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 The two-parameter Weibull probability density function (PDF) is widely utilized by 

different researchers and engineers to fit wind speed data for statistical analysis and 

modeling. The characterization of wind resources in the frequency and probability 

domain is necessary to estimate the power output potential of new wind energy projects. 

Considering that exist a variety of Weibull equations evidenced in the literature review, 

this article evaluates 11 different methods to calculate the shape and scale parameters 

of the Weibull PDF. In this sense, it was written an algorithm within a Matlab function 

that solves the 11 methods for calculating the Weibull PDF parameters. Wind speed 

data extracted from the ERA5 database was used as input data for applying the proposed 

algorithm, and statistical parameters such as the Root Mean Square Error (RMSE), the 

Relative Root Mean Square Error (RRMSE), and chi-square test (X2) we utilized for 

assessing the performance of each one of the 11 methods for modeling the wind 

distribution. The statistical results pointed that the numerical iteration methods (e.g. 

maximum likelihood method) showed better results than parameterized equations such 

as the Graphical Method, hence, this research recommends the implicit methods for 

determining Weibull PDF parameters of wind speed data. 
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1. INTRODUCTION 

 

The growing energy demand around the world requires the 

generation of clean and renewable energy [1]. Wind energy 

allows the generation of electricity with low Greenhouse Gas 

emissions (GHG) compared to fossil fuels. Wind energy 

exceeds the existing electricity demand, as a result, the 

installed capacity of wind turbines grew at an annualized rate 

greater than 20% from 2000 to 2019 and is estimated to 

increase further than 50% by the end of 2023 [2]. 

Currently, the countries seek to achieve independence from 

fossil fuels while mitigating environmental problems by 

taking advantage of renewable energy. Wind energy is an 

easily accessible, renewable, and at the same time a profitable 

source that is growing rapidly [3], therefore, it can be used to 

satisfy a large part of the planet's energy demand reducing the 

GHG [4]. 

The use of statistical tools allows a sound estimation of 

wind energy through in situ data from specific locations [5], 

generally, which eases the identification of potential areas for 

the construction of new wind farms [6]. The most common 

probability functions for characterizing the wind speed 

measured at a given location with monthly or yearly time 

horizons, are the Weibull, Rayleigh, and lognormal 

distributions. Among the most common distribution models, 

the Weibull function is considered the best [7]. 

The frequency distribution of the wind speed may show 

different amounts of energy density, then, is more reliable to 

characterize the density of wind energy [4]. The wind energy 

density in terms of W/m2 is obtained through the probability 

distribution function of the wind speed dataset [8]. The two-

parameter of Weibull distribution function known as the shape 

parameter (k) and scale parameter (c) is the control 

coefficients that modulate the statistical distribution, where do 

exist different ways to compute the parameters reported in the 

following studies [9-12]. 

To minimize the error in the wind speed statistical modeling, 

have been developed several equations for calculating the 

Weibull parameters, such as the Graphical Methods (GM), the 

empirical method of Justus (EMJ), the empirical method of 

Lysen (EML), energy pattern factor method (EPFM), 

Mabchour method (MMab), moment method (MoM), least 

square method (LSM), hybrid EPFM-EMJ method, alternative 

maximum likelihood method (AMLM), maximum likelihood 

method (MLM) and the Modified maximum likelihood 

method (MMLM) [7, 11, 12].  

Considering that exists several methods for calculating the 

Weibull parameters and at the moment there is no detailed 

evaluation of the accuracy of each method when modeling 

wind speed data, it is necessary to identify and efficient 

accurate equations that ease the utilization of the Weibull PDF. 

According to the need of screening suitable methods for the 

calculation of Weibull function, this research evaluates as the 

first time the performance of 11 methods for estimating the k 

and c Weibull parameters, considering statistical assessments 

through the chi-square test, the root mean squared error 
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(RMSE), and the Relative root means square error (RRMSE). 

