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The most problem in electric vehicles is the detection of faults in the battery; in this 

paper we discuss a systematic data process for detecting and diagnosing faults in the 

battery and the application of the method of neural networks for the classification of the 

various faults of the Li-Ion battery dedicated to the electric vehicle. ; and for that we 

tried to create a fault classification algorithm using the neural network commands that 

exist in the MATLAB, we used the MATLAB/Simscape for battery modeling, the latter 

prepared physical models for use in different fields; and based on this model, we 

identified the battery parameters and we will apply some faults to classify them with 

neural networks; creating an algorithm takes a long time but when we use these 

commands we have to do the classification and the MATLAB gives us the algorithm., 

These algorithms have shown the efficiency of the application of pattern recognition to 

the diagnosis. 
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1. INTRODUCTION

Artificial intelligence (AI) is a discipline which is based on 

concepts relating to the human being, scientific techniques 

already established and technologies of computers, electronics, 

automation [1, 2]. To design so-called intelligent systems, 

capable of dealing with difficult-to-solve problems in a 

manner similar to that which human would adopt [3, 4]. 

Currently, artificial intelligence techniques such as expert 

systems, fuzzy logic, genetic algorithms and artificial neural 

networks (ARNs) are widely used in many fields, such as 

regulation of industrial processes, processing of imaging, 

diagnostics, medicine, space technology, and computer data 

management systems [5-7]. 

ANNs, depending on their type, have several applications 

in industry. We can cite static diagnosis, dynamic diagnosis, 

prognosis, control and monitoring of industrial systems. The 

application of ANNs in the diagnosis is a kind of pattern 

recognition [8], where we associate with each failure the most 

probable cause. From an input vector containing the 

parameters of the system to be diagnosed as well as the signals 

from the sensors, we can have an output which indicates the 

state of the system [9, 10].  

The lithium battery management of electric vehicles is 

essential and mandatory, and this from its conception in order 

not only to ensure a safe system, but also to be able to predict 

the performance and faults of the battery or elements. 

The number of techniques used to predict battery 

performance and faults have grown exponentially, and as RNA 

is widely used in diagnostics, it will be introduced to diagnose 

faults in lithium-ion batteries [11].  

Simscape allows the user to create their own physical 

components from those already present in the Foundation 

Library. 

For this, we use the language of Simscape with which we 

program the mathematical equations governing the input and 

output signals of the component. Likewise, the parameters of 

the existing components can be configured according to the 

user's needs [12]. 

Simscape aids in the development of control systems as well 

as the testing of system-level performance. The Simscape 

language, which is based on MATLAB® and allows text-

based writing of physical modeling components, domains, and 

libraries, can be used to generate unique component models. 

You can use MATLAB variables and expressions to 

parameterize your models, and Simulink to construct control 

systems for your physical system. Simscape provides C-code 

creation for deploying your models to different simulation 

environments, such as hardware-in-the-loop (HIL) systems [2, 

13]. 

We got the idea from the example of cancer detection and 

classification using mass spectrometry data on protein profiles. 

Serum proteomic profile diagnostics can be used to 

differentiate samples from patients with and without disease. 

Profile models are generated using Surface-Enhanced Laser 

Desorption Ionization Protein Mass Spectrometry (SELDI). 

This technology has the potential to improve clinical 

diagnostic tests for cancerous pathologies [14].  

The example already exists in the MathWorks 

documentations (MATLAB); in this work have found samples 

of the faults most influencing the performance and the 

accelerated degradation of the Li-Ion battery that they are 

classified in Ref. [15]; and we have made the application to 

some flaws in this work. 
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2. LI-ION BATTERY MODELING WITH 

MATLAB/SIMSCAPE 

Using the MATALB / Simscape we have produced a 

lithium-ion battery model (equivalent to Thevenin's first order 

model). 

This equivalent model consists of a voltage source Uoc, a 

terminal resistance Ro, R0 in this case is equivalent to the sum 

of the series resistances of the solid and liquid phases, a dipole 

R1 // C1 (R1 the polarization resistance, C1 the polarization 

capacity-transient dynamics). Each of these circuit elements is 

a subsystem made up of custom electrical blocks and blocks to 

calculate the properties of the circuit element. 

