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In this paper, we have introduced the analytical solutions of the Benjamin-Bona-

Mahony equation and the (2+1) dimensional breaking soliton equations with the help 

of a new Algorithm of first integral method formula two (AFIM), by depending on 

mathematical software’s. New and more general variety of families of exact solutions 

have been represented by different structures of 3rd dimension plotting and contouring 

plotting with different parameters. So, the solution in this research is unique, new and 

more general. We can apply in computer sciences, mathematical physics, with a 

different vision, general and Programmable.  
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1. INTRODUCTION

It has been previously observed that nonlinear evolution 

equations (NLEEs) play an important depicting of nonlinear 

phenomena. There are many domains regulated by studying of 

these equations such as fluid mechanics, plasma physics, 

hydrodynamics, elastic media and theory of turbulence, 

nonlinear optics, water waves, viscoelasticity, chaos theory, 

and different applications [1-5]. Several attempts have been 

made on these nonlinear equations which has taken a great 

deal, wide reputation and effective contribution in 

interpretation the same physical and engineering phenomena. 

The wave soliton pulse [6], a significant feature of nonlinearity, 

shows a perfect equilibrium between nonlinearity and 

dispersion effects. The first integral method is a powerful 

solution method was presented by the mathematician [7], 

where this method is characterized with its strength, with high 

accuracy and ease of application by relying on the 

characteristics and advantages of the differential equations as 

well as mathematical software in finding the exact traveling 

wave solutions for complex and nonlinear equations that 

specialized of nonlinear physical phenomena, so was applied 

to an important type of NLEEs and fractional equations as [8-

11] with compare with other methods, for example the

homotopy perturbation method [12], the generalized tanh

method [13], homotopy analysis method [14], and several

methods [15-22], the first integral method has proven its

ability to solve various types of non-linear problems and

distinguishes it from other methods by its applicable and the

various solitary wave solutions that we obtain by using this

method.

2. THE PRELIMINARIES AND BASIC DEFINITIONS

OF FIM

The general formula of NLPDEs is: 

𝑤(𝐹, 𝐹𝑥, 𝐹𝑡 , 𝐹𝑥𝑥, 𝐹𝑥𝑡 , . . . . . . . . . . . ) (1) 

where, u(x,t) is the solution of (1) by using the wave 

transforms: 

𝑓(𝑥, 𝑡) = 𝑓(𝜁), 𝜁 = 𝛼𝑥 − 𝛽𝑡 (2) 

we get: 

𝜕

𝜕𝑡
(∙) = −𝛽

𝜕

𝜕


(∙),
𝜕

𝜕𝑥
(∙) = 𝛼

𝜕

𝜕 


(∙),
𝜕2

𝜕𝑡2
(∙)

=  𝛽2
𝜕2

𝜕


2
(∙),

𝜕2

𝜕𝑥2
(∙)

= 𝛼2
𝜕2

𝜕


2
(∙) 

(3) 

Then Eq. (1) transforms to the ODEs as: 

p(f, f ′, f ′
′
, …… ) = 0 (4) 

A new independent variable: 

𝑥(𝜁) = 𝑓(𝜁), 𝑦(𝜁) = 𝑓′(𝜁) (5) 

The system of ODE: 

𝑥′(𝜁) = 𝑦(𝜁) 𝑦′(𝜁) = 𝐹(𝑥(𝜁), 𝑦(𝜁)) (6) 

Because Eq. (6) represents autonomous system then, it is 

difficult to find the first integral for this system thus by 

depending on the qualitative theory of differential equation 

[23], we can obtain the general solution of this system directly. 