 

 

2. NUMERICAL METHODS FOR DETERMINING 

THE WEIBULL PARAMETERS 

 

The Weibull distribution function shows the probability of 

occurrence of the wind speed. The Weibull function 𝑓(𝑣) may 

be solved considering two parameters [13, 14] as seen in Eq. 

(1): 

 

𝑓(𝑣) =
𝑘

𝑐
(

𝑣

𝑐
)

𝑘−1

𝑒−(
𝑣
𝑐

)
𝑘

 (1) 

 

where, v is the wind speed measured in m/s, k is the shape 

parameter, and 𝒄 the scale parameter measured in m/s. 

The Weibull cumulative distribution function is defined as 

follows: 

 

𝐹(𝑣) = 1 − 𝑒−(
𝑣
𝑐

)
𝑘

 (2) 

 

where, v is the wind speed data, k is the dimensionless 

parameter, and c is the scale parameter. To calculate the 

parameters of the Weibull distribution eleven different 

numerical methods are used in this study which are shown in 

Table 2 [1, 7, 9-12, 15, 16]. 

 

2.1 Evaluation of the models’ performance 

 

To validate the efficiency of the eleven methods, the 

following statistical tests were applied: RMSE (root mean 

square error), 𝑋2 (chi-square), and the Relative root mean 

square error (RRMSE). 

The chi-square test is used to examine if the modelled 

Weibull distribution by the numerical method resembles to the 

raw data distribution [16]: 

 

𝜒2 = ∑
(𝑦𝑖 − 𝑥𝑖)2

𝑦𝑖

𝑛

𝑖=1

 (3) 

 

The root mean squared error (RMSE) aims to verify the 

difference between the modeled and raw data, in this sense, the 

expected value of the test is equal or close to zero [7]: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖)

2

𝑁

𝑖=1

 (4) 

 

The Relative root mean square error (RRMSE) is calculated 

by dividing the RMSE by the mean observed data: 

 

𝑅𝑅𝑀𝑆𝐸(%) =
√1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑁
𝑖=1

1/𝑛 ∑ 𝑦𝑖
𝑁
𝑖=1

100 
(5) 

 

where, N is the number of observations, 𝑥𝑖 is the frequency of 

observations, 𝑦𝑖  is the frequency of Weibull, 𝑥�̅�  is the mean 

wind speed, and n is the number of used parameters. The 

RRMSE test has deferent ranges to represent the model 

accuracy [4, 7]: 

Excellent for RRMSE <  10% 

Good for 10% ≤ RRMSE <  20% 

Fair for 20% ≤RRMSE <  30%  

Poor for RRMSE ≥  30% 

 

 

3. RESULTS 

 

Figure 1 shows the modeled Weibull PDF and cumulative 

frequency distribution, plotted with the probability function 

𝑓(𝑣)  versus the mean wind speed, and the cumulative 

distribution 𝐹(𝑣) versus the mean wind speed. Figure 1 shows 

the results of the eleven methods, using one and 5 years of 

wind speed Reanalysis data of ERA5 of Barranquilla city in 

Colombia. The mean wind speed data as well as the standard 

deviation of the dataset of Barranquilla city are shown in Table 

1. 

 

Table 1. Mean wind speed and wind speed standard 

deviation 

 
Year Mean wind speed (m/s)  Standard deviation (m/s) 

2015 

2016 

2017 

2018 

2019 

2020 

6.0498 

5.2830 

4.9381 

5.4223 

5.3299 

5.3245 

2.9274 

2.9785 

2.7830 

2.5991 

2.6504 

2.9180 

 

The results of Figure 1 allow verifying how the curves 

Weibull PDF represents the wind speed distribution of 

Barranquilla city. In this sense, each of the eleven numerical 

methods considered in the analysis aims to match the 

histograms related to the observed data, which ease identifying 

which method achieves the best fit. Table 2 are listed the 

statistical results of the shape and scale parameters related to 

each method. 

where, Γ(t) is the gamma function defined as: 

 

Γ(t) = ∫ 𝑒𝑥𝑝(−𝑥)𝑥𝑡−1𝑑𝑥
∞

0

 

 

�̅� is the mean of the wind speed. 

