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Li-lon battery,

The most problem in electric vehicles is the detection of faults in the battery; in this
paper we discuss a systematic data process for detecting and diagnosing faults in the
battery and the application of the method of neural networks for the classification of the
various faults of the Li-lon battery dedicated to the electric vehicle. ; and for that we
tried to create a fault classification algorithm using the neural network commands that
exist in the MATLAB, we used the MATLAB/Simscape for battery modeling, the latter
prepared physical models for use in different fields; and based on this model, we
identified the battery parameters and we will apply some faults to classify them with
neural networks; creating an algorithm takes a long time but when we use these
commands we have to do the classification and the MATLAB gives us the algorithm.,
These algorithms have shown the efficiency of the application of pattern recognition to
the diagnosis.

1. INTRODUCTION

Artificial intelligence (Al) is a discipline which is based on
concepts relating to the human being, scientific techniques
already established and technologies of computers, electronics,
automation [1, 2]. To design so-called intelligent systems,
capable of dealing with difficult-to-solve problems in a
manner similar to that which human would adopt [3, 4].

Currently, artificial intelligence techniques such as expert
systems, fuzzy logic, genetic algorithms and artificial neural
networks (ARNS) are widely used in many fields, such as
regulation of industrial processes, processing of imaging,
diagnostics, medicine, space technology, and computer data
management systems [5-7].

ANNSs, depending on their type, have several applications
in industry. We can cite static diagnosis, dynamic diagnosis,
prognosis, control and monitoring of industrial systems. The
application of ANNs in the diagnosis is a kind of pattern
recognition [8], where we associate with each failure the most
probable cause. From an input vector containing the
parameters of the system to be diagnosed as well as the signals
from the sensors, we can have an output which indicates the
state of the system [9, 10].

The lithium battery management of electric vehicles is
essential and mandatory, and this from its conception in order
not only to ensure a safe system, but also to be able to predict
the performance and faults of the battery or elements.

The number of techniques used to predict battery
performance and faults have grown exponentially, and as RNA
is widely used in diagnostics, it will be introduced to diagnose
faults in lithium-ion batteries [11].

Simscape allows the user to create their own physical
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components from those already present in the Foundation
Library.

For this, we use the language of Simscape with which we
program the mathematical equations governing the input and
output signals of the component. Likewise, the parameters of
the existing components can be configured according to the
user's needs [12].

Simscape aids in the development of control systems as well
as the testing of system-level performance. The Simscape
language, which is based on MATLAB® and allows text-
based writing of physical modeling components, domains, and
libraries, can be used to generate unique component models.
You can use MATLAB variables and expressions to
parameterize your models, and Simulink to construct control
systems for your physical system. Simscape provides C-code
creation for deploying your models to different simulation
environments, such as hardware-in-the-loop (HIL) systems [2,
13].

We got the idea from the example of cancer detection and
classification using mass spectrometry data on protein profiles.
Serum proteomic profile diagnostics can be used to
differentiate samples from patients with and without disease.
Profile models are generated using Surface-Enhanced Laser
Desorption lonization Protein Mass Spectrometry (SELDI).
This technology has the potential to improve clinical
diagnostic tests for cancerous pathologies [14].

The example already exists in the MathWorks
documentations (MATLAB); in this work have found samples
of the faults most influencing the performance and the
accelerated degradation of the Li-lon battery that they are
classified in Ref. [15]; and we have made the application to
some flaws in this work.


https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090118&domain=pdf

2. LI-ION BATTERY MODELING

MATLAB/SIMSCAPE

WITH

Using the MATALB / Simscape we have produced a
lithium-ion battery model (equivalent to Thevenin's first order
model).

This equivalent model consists of a voltage source Uq, a
terminal resistance Ro, Ro in this case is equivalent to the sum
of the series resistances of the solid and liquid phases, a dipole
R1 // C1 (R1 the polarization resistance, C; the polarization
capacity-transient dynamics). Each of these circuit elements is
a subsystem made up of custom electrical blocks and blocks to
calculate the properties of the circuit element.