Figure 1 presents the equivalent model of the Li-Ion battery 

according to Thévenin's model. 

Building and parameterizing an equivalent circuit that 

depicts the battery's nonlinear behavior and dependence on 

temperature, SOC, SOH, and current is the first step in 

developing an accurate battery model. These dependencies are 

specific to each battery's chemistry and must be identified 

through measurements on battery cells of the same type as the 

controller is being designed for. MATLAB Central has 

example battery models accessible for download [16]; one of 

these models is the first-order Thevenin model presented in 

Figure 2. 

Figure 1. Thevenin's first order Li-Ion battery model [17] 

Figure 2. Li-Ion battery model in MATLAB/Simscape [18] 

The voltages and currents of the model are regulated by the 

following equations: 

�̇�𝑐1 =
𝑈𝑐1
𝑅1𝐶1

+
𝑖

𝐶1
(1) 

𝑉𝑡 = 𝑈𝑜𝑐+𝑉1−𝑅𝑂𝑖 (2) 

where Vt is the voltage at the battery terminals, i is the Battery 

current, and �̇�𝑐1  is the voltage drop at the R1C1 group 

terminals. 

This example shows how to model a lithium cell using the 

Simscape™ language to implement the elements of an 

equivalent circuit model with one RC branch. For the 

validation of the defining equations. 

Figure 3. Li-Ion battery simulation results from 

MATLAB/Simscape [18] 
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The temperature of the battery is calculated using a basic 

thermal model. It is thought that convection is the primary 

mode of cooling, and internal resistance is the primary mode 

of heating. Multiple copies of the battery cell block can be 

connected in series to mimic a battery pack [12]. 

We used MATLAB/Simscape to model and visualize the 

performance of the lithium-ion battery, as previously stated. 

Figure 3 gives us: 

-the current imposed on the battery; which is in the form of

pulses. When this pulse is applied to the battery, the latter 

begins to discharge, and when the current returns to zero, the 

battery enters the rest phase (relaxation). 

- the voltage of the battery in open circuit, which is devised

in two phases, the discharge phase and the relaxation phase. 

So, when a current pulse is applied to the battery, its voltage 

undergoes a drop which is due to the resistance Ro (internal 

resistance of the battery), and this is how the voltage decreases 

each time we apply a current pulse. 

-the state of charge of the battery (SOC) which decreases

each time a current pulse is applied, it decreases from 100% to 

0%. 

-the internal temperature of the battery in the healthy state,

we see that with each pulse (discharge of the battery) the 

temperature increases, and during the relaxation phase the 

temperature decreases to 20℃, which is the temperature of the 

battery in healthy state [19]. 

3. DETECTION AND CLASSIFICATION OF

DIFFERENT FAULTS BY USING A NEURAL

NETWORK

Figure 4. Block diagram intended for the generation of 

residues 

Table 1. Parameters adjusted for each fault and their coding 

binary 

Fault Adjusted parameter Binary coding 

Short circuit 30% R0 [1 0 0 0] 

Open circuit 30% R0 [0 0 0 1] 

Overload 30% Cp [0 0 1 0] 

High temperature 30% T [0 1 0 0] 

After identifying a few faults, we noted the errors between 

the output signals of the battery: the voltage (V), the state of 

charge (SOH) and the temperature (T) of the healthy system 

and that of the faulty system in order to use them in the 

classification of these faults by the method of neural networks. 

Figure 4 represents the generation of the residues; the error is 

the difference between the healthy case and the faulty case. 

For the four faults that we have chosen, we will set the 

percentage of faults of the parameters adjusted to properly 

classify these faults as indicated in Table 1. 

The network tune-up process has four steps, the first is the 

generation of residuals, but in this part, we will calculate the 

average values of current, voltage and power errors. 

One hundred and twenty (120) samples were taken into 

consideration, such as 30 measurements for each defect (Table 

2). 

