCESS.2020.3048319

[9] Fang, Z., Wang, J., Geng, J., Kan, X. (2019). Feature

selection for malware detection based on reinforcement

learning. IEEE Access, 7: 176177-176187.

https://doi.org/10.1109/ACCESS.2019.2957429

[10] Martins, N., Cruz, J.M., Cruz, T., Abreu, P.H. (2020).

Adversarial machine learning applied to intrusion and

malware scenarios: A systematic review. IEEE Access,

8: 35403-35419.

https://doi.org/10.1109/ACCESS.2020.2974752

[11] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H.

(2018). Significant permission identification for

machine-learning-based android malware detection.

IEEE Transactions on Industrial Informatics, 14(7):

3216-3225. https://doi.org/10.1109/TII.2017.2789219

[12] Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G. (2018).

A multimodal deep learning method for android malware

detection using various features. IEEE Transactions on

Information Forensics and Security, 14(3): 773-788.

https://doi.org/10.1109/TIFS.2018.2866319

[13] Ma, Z., Ge, H., Liu, Y., Zhao, M., Ma, J. (2019). A

combination method for android malware detection

based on control flow graphs and machine learning

algorithms. IEEE Access, 7: 21235-21245.

https://doi.org/10.1109/ACCESS.2019.2896003

[14] Li, Y., Xiong, K., Chin, T., Hu, C. (2019). A machine

learning framework for domain generation algorithm-

44

based malware detection. IEEE Access, 7: 32765-32782.

https://doi.org/10.1109/ACCESS.2019.2891588

[15] Li, C., Mills, K., Niu, D., Zhu, R., Zhang, H., Kinawi, H.

(2019). Android malware detection based on

factorization machine. IEEE Access, 7: 184008-184019.

https://doi.org/10.1109/ACCESS.2019.2958927

[16] Chen, X., Li, C., Wang, D., et al. (2019). Android HIV:

A study of repackaging malware for evading machine-

learning detection. IEEE Transactions on Information

Forensics and Security, 15: 987-1001.

https://doi.org/10.1109/TIFS.2019.2932228

[17] Gong, L., Lin, H., Li, Z., Qian, F., Li, Y., Ma, X., Liu, Y.

(2020). Systematically landing machine learning onto

market-scale mobile malware detection. IEEE

Transactions on Parallel and Distributed Systems, 32(7):

1615-1628.

https://doi.org/10.1109/TPDS.2020.3046092

[18] Zhang, H., Luo, S., Zhang, Y., Pan, L. (2019). An

efficient Android malware detection system based on

method-level behavioral semantic analysis. IEEE Access,

7: 69246-69256.

https://doi.org/10.1109/ACCESS.2019.2919796

[19] Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.

(2017). Context-aware, adaptive, and scalable android

malware detection through online learning. IEEE

Transactions on Emerging Topics in Computational

Intelligence, 1(3): 157-175.

https://doi.org/10.1109/TETCI.2017.2699220

[20] Aslan, Ö., Yilmaz, A.A. (2021). A new malware

classification framework based on deep learning

algorithms. IEEE Access, 9: 87936-87951.

https://doi.org/10.1109/ACCESS.2021.3089586

45