�̅�3 is the average wind speed cube. 

𝑣3̅̅ ̅ is the average of the cube of the wind speed. 

𝜎 is the standard deviation. 

𝑁 is the number of observations. 

𝑓(𝑣𝑖) is the frequency of the wind speed measured in an 

Interval 𝑖. 
𝑓(𝑣 ≥  0) is the probability that the wind speed is greater 

than or equal to zero. 

 

 

4. DISCUSSION 

 

4.1 Statistical 

 

The modeled distributions plotted in Figure 1 pointed that 

the implicit methods that required numerical iterations, such 

as MoM, MLM, and MMLM, showed a better fit of the curve 

with the histogram, which evidenced that these models found 

successfully the shape parameter k and the scale parameter 𝑐 

of the Weibull distribution. The statement is supported by the 

statistical results of RMSE, RRMSE, and 𝑋2 (Table 3) which 

the implicit methods reported the best fitting values of k and c. 
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(a) Weibull distribution 2015-2020 (b) Cumulative frequency 2015-2020 

  
(c) Weibull distribution 2015 (d) Weibull distribution 2016 

  
(e) Weibull distribution 2017 (f) Weibull distribution 2018 

  
(g) Weibull distribution 2019 (h) Weibull distribution 2020 

 

Figure 1. Modeled Weibull distribution using several periods 2015-2020 

 

According to the results of GM, it was observed that this 

method could not simulate the natural distribution of the wind 

speed (Figure 1), hence, the statistical results showed the 

highest values of RMSE, RRMSE, and 𝜒2. These statistical 

results represent a low performance of the GM method when 

modeling the wind data distribution. It can be concluded that 

10 of the 11 methods work well. The in-situ data distributions 

of wind speed plotted in Figure 1 (observed) reported wind 

speed values that agree with the wind characteristics of the 

study area reported by Rueda-Bayona et al. [17, 18], and the 

time series modeling performed by Rueda-Bayona et al. [19]. 

Because the wind speed data showed a slight bimodal 

distribution (Figure 1c, d, h), which could be associated with 

the local variability of the study area, it is recommended to 

develop Weibull PDF models capable to represent 

bimodalities in the data distribution. Orimoloye et al. [20] 
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developed a bimodal model for representing wave data in the 

frequency domain, hence, the mathematical formulation of the 

equation developed in that study could be a reference for 

developing Weibull equations with two density peaks. 

 

Table 2. Different Weibull estimation method 

 
Method Mathematical expression 

Graphical methods (GM) 𝑙𝑛{𝑙𝑛[1 − 𝐹(𝑣)]} = 𝑘 𝑙𝑛(𝑣) − 𝑘 𝑙𝑛(𝑐) 

Moment’s methods (MoM) �̅� = 𝑐Γ (1 +
1

𝑘
), 𝜎 = 𝑐 [Γ (1 +

2

𝑘
) − Γ2 (1 +

1

𝑘
)]

1

2
 

Energy pattern factor method (EPFM) 𝐸𝑝𝑓 =
𝑣3̅̅̅̅

�̅�3
, 𝑘 = 1 +

3.69

𝐸𝑝𝑓
2, 𝑐 =

�̅�

Γ(1+
1

𝑘
)
 

Empirical method of Justus (EMJ) 𝑘 = (
𝜎

�̅�
)

−1.086
, 𝑐 =

�̅�

Γ(1+
1

𝑘
)
 

Empirical method of Lysen (EML) 𝑘 = (
𝜎

�̅�
)

−1.086
, 𝑐 = �̅� (0.568 +  

0.433

k
)