Figure 1 presents the equivalent model of the Li-lon battery
according to Thérenin's model.

Building and parameterizing an equivalent circuit that
depicts the battery's nonlinear behavior and dependence on
temperature, SOC, SOH, and current is the first step in
developing an accurate battery model. These dependencies are
specific to each battery's chemistry and must be identified
through measurements on battery cells of the same type as the
controller is being designed for. MATLAB Central has
example battery models accessible for download [16]; one of
these models is the first-order Thevenin model presented in
Figure 2.
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Figure 1. Thevenin's first order Li-lon battery model [17]

R
+———450C Simscape
e S0C Simscape POW|—
Soc C_table T ‘
. S
Ci R_table ) <j>
+
Q9 N R
'; Simscape
Simscape T
——+{50C R_table POW |
Em_tabla .'q_
L Ri1 .
P_infH Ha
T L 4
Thermal H
Model

_

T

Figure 2. Li-lon battery model in MATLAB/Simscape [18]

The voltages and currents of the model are regulated by the
following equations:

U, i

U, = i 1
R @
Vt = UOC+V1_R0’: (2)
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where V. is the voltage at the battery terminals, i is the Battery
current, and U, is the voltage drop at the RiC; group
terminals.

This example shows how to model a lithium cell using the
Simscape™ language to implement the elements of an
equivalent circuit model with one RC branch. For the
validation of the defining equations.
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Figure 3. Li-lon battery simulation results from
MATLAB/Simscape [18]



The temperature of the battery is calculated using a basic
thermal model. It is thought that convection is the primary
mode of cooling, and internal resistance is the primary mode
of heating. Multiple copies of the battery cell block can be
connected in series to mimic a battery pack [12].

We used MATLAB/Simscape to model and visualize the
performance of the lithium-ion battery, as previously stated.

Figure 3 gives us:

-the current imposed on the battery; which is in the form of
pulses. When this pulse is applied to the battery, the latter
begins to discharge, and when the current returns to zero, the
battery enters the rest phase (relaxation).

- the voltage of the battery in open circuit, which is devised
in two phases, the discharge phase and the relaxation phase.
So, when a current pulse is applied to the battery, its voltage
undergoes a drop which is due to the resistance Ro (internal
resistance of the battery), and this is how the voltage decreases
each time we apply a current pulse.

-the state of charge of the battery (SOC) which decreases
each time a current pulse is applied, it decreases from 100% to
0%.

-the internal temperature of the battery in the healthy state,
we see that with each pulse (discharge of the battery) the
temperature increases, and during the relaxation phase the
temperature decreases to 20°C, which is the temperature of the
battery in healthy state [19].

3. DETECTION AND CLASSIFICATION OF
DIFFERENT FAULTS BY USING A NEURAL

NETWORK
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Figure 4. Block diagram intended for the generation of
residues

Table 1. Parameters adjusted for each fault and their coding

binary
Fault Adjusted parameter  Binary coding
Short circuit 30% Ro [1000]
Open circuit 30% Ro [0001]
Overload 30% Cp [0010]
High temperature 30% T [0100]

After identifying a few faults, we noted the errors between
the output signals of the battery: the voltage (V), the state of
charge (SOH) and the temperature (T) of the healthy system
and that of the faulty system in order to use them in the
classification of these faults by the method of neural networks.
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Figure 4 represents the generation of the residues; the error is
the difference between the healthy case and the faulty case.

For the four faults that we have chosen, we will set the
percentage of faults of the parameters adjusted to properly
classify these faults as indicated in Table 1.

The network tune-up process has four steps, the first is the
generation of residuals, but in this part, we will calculate the
average values of current, voltage and power errors.

One hundred and twenty (120) samples were taken into
consideration, such as 30 measurements for each defect (Table
2).