By applying the Division theory to option first integral Eq. (6), 

thus we will obtain the exact solution of Eq. (1), now let us 

recall the Division theory. 
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Theorem 2.1 [the division theorem] [6] 

 

Assume that Φ(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are polynomials of two 

variables x and y in C [x, y] and Φ(𝑥, 𝑦)is irreducible in C [x, 

y]. If 𝑄(𝑥, 𝑦) vanishes at any zero point of Φ(𝑥, 𝑦), then there 

exists a polynomial H(𝑥, 𝑦)in ℂ [X, Y] such that: 

 

𝑄(𝑥, 𝑦) = Φ(𝑥, 𝑦) H(𝑥, 𝑦)  

 

We need to apply the (AFIM) on the form: 

 

𝑢″(𝜁) − 𝑇(𝑢(𝜁), 𝑢′(𝜁))𝑢′(𝜁) − 𝑅(𝑢(𝜁)) = 0 (7) 

 

where,  𝑇(𝑢, 𝑢′)  is a polynomial in 𝑢 and 𝑢′, and 𝑅(𝑢)  is a 

polynomial with real coefficients? 

Now choose 𝑇(𝑢, 𝑢′) = 0, and 𝑅(𝑢) = 𝐴𝑢2 + 𝐵𝑢, so Eq. 

(7) change, we get; 

 

𝑢″(𝜁) − 𝐴𝑢2(𝜁) − 𝐵𝑢(𝜁) = 0 (8) 

 

Using Eq. (5) and Eq. (6), Eq. (8) is equivalent to the two-

dimensional autonomous system; 

 

𝑥′(𝜁) = 𝑦(𝜁) 𝑦′(𝜁) = 𝐴𝑥2(𝜁) + 𝐵𝑥(𝜁) (9) 

 

Now, we are applying the Division theorem to seek the first 

integral to Eq. (9), suppose that,  

𝑥 = 𝑥(𝜁) and 𝑦 = 𝑦(𝜁) are the nontrivial solution to Eq. (9) 

and;  

𝑞(𝑥, 𝑦) = ∑ 𝑎𝑖
𝑀
𝑖=0 (𝑥)𝑦𝑖 = 0 which is an irreducible 

Polynomial in the complex domain 𝐶[𝑋, Y], thus: 

 

𝑞[𝑋(𝜁), 𝑌(𝜁)] = ∑𝑎𝑖(𝑋(𝜁))

𝑀

𝑖=0

𝑌𝑖(𝜁) = 0 (10) 

 

𝑎𝑖(𝑋) (𝑖 = 0,1,2, …… .𝑀 are polynomial and 𝑎𝑀(𝑋) ≠ 0, 

Eq. (10) is called the first integral method. There exists a 

polynomial g(𝑋)𝑋 + ℎ(𝑋)𝑌  in the complex domain 

𝐶[𝑋, Y] such that: 

 

𝑞[𝑋(𝜁), 𝑌(𝜁)] = ∑𝑎𝑖(𝑋(𝜁))

𝑀

𝑖=0

𝑌𝑖(𝜁) = 0 (11) 

 

We start our study by assuming m=1 in Eq. (11) gives;  

 

∑ 𝑎𝑖
′1

𝑖=0 (𝑋)𝑌𝑖+1 + ∑ 𝑖𝑎𝑖
1
𝑖=0 (𝑋)𝑌𝑖−1(𝐴𝑋2 + 𝐵𝑋)  

= ( 𝑔(𝑥)  +  ℎ(𝑋)𝑌) (∑ 𝑎𝑖
1

𝑖=0
(𝑋)𝑌𝑖) 

(12) 

 

Equating the coefficients 𝑌𝑖  (𝑖 = 2,1,0) we have;  

 

 𝑎1
′ (𝑋) = 𝑎1(𝑋)ℎ(𝑋) (13a) 

 

𝑎0
′ (𝑋) = 𝑎1(𝑋)𝑔(𝑋) + 𝑎0(𝑋)ℎ(𝑋) (13b) 

 

𝑎1(𝑋)(𝐴𝑋
2 + 𝐵𝑋) = 𝑎0(𝑋)𝑔(𝑋) (13c) 

 

From Eq. (13a), we conclude that 𝑎1(𝑋) is a constant for 

easiness, we set 𝑎1(𝑋)  = 1, and ℎ(𝑋)  =  0, and equalize the 

degrees of 𝑔(𝑋), 𝑎1(𝑋)  and 𝑎0(𝑋) , we deduce that degree 

𝑔(𝑋)  =  1 only, so assume that 𝑔(𝑋)  =  𝐴0𝑋 + 𝐵0, then we 

have 𝑎0(𝑋) from Eq. (13b). 