−
1

𝑘
 

Maximum likelihood method (MLM) 𝑘 = [
∑ 𝑣𝑖

𝑘𝑙𝑛 𝑣𝑖
𝑁
𝑖=1

∑ 𝑣𝑖
𝑘𝑁

𝑖=1

−
1

𝑁
∑ 𝑙𝑛 𝑣𝑖

𝑁
𝑖=1 ]

−1

, 𝑐 = [
1

𝑁
∑ 𝑣𝑖

𝑘𝑁
𝑖=1 ]

1

𝑘
 

Modified Maximum likelihood method (MMLM) 𝑘 = [
∑ 𝑣𝑖

𝑘𝑙𝑛 𝑣𝑖 𝑓(𝑣𝑖)𝑁
𝑖=1

∑ 𝑣𝑖
𝑘𝑁

𝑖=1 𝑓(𝑣𝑖)
−

1

𝑁
∑ 𝑙𝑛 𝑣𝑖

𝑁
𝑖=1

𝑓(𝑣≥0)
]

−1

, 𝑐 = [
1

𝑓(𝑣≥0)
∑ 𝑣𝑖

𝑘  𝑓(𝑣𝑖)𝑁
𝑖=1 ]

1

𝑘
 

The last square method (LSM) 

k=[
𝑁 ∑ 𝑙𝑛 𝑣𝑖 𝑙𝑛{− ln[1−𝐹(𝑣)]}𝑁

𝑖=1 −∑ ln 𝑣𝑖
𝑁
𝑖=1 ∑ 𝑙𝑛{− ln[1−𝐹(𝑣)]}𝑁

𝑖=1

∑ ln 𝑣𝑖
2𝑁

𝑖=1 −(∑ ln 𝑣𝑖
𝑁
𝑖=1 )

2 ], 

𝑐 = 𝑒
[
𝑘 ∑ 𝑙𝑛 𝑣𝑖 𝑁

𝑖=1 −∑ 𝑙𝑛{− ln[1−𝐹(𝑣)]}𝑁
𝑖=1

𝑁𝑘
]
 

Alternative maximum likelihood method (AMLM) 𝑘 =
𝜋

√6
[

𝑁(𝑁−1)

𝑁(∑ ln  𝑣𝑖
2𝑁

𝑖=1 )−(∑ 𝑙𝑛 𝑣𝑖)𝑁
𝑖=1

2]

1

2
, 𝑐 = [ 

1

𝑁
∑ (𝑣𝑖)𝑘𝑁

𝑖=1 ]

1

𝑘
  

The Mabchour method (MMAb) 𝑘 = 1 + (0.483(�̅� − 2))
0.51

, 𝑐 =
�̅�

Γ(1+
1

𝑘
)
 

Hybrid (EPFM-EMJ) 𝑘 =
1

2
(1 +

3.69

𝐸𝑝𝑓
2 + (

𝜎

�̅�
)

−1.086
), 𝑐 =

�̅�

Γ(1+
1

𝑘
)
 

 

Table 3. Wind speed statistical analysis of Barranquilla city 

 