Table 2. The vectors of the mean values of the parameter

errors
Parameter Voltage State of Temperature
Fault V) Charge (%) (C9
0 0 0
0 0 0
Short circuit 0 0 0
30% 0.18379 0 0
0.18379 0 9.94753e-14
0 0 0
0 0 0
Open circuit 0 0 0
30% 0 0 0
0.612661 0.61266 0.61266
0 0 0
0 0 0
Overload 0 0 0
30% 0 0 0
-0.61266 0.61266 0.61266
0 0 0
High -0.00112 -4.0268e-5 2 75977
temperature 000220 -7.9304e-5 -5.43545
20% - 0.00322 -0.0001159 -7:94805
-0.00322 -0.0001154 -7.94805
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Figure 5. Defect detection and classification algorithm for a
Li-Ion battery
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Figure 6. NN structure in MATLAB
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Figure 7. The nnstart command window

To make the correct classification of defects, we create a
classification algorithm that presents the method of
comparison between the different defects based on neural
networks (Figure 5).

The second step is to create the database of our work with
the collection of precedent measurements to classify the
different defects, then we built the multilayer neural network
(3-20-4), three (03) inputs in the input layer, twenty (20)
neurons in the hidden layer and floor (04) neurons in the output
layer (Figure 6).

The inputs are the mean values of the vectors of the voltage
errors X1, the state of charge errors X2 and temperature errors
X3. Of each type of fault (short circuit, open circuit, overload,
high temperature).

The last step is learning the neural network.

Now that you have identified some important characteristics,
you can use this information to classify the samples.

3.1 Implementation of the RNA structure under MATLAB

In this study we try to apply all the NN commands that exist
in the MATLAB to classify the defects on one side and verify
and ensure the results obtained.

We have t essential steps:

a- network creation with the command MATLAB nnstart
(network learning with train) (Figure 7).

b- network test and validation (Figures 8-11).

c- hen we will test our model with the nntool command,
which will allow us to create the network test for our model
(Figure 12).

Figures 8 and 9 show the performance of the network during
training; the performance is measured in terms of root mean
square error and presented on a logarithmic scale; they are
displayed for each of the training, validation and test sets.

The confusion matrix in Figure 10 shows the percentages of
correct and incorrect classifications.
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Best Validation Performance is 0.072583 at epoch 21
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Figure 8. Neural network training performance
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Figure 9. Neural network error histogram
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Figure 10. Neural network training confusion

Short circuit "is 1 and open circuit is 2, overload is 3 and
temperature high is 4. True classifications are indicated by
green squares and false classifications are indicated by red
squares. Gray squares indicate the overall rates (correction and
error rate) of the classifications. White squares show
conditional rates (correction and error rate) given a
predetermined target (5th row) or given a predetermined
output (5th column,). The percentages in the red squares are



low, indicating few classification errors, so the network is
precise.

The Figure 11 present the plot of the operating
characteristics of the receiver. This is another measure of the
goodness of fit of neural network data is This graph shows how
the false positive and true positive rates are related when the
exit threshold varies from 0 to 1. in this plot we notice a line
going from the lower left corner, to the upper left corner, to the
upper right corner or nearby.
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Figure 11. The receiver operating characteristic plot
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Figure 12. Neural network data manager

You have to accept false positives to get a high true positive
rate. Finally, and as long as we have checked our network; then
it is ready to generate our algorithm or C ++ program to
implement it in an electronic and Simulink model card based
on the window below (Figure 12).

4. CONCLUSION

Artificial intelligence technology is helping to save human
and material resources in the field of electrical automation
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control, but it also saves time. Artificial neural networks have
a fundamental property which justifies the growing interest in
them and which are capable of intervening in a wide variety of
fields, and which distinguishes them from classical data
processing techniques.

This example demonstrates how neural networks may be
utilized as defect classifiers. To improve the performance of
the classifier, you can also try using techniques such as
principal component analysis to reduce the dimensionality of
the data used for neural network training.
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