𝑎0(𝑋) =
 𝐴0𝑋

2

2
+ 𝐵0𝑋 + 𝐶0, (14) 

 

where, 𝐶0 is an arbitrary integration constant. Then we get a 

system of nonlinear algebraic equations by substituting 

𝑎1(𝑋), 𝑎0(𝑋)𝑎𝑛𝑑 𝑔(𝑋)  in Eq. (13c) and setting all the 

coefficients of powers X to be zero, when solve this system we 

have: 

 
{𝐴 =  0, 𝐵 = 0,  𝐴0 =  0, 𝐵0  =  0,  𝐶0 =  𝐶0}, 
{𝐴 = 0, 𝐵 = 𝐵0

2,  𝐴0 = 0, 𝐵0 = 𝐵0, 𝐶0  =  0}, 
 

By the first set we get the travail solution, so neglected and 

we take only the second set of solutions and substituting in Eq. 

(10) we obtain: 

 

𝑌 ( ) = ±√𝐵𝑋 ( ), (15) 

 

Respectively. Combining equation Eq. (15) with Eq. (9), we 

have, 

 

𝑋1 (
 ) = 𝐶1𝑒

√𝐵

, 𝑋2 (

 ) = 𝐶1𝑒
−√𝐵


  

 

𝑌1 (
 ) =

𝐶1 (
1
2
𝐶1𝐴𝑒

2√𝐵

+ 𝐵𝑒√𝐵


)

√𝐵
+ 𝐶2,  

(16a) 

 

𝑌2 (
 ) = −

1

2

𝐶1
2𝐴𝑒−2√𝐵



√𝐵
− 𝐶1√𝐵𝑒

−√𝐵

+ 𝐶2 

(16b) 

 

Now when m = 2 in Eq. (10), and q(X, Y) = 0 this implies 
dq

dξ
= 0, 

 

∑ 𝑎𝑖
′

2

𝑖=0
(𝑋)𝑌𝑖+1 +∑ 𝑖𝑎𝑖

2

𝑖=0
(𝑋)𝑌𝑖−1(𝐴𝑋2 + 𝐵𝑋) 

= (𝑔(𝑥)  +  ℎ(𝑋)𝑌) (∑ 𝑎𝑖
2

𝑖=0
(𝑋)𝑌𝑖) 

(17) 

 

On equating the coefficients of 𝑌𝑖  (𝑖 = 3, 2,1,0)  on both 

sides of Eq. (17), we have, 

 

𝑎2
′ (𝑋) = 𝑎2(𝑋)ℎ(𝑋) (18a) 

 

𝑞𝑎1
′ (𝑋) = 𝑎2(𝑋)𝑔(𝑋) + 𝑎1(𝑋)ℎ(𝑋) (18b) 

 

𝑎0
′ (𝑋) + 2𝑎2(𝑋)(𝐴𝑋

2 + 𝐵𝑋)
= 𝑎1(𝑋)𝑔(𝑋) + 𝑎0(𝑋)ℎ(𝑋) 

(18c) 

 

𝑎1(𝑋)(𝐴𝑋
2 + 𝐵𝑋) = 𝑎0(𝑋)𝑔(𝑋) (18d) 

 

From Eq. (18a), we conclude that 𝑎2(𝑋)  is a constant, 

ℎ(𝑋)  =  0. we set 𝑎2(𝑋) = 1, for easiness, and equalize the 

degrees of 𝑔(𝑋), 𝑎1(𝑋) and 𝑎0(𝑋), we deduce that degree 

𝑔(𝑋) =  1  only, assume that 𝑔(𝑋)  =  𝐴0𝑋 + 𝐵0  then we 

find 𝑎1(𝑋), and 𝑎0(𝑋)from Eq. (18b) & Eq. (18c).  