Year Numerical method 
Weibull parameters Statistical test  

k c RMSE RRMSE (%) 𝜒2 

2015 

GM 

EMJ 

EML 

EPFM 

MMab 

MoM 

LSM 

EPFM-EMJ 

AMLM 

MLM 

MMLM 

1.6670 

2.1998 

2.1998 

2.2574 

2.4080 

2.1672 

2.1395 

2.2286 

1.6624 

2.1689 

2.7520 

1.3092 

6.8311 

6.8339 

6.8301 

6.8241 

7.1019 

5.7178 

6.8307 

6.5148 

6.8172 

8.6252 

0.1355 

0.0989 

0.0989 

0.1001 

0.1030 

0.0961 

0.1069 

0.0995 

0.0899 

0.0984 

0.0932 

2.2393 

1.6351 

1.6347 

1.6541 

1.7031 

1.5880 

1.7666 

16446 

1.4893 

1.6268 

1.5399 

0.0194 

0.0021 

0.0020 

0.0021 

0.0021 

0.0019 

0.0028 

0.0021 

0.0022 

0.0021 

0.0013 

2016 

GM 

EMJ 

EML 

EPFM 

MMab 

MoM 

LSM 

EPFM-EMJ 

AMLM 

MLM 

MMLM 

1.4899 

1.8633 

1.8633 

1.9064 

2.2651 

2.1662 

1.9122 

1.8848 

1.4391 

1.8230 

2.6719 

1.3518 

5.9496 

5.9536 

5.9543 

5.9643 

6.3535 

5.0128 

5.9521 

5.6508 

5.9403 

6.3514 

0.1669 

0.1024 

0.1023 

0.1087 

0.1031 

0.1025 

0.1154 

0.1027 

0.0977 

0.1018 

0.1099 

3.1598 

1.9380 

1.9371 

1.9508 

2.0584 

1.9404 

2.1847 

1.9444 

1.8490 

1.9269 

2.0803 

0.0306 

0.0031 

0.0031 

0.0031 

0.0030 

0.0026 

0.0044 

0.0031 

0.0037 

0.0031 

0.0026 

2017 

GM 

EMJ 

EML 

EPFM 

MMab 

MoM 

LSM 

EPFM-EMJ 

AMLM 

MLM 

MMLM 

1.5453 

1.8641 

1.8641 

1.8894 

2.1954 

2.1662 

1.9832 

1.8767 

1.3956 

1.8354 

2.8280 

1.3373 

5.5612 

5.5650 

5.5639 

5.5759 

5.9383 

4.7182 

5.5626 

5.2458 

5.5585 

3.3264 

0.1729 

0.1114 

0.1113 

0.1119 

0.1176 

0.1116 

0.1270 

0.1116 

0.1047 

0.1108 

0.1113 

3.5021 

2.2556 

2.2545 

2.2651 

2.3805 

2.2605 

2.5722 

2.2603 

2.1210 

2.2446 

2.5604 

0.0321 

0.0038 

0.0038 

0.0038 

0.0038 

0.0033 

0.0054 

0.0038 

0.0046 

0.0038 

0.0038 
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2018 

GM 

EMJ 

EML 

EPFM 

MMab 

MoM 

LSM 

EPFM-EMJ 

AMLM 

MLM 

MMLM 

1.6829 

2.2224 

2.2224 

2.2502 

2.2922 

2.1662 

1.8825 

2.2363 

1.5211 

2.1960 

3.0320 

1.3059 

6.1223 

6.1247 

6.1218 

6.1208 

6.3564 

5.2687 

6.1221 

5.7468 

6.1144 

6.1268 

0.1418 

0.1139 

0.119 

0.1146 

0.1156 

0.1099 

0.1140 

0.1142 

0.0986 

0.1133 

0.1319 

2.6144 

2.1005 

2.1000 

2.1129 

2.1316 

2.0269 

2.1032 

2.1067 

1.8189 

2.0903 

2.4325 

0.0213 

0.0030 

0.0030 

0.0030 

0.0030 

0.0027 

0.0037 

0.0030 

0.0030 

0.0030 

0.0035 

2019 

GM 

EMJ 

EML 

EPFM 

MMab 

MoM 

LSM 

EPFM-EMJ 

AMLM 

MLM 

MMLM 

1.6431 

2.1355 

2.1355 

2.1841 

2.2742 

2.1662 

1.8381 

2.1598 

1.4852 

2.1033 

2.7824 

1.3143 

6.0183 

6.0210 

6.0183 

6.0170 

6.2825 

5.0827 

6.0184 

5.6524 

6.0082 

6.9059 

0.1555 

0.1109 

0.1108 

0.1120 

0.1140 

0.1087 

0.1137 

0.1114 

0.0984 

0.1103 

0.1137 

2.9172 

2.0803 

2.0797 

2.1008 

2.1387 

2.0388 

2.1337 

2.0905 

1.8463 

2.0686 

2.1340 

0.0252 

0.0030 

0.0030 

0.0030 

0.0031 

0.0028 

0.0040 

0.0030 

0.0033 

0.0030 

0.0025 

2020 

GM 

EMJ 

EML 

EPFM 

MMab 

MoM 

LSM 

EPFM-EMJ 

AMLM 

MLM 

MMLM 

1.4908 

1.9216 

1.9216 

1.9681 

2.2732 

2.1662 

1.6677 

1.9448 

1.4543 

1.8819 

2.7518 

1.3515 

6.0025 

6.0063 

6.0061 

6.0110 

6.3733 

5.1326 

6.0044 

5.6876 

5.9929 

6.2075 

0.1578 

0.1033 

0.1033 

0.1041 

0.1031 

0.1091 

0.1087 

0.1037 

0.0975 

0.1028 

0.1140 

2.9640 

1.9409 

1.9400 

1.9553 

2.0495 

1.9364 

2.0406 

1.9481 

1.8309 

1.9297 

2.1403 

0.0280 

0.0030 

0.0030 

0.0030 

0.0030 

0.0026 

0.0042 

0.0030 

0.0035 

0.0030 

0.0028 

 

4.2 Analysis of the values of the parameters k and c 

 

The calculated Weibull parameters can be observed in Table 

3, where the parameter 𝑘 showed values from 2.1 to 2.7. The 

parameter 𝑐 showed values nearby to 6, where the GM method 

showed the lowest values close to 1 and the MMLM method 

pointed to the highest value equal to 8.6252f for 2015. The 

calculus of the parameter 𝑘  for the numerical iteration 

methods MoM, MLM, and MMLM were performed through 

MATLAB programming. Then, were required k data vectors 

limited by 𝑘 , 0.0001 ≤ 𝑘 ≤ 5  with increments (delta) of 

0.0001  per iteration. Because the delta required for the 

numerical interactions increases the computational time for 

solving the implicit methods, this study performed and 

performance test of the numerical methods to identify the 

proper delta value of each method. As a result, the delta 

(0.0001) was set for the computations. Considering that the 𝑐 

parameter is in the function of the 𝑘 parameter, its calculation 

was explicitly and easy to handle for the MMLM, MLM, and 

AMLM methods. For finding the Weibull parameters of the 

MoM method, it was required to set anonymous MATLAB 

functions using seed values of 𝑘 and 𝑐 as initial conditions. 

 

 

5. CONCLUSIONS 

 

The calculation of the shape and scale parameters for the 

Weibull function was determined. Eleven methods found in 

the literature were solved using hourly wind speed data 

obtained from the ERA5 database. The results revealed that 

GM could not simulate properly the wind speed data 

distribution because Table 2 can see a low accuracy compared 

with other methods. On the contrary, the numerical iteration 

methods MoM, ALMM, MLM, and MMLM not only could fit 

into the wind speed distribution but also had the best 

performance when simulating the wind data distribution 

considering the results of RMSE, RRMSE, and 𝑋2  with 

numbers less than 0.09, 0.1, 1.7 and 2.2, and values close to 

zero respectively, showing excellent performance and high 

accuracy. The MLM and MMLM methods showed a high 

computational consumption, because of k values vector the 

larger is its size the better the fit results are. However, to 

optimize the calculation process, we recommend controlling 

the k input vector to avoid out of memory when running the 

programming code. Finally, this study concluded that the best 

method for representing wind speed data distributions through 

the Weibull PDF model were MLM, MMLM, and MoM, and 

as future research is recommended to develop new methods 

when wind data have bimodal distributions. 
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