 

𝑎1(𝑋) =
1

2
𝐴0𝑋

2 + 𝐵0𝑋 + 𝐶0, (19a) 
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where, 𝐶0 is a constant integration. 

 

𝑎0(𝑋) =
1

8
𝐴0𝑋

4 +
1

2
𝐴0𝐵0𝑋

3 +
1

2
𝐵0
2𝑋2

+
1

2
𝐴0𝐶0𝑋

2 + 𝐵0𝐶0X −
2

3
A𝑋3

− B𝑋2 + 𝐷0 , 

(19b) 

 

By choosing a constant integration 𝐷0 to be zero and 

combining equation Eq. (19a) & Eq. (19b) with Eq. (18d), then 

we get a system of nonlinear algebraic equations when setting 

all the coefficients of powers x to be zero, and solve this 

system we obtain:  

 

{𝐴 = 0, 𝐵 =
1

4
𝐵0
2, 𝐴0 = 0, 𝐵0 = 𝐵0,  𝐶0  = 0}, (20a) 

 
{𝐴 = 𝐴, 𝐵 = 𝐵,  𝐴0 = 0, 𝐵0 = 0,  𝐶0  =  0}, (20b) 

 
{𝐴 = 0, 𝐵 = 0,  𝐴0 = 0, 𝐵0 = 0,  𝐶0  =  𝐶0},  (20c) 

 

From (20a) we get solutions same as case m=1. While using 

Eq. (20b) in Eq. (10), we obtain: 

 

𝑌1 =
1

3
√6𝐴X + 9B X,     𝑌2 = −

1

3
√6𝐴X + 9B X (21) 

 

Respectively, combining equation Eq. (21) with Eq. (9): 

 

𝑋1(𝜁) = 𝑋2(𝜁)

=
3

2

B(tanh (
1
2
𝜁√𝐵  + 

1
2
𝐶1√𝐵)

2

 − 1) 

𝐴
 

(22) 

 

then 

 

𝑌 ( ) =  
3

2

B
3
2⁄  sinh (

1
2

√𝐵  + 

1
2
𝐶1√𝐵) 

𝐴  cosh (
1
2

√𝐵  + 

1
2
𝐶1√𝐵)

3 + 𝐶2 (23) 

 

When using Eq. (20c) in Eq. (10), and then Eq. (10) we 

obtain: 

 

𝑋 ( ) = −  𝐶0 + 𝐶1 (24) 

 

𝑌 ( ) =
1

3
𝐴

3

𝐶0
2 − 𝐴 

2

𝐶1𝐶0 − (
1

2
)𝐵

2

𝐶0

+ 𝐴𝐶1
2 + 𝐵𝐶1

 + 𝐶2 

(25) 

 

Eqns. (16a, b), (23) and (25) represent the general solutions 

for differential equations of the form Eq. (7). 

 

 

3. APPLICATION: THE BENJAMIN-BONA–MAHONY 

EQUATION (BBM EQUATION) 

 

Also known as the regularized long-wave equation 

(R=LWE) represent an appropriate model to study the 

dynamics of small-amplitude surface water waves propagating 

undirectional, while suffering non-linear and dispersive 

effects Many applications of (R=LWE) as ionacoustic waves 

in plasma, the undular bore as a result of the transverse long 

wave between a regular flow and static water, pressure waves 

in fluid-gas bubble mixtures, and phonon packets in nonlinear 

crystals. A generalized version is given by: 

 

𝑢𝑡 + 𝑎𝑢𝑥 + 2𝑢𝑢𝑥 + 𝑏𝑢𝑥𝑥𝑡 = 0 (26) 

 

We look for traveling wave solution in the form; 

 

𝑢(𝑥, 𝑡) = 𝑓(𝜁), 𝜁 = 𝑥 − 𝑐𝑡 (27) 

 

Substituting Eq. (27) into Eq. (26) gives: 

 

−𝑐𝑏𝑓‴ + 2𝑓𝑓′ + (𝑎 − 𝑐)𝑓′ = 0 (28) 

 

Integrating the Eq. (28) with respect to ζ and taking the 

integration constants to zero yields: 

 

𝑓″ −
(𝑎 − 𝑐)

𝑏𝑐
𝑓 −

1

𝑏𝑐
𝑓2 = 0 (29) 

 

Comparing Eq. (32) to formula (7), we get; 

 

𝐴 =
1

𝑏𝑐
, 𝐵 =

𝑎 − 𝑐

𝑏𝑐
 (30) 

 

By substituting in Eqns. (16a, b), with Eq. (27) we get: 

 
𝑢1(𝑥, 𝑡)

=

𝐶1

(

  
 1
2
𝐶1
1
𝑏𝑐
𝑒
2√
𝑎−𝑐
𝑏𝑐

 (𝑥−𝑐𝑡)
+ bc

ca −

𝑒
√
𝑎−𝑐
𝑏𝑐

 (𝑥−𝑐𝑡)

)

  
 

√
𝑎 − 𝑐
𝑏𝑐

+ 𝐶2 

(31a) 

 

𝑢2(𝑥, 𝑡)  = −
1

2

𝐶1
2 1
𝑏𝑐
𝑒
−2√

𝑎−𝑐
𝑏𝑐

  (𝑥−𝑐𝑡)

√
𝑎 − 𝑐
𝑏𝑐

− 𝐶1√
𝑎 − 𝑐

𝑏𝑐
𝑒
−√
𝑎−𝑐
𝑏𝑐

 (𝑥−𝑐𝑡)
+ 𝐶2. 

(31b) 

 

These solutions show that as Figures 1 and Figures 2 

respectively.  

From Eq. (23), with Eq. (27) the exact solution of Eq. (26) 

which represent as Figures 3 is: 

 

𝑢3(𝑥, 𝑡)  =  
3

2

B
3
2⁄  sinh(

1
2

√
𝑎 − 𝑐
𝑏𝑐

 + 
1
2
𝐶1√

𝑎 − 𝑐
𝑏𝑐

) 

1
𝑏𝑐
 cosh(

1
2
𝜁√
𝑎 − 𝑐
𝑏𝑐

 + 
1
2
𝐶1√

𝑎 − 𝑐
𝑏𝑐

)

3

+ 𝐶2   

(32) 

 

From Eq. (25) we get: 

 

𝑌 (

) =

1

3𝑏𝑐


3

𝐶0
2 −

1

𝑏𝑐
 


2

𝐶1𝐶0 − (
1

2
)
𝑎 − 𝑐

𝑏𝑐


2

𝐶0

+
1

𝑏𝑐
𝐶1
2 +

𝑎 − 𝑐

𝑏𝑐
𝐶1

+ 𝐶2 , 

(33) 
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Figures 1. Eq. (31a) is illustrated in different plots with different dimensions in detail: the figure (𝐹11 − 𝑎1) is the 3-dimensional 

representation of (31a), the parametric values mentioned as 𝑏 =  3, 𝑎 =  2.5, 𝑐 =  0.05 , 𝐶1  =  1, 𝐶2  =  1; (𝐹11 − 𝑏1) is the 

representation of the 3-dimensional plotting of (31a) with same parametric value but 𝑏 =  200; the plots (𝐹11 − 𝑐1) and (𝐹11 −
𝑑1) are representation of contour plotting of (31a) with same parametric values mentioned but 𝑏 =  200, 𝑐 =  2 and 𝑏 = 3, 𝑐 =
 2 respectively, while (𝐹11 − 𝑓1) here is the representation of the 2-dimensional plotting of Eq. (31a) with same parametric with 

𝑏 =  3, 𝑡 = 0.2 

 

  

  
 

Figures 2. The physical representation of (31b) with different dimensions in detail: the figure (𝐹12 − 𝑎2) is the 3- dimensional 

representation of (31b), the parametric values mentioned as 𝑏 =  3, 𝑎 =  2.5, 𝑐 =  0.05, 𝐶1  =  1, 𝐶2  =  1, the graph (𝐹11 − 𝑏2) 

is the representation of the 3-dimensional plotting of (31b) with same parametric value but 𝑏 =  200, (𝐹12 − 𝑐2) is representation 

of contour plotting of (31b) with same parametric values mentioned and =  200, 𝑐 =  2, while (𝐹11 − 𝑑2) here representation the 

2-dimensional plotting of Eq. (31b) with same parametric with 𝑡 =  0.2 
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Figures 3. The illustration of Eq. (32) with different dimensions in detail: the figure (𝐹12 − 𝑎1) is the 3- dimensional 

representation of (32), the parametric values mentioned as 𝑏 =  3, 𝑎 =  2.5, 𝑐 =  0.05 , 𝐶1  =  1, 𝐶2  =  1, here (𝐹12 − 𝑏1) 

representation the 3- dimensional plotting of (32) with same parametric value but = 2. The plots (𝐹12 − 𝑐1), (𝐹12 − 𝑑1) are 

representation of contour plotting of (32) with same parametric values mentioned but different in (𝐹12 − 𝑑1) where 𝑐 =  2, while 

𝐹12 − 𝑓1) here representation the 2- dimensional plotting of Eq. (32) with same parametric with 𝑡 =  0.2 

 

  

  
 

Figures 4. The illustration of Eq. (34) with different dimensions in detail: the figure (𝐹12 − 𝑎2) is the 3- dimensional 

representation of (34), the parametric values mentioned as 𝑏 =  3, 𝑎 =  2.5, 𝑐 =  0.05 , 𝐶1  =  1, 𝐶2  =  1; here (𝐹12 − 𝑏2) 

representation the 3- dimensional plotting of (34) with same parametric value but 𝑏 = 200; the plot (𝐹12 − 𝑐2) is representation 

of contour plotting of (34) with same parametric values mentioned but different in 𝑏 = 200 and 𝑐 =  2; while (𝐹12 − 𝑑2) here 

representation the 2- dimensional plotting of Eq. (34) with same parametric with 𝑡 =  0.2 
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By Eq. (27), the exact solution of Eq. (26) as form:  

 

𝑢4(𝑥, 𝑡) =
1

3𝑏𝑐
 (𝑥 − 𝑐𝑡)3𝐶0

2

− (
1

𝑏𝑐
 𝐶1𝐶0 +

𝑎 − 𝑐

2𝑏𝑐
𝐶0)  (𝑥

− 𝑐𝑡)2 +
1

𝑏𝑐
𝐶1
2𝜁

+
𝑎 − 𝑐

𝑏𝑐
𝐶1 (𝑥 − 𝑐𝑡)

2 + 𝐶2 

(34) 

 

And this solution was shown in Figures 4.  

 

 

4. THE (2+1) DIMENSIONAL BREAKING SOLITON 

EQUATIONS 

 

This equation used to represent the Riemann wave along the 

y-axis with a long wave the x-axis which given by: 

 

{
𝑢𝑡 − 𝛼𝑢𝑥𝑥𝑦 + 4𝛼𝑢𝑣𝑥 + 4𝛼𝑢𝑥𝑣 = 0

𝑢𝑥 = 𝑣𝑥
 (35) 

 

By looking for traveling wave solution in the form;  

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝜁), 𝜁 = 𝑥 + 𝑦 − 𝑐𝑡 (36) 

 

Integrating the second equation we get: 

 

𝑢 = 𝑣 (37) 

 

Substituting Eq. (37), into the first equation of the system 

gives: 

 

03 2 =+− ff
c

f
  

(38) 

 

Comparing Eq. (38) to formula (7), we get:  

 

𝐴 = −3, 𝐵 =
𝑐

𝛼
 (39) 

 

By substituting in Eqns. (16a, b) we get: 

 

𝑌1 (

) =

𝐶1

(

  
 −3
2
𝐶1𝑒

2√
𝑐
𝛼
 

+ 

c

𝑒
√
𝑐
𝛼
 


)

  
 

√
𝑐
𝛼

+ 𝐶2,  

(40a) 

 

𝑌2 (
 ) =

3

2

𝐶1
2 𝑒

−2√
𝑐
𝛼
  


√
𝑐
𝛼

− 𝐶1√
𝑐

𝛼
𝑒
−√

𝑐
𝛼
 

+ 𝐶2 (40b) 

 

   

   
 

Figures 5. The illustration of (41a, b) with different dimensions in detail: the figures (𝐹21 − 𝑎1) and (𝐹21 − 𝑎2) are the 3- 

dimensional plotting representation of (41a) respectively) the parametric values mentioned as 𝛼 =  3, 𝑐 =  0.05 , 𝐶1  =  1, 𝐶2  =
 1 𝑡 =  0.2; (𝐹21 − 𝑏1) and (𝐹21 − 𝑏2) are the contour plotting representation of (41a, b) with same parametric value but 𝛼 =
 3, 𝑐 =  0.05 and 𝛼 =  200, 𝑐 =  2 respectively; while (𝐹21 − 𝑐1) and (𝐹21 − 𝑐2) here representation the 2- dimensional plotting 

of (41a, b) with same parametric with y =  0.01 
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Figures 6. Every two figures (𝐹22 − 𝑎1), (𝐹22 − 𝑏1) (𝐹22 − 𝑎2), and (𝐹22 − 𝑏2) are represent the Eq. (43) and Eq. (45) 

respectively with different dimensions and the parametric values mentioned as 𝛼 =  3, 𝑐 =  0.05 , 𝐶1  =  1, 𝐶2  =  1 𝑡 =  0.2. 

only in (𝐹22 − 𝑏2) 𝛼 =  200, 𝑐 =  2; the figures (𝐹22 − 𝑐1) and (𝐹22 − 𝑑1) are the contour plotting representation of Eq. (41) and 

Eq. (43) with parametric value 𝛼 =  200, 𝑐 = 2 in first, 𝛼 =  3, 𝑐 = 2 in second𝛼 =  3, 𝑐 =  0.05 in third figure; while (𝐹22 −
𝑓1) and (𝐹22 − 𝑓2) here representation the 2- dimensional plotting of Eq. (43) and Eq. (45) with same parametric with y =  0.01 

 

Then with Eq. (36) we have the exact solution (35) as: 

 

𝑢1(𝑥, 𝑡) =

𝐶1

(

 
 
 
−3
2
𝐶1𝑒

2√
𝑐
𝛼 
(𝑥+𝑦−𝑐𝑡)

+ 

c

𝑒
√
𝑐
𝛼 
(𝑥+𝑦−𝑐𝑡)

)

 
 
 

√
𝑐
𝛼

+ 𝐶2 

(41a) 

 

𝑢2(𝑥, 𝑡)  =
3

2

𝐶1
2𝑒
−2√

𝑐
𝛼
  (𝑥+𝑦−𝑐𝑡)

√
𝑐
𝛼

− 𝐶1√
𝑐

𝛼
𝑒
−√

𝑐
𝛼
 (𝑥+𝑦−𝑐𝑡)

+ 𝐶2 

(41b) 

These solutions show that as Figures 5. 

From Eq. (23), 

 

𝑌 (

) =  

−1

2

B
3
2⁄  sinh (

1
2

√
𝑐
𝛼
 + 

1
2
𝐶1√

𝑐
𝛼
) 

cosh (
1
2

√
𝑐
𝛼
 + 

1
2
𝐶1√

𝑐
𝛼
)

3 + 𝐶2, (42) 

 

with Eq. (36) the exact solution of Eq. (26) as:  

 
𝑢3(𝑥, 𝑡)  

=  
−1

2

B
3
2⁄  sinh(

1
2
(𝑥 + 𝑦 − 𝑐𝑡)√

𝑐
𝛼
 + 

1
2
𝐶1√

𝑐
𝛼
) 

cosh (
1
2
(𝑥 + 𝑦 − 𝑐𝑡)√

𝑐
𝛼
 +  

1
2
𝐶1√

𝑐
𝛼
)

3 + 𝐶2 
(43) 
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From Eq. (25) we get: 

 

𝑌 ( ) = −
3

𝐶0
2 + 3 

2

𝐶1𝐶0 −
𝑐

2𝛼

2

𝐶0

− 3𝐶1
2 +

𝑐

𝛼
𝐶1
 + 𝐶2 

(44) 

 

By Eq. (27), the exact solution of Eq. (35) as form: 

 

𝑢4(𝑥, 𝑡) = − (𝑥 + 𝑦 − 𝑐𝑡)
3𝐶0

2

− (−3 𝐶1𝐶0

+
𝑐

𝛼
𝐶0)  (𝑥 + 𝑦 − 𝑐𝑡)

2

− 3𝐶1
2(𝑥 + 𝑦 − 𝑐𝑡)

+
𝑐

𝛼
𝐶1 (𝑥 + 𝑦 − 𝑐𝑡)

2 + 𝐶2 

(45) 

 

These solutions show that as Figures 6. 

 

 

5. GRAPHICAL REPRESENTATION 

 

In this section We give the illustration of our New Exact 

solutions in different dimensions. The graphs are shown for 

the (2+1) dimensional breaking soliton equations and the 

BBM equations by using Maple. 

 

 

6. RESULT AND DISCUSSION 

 

In this work we take the advantage of the characteristics of 

ordinary differential equations with first integral method 

which has many advantages because it is programmable. 

Furthermore, we can apply the method to the nonlinear 

equation and fractional differential equation which can be 

reduced to the following form: 

 

0))(()())(),(()( =−−  uRuuuTu
  

 

In this work, the general solution of above formula was 

investigated, and discuses all probabilities to get new 

modeling system, and new dynamical system to find the new 

exact solution of the partial differential equations by using 

algorithms and techniques symbolic computation maple 

packages. The formula (8) can be easily applied to many types 

of Nonlinear Equations, fractional equations, and conformable 

fractional differential equations and its applications in 

Mathematical Physics. We can summarize the important main 

points as follows: 

 

• First: New Exact families of solutions and new wave 

body of our method have proposed and described in equations 

(31a), (31b), (32), and (34), we can see a new and different 

structure with 3rd dimension plotting and contouring plotting 

with different parameters. 

• Secondly: to get more explanation of our exact 

solutions and their graphical, you can use different value of 

constants as a, c, C1, C2 and using any mathematical software 

such as Maple, Matlab, or Mathematica. 

• The Eq. (23) and Eq. (25), gives us new and different 

solution. Next, we will compare our solutions with the 

literature that obtained by other techniques. 

• We got a list of different and new solutions of the 

Benjamin- Bona – Mahony equation [24-26] using different 

dimension with different parameters. 

• Ruan [27] has used the variable separation approach 

to get many new types of soliton solutions. But the difference 

is our new solutions for the same equation, totally different, 

new and more general, also our solutions calculated with 

timeless, and simple with computational by using a single 

technique [24-28]. 

 

 

7. CONCLUSION 

 

In this study, we proposed the analytical solutions by using 

a new technique, this method with the general formula (8) for 

nonlinear physical models, Nano-Technology, Elastic Media, 

Fluid Mechanics, Quantum Mechanics, Viscoelasticity, 

Biomathematics, Nonlinear Optics, and Engineering. We 

proved, this technique is successful for solving the (2+1) 

dimensional breaking soliton equations, the Benjamin- Bona – 

Mahony Equation, whereas we have found a new and more 

general families of the exact solutions with help Maple 

software, and these results were shown in many graphical 

structure with different dimension and different value of 

variables, and comparing the analytic solutions with different 

methods in other papers which were introduced in results and 

discussion. Therefore, this work contributes to the 

development of new theories in the field of Physics and 

Engineering. These solutions are useful to the development of 

new algorithm software in computer sciences, nonlinear 

partial differential equations and numerical analysis. Our 

solutions in this research are unique, new and we can apply it 

in computer sciences, mathematical physics, with a different 

vision, general and Programmable in the computer than those 

solutions in the literature earlier. 
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