Table 2. The vectors of the mean values of the parameter 

errors 

Parameter 

Fault 

Voltage 

(V) 

State of 

Charge (%) 

Temperature 

(C°) 

Short circuit 

30% 

0 

0 

0 

0.18379 

0.18379 

…. 

0 

0 

0 

0 

0 

… 

0 

0 

0 

0 

9.94753e-14 

…. 

Open circuit 

30% 

0 

0 

0 

0 

0.612661 

…. 

0 

0 

0 

0 

0.61266 

….. 

0 

0 

0 

0 

0.61266 

…. 

Overload 

30% 

0 

0 

0 

0 

-0.61266

…. 

0 

0 

0 

0 

0 

0.61266 

…. 

0 

0 

0 

0 

0 

0.61266 

….. 

High 

temperature 

30% 

0 

-0.00112

-0.00220

- 0.00322

-0.00322

…. 

0 

-4.0268e-5

-7.9304e-5

-0.0001159

-0.0001154

…. 

0 

-2.75977

-5.43545

-7.94805

-7.94805

…. 

Figure 5. Defect detection and classification algorithm for a 

Li-Ion battery 
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Figure 6. NN structure in MATLAB 

Figure 7. The nnstart command window 

To make the correct classification of defects, we create a 

classification algorithm that presents the method of 

comparison between the different defects based on neural 

networks (Figure 5). 

The second step is to create the database of our work with 

the collection of precedent measurements to classify the 

different defects, then we built the multilayer neural network 

(3-20-4), three (03) inputs in the input layer, twenty (20) 

neurons in the hidden layer and floor (04) neurons in the output 

layer (Figure 6). 

The inputs are the mean values of the vectors of the voltage 

errors X1, the state of charge errors X2 and temperature errors 

X3. Of each type of fault (short circuit, open circuit, overload, 

high temperature). 

The last step is learning the neural network. 

Now that you have identified some important characteristics, 

you can use this information to classify the samples. 

3.1 Implementation of the RNA structure under MATLAB 

In this study we try to apply all the NN commands that exist 

in the MATLAB to classify the defects on one side and verify 

and ensure the results obtained. 

We have t essential steps: 

a- network creation with the command MATLAB nnstart

(network learning with train) (Figure 7). 

b- network test and validation (Figures 8-11).

c- hen we will test our model with the nntool command,

which will allow us to create the network test for our model 

(Figure 12). 

Figures 8 and 9 show the performance of the network during 

training; the performance is measured in terms of root mean 

square error and presented on a logarithmic scale; they are 

displayed for each of the training, validation and test sets. 

The confusion matrix in Figure 10 shows the percentages of 

correct and incorrect classifications.  

Figure 8. Neural network training performance 

Figure 9. Neural network error histogram 

Figure 10. Neural network training confusion 

Short circuit "is 1 and open circuit is 2, overload is 3 and 

temperature high is 4. True classifications are indicated by 

green squares and false classifications are indicated by red 

squares. Gray squares indicate the overall rates (correction and 

error rate) of the classifications. White squares show 

conditional rates (correction and error rate) given a 

predetermined target (5th row) or given a predetermined 

output (5th column,). The percentages in the red squares are 
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low, indicating few classification errors, so the network is 

precise. 

The Figure 11 present the plot of the operating 

characteristics of the receiver. This is another measure of the 

goodness of fit of neural network data is This graph shows how 

the false positive and true positive rates are related when the 

exit threshold varies from 0 to 1. in this plot we notice a line 

going from the lower left corner, to the upper left corner, to the 

upper right corner or nearby. 

Figure 11. The receiver operating characteristic plot 

Figure 12. Neural network data manager 

You have to accept false positives to get a high true positive 

rate. Finally, and as long as we have checked our network; then 

it is ready to generate our algorithm or C ++ program to 

implement it in an electronic and Simulink model card based 

on the window below (Figure 12).  

4. CONCLUSION

Artificial intelligence technology is helping to save human 

and material resources in the field of electrical automation 

control, but it also saves time. Artificial neural networks have 

a fundamental property which justifies the growing interest in 

them and which are capable of intervening in a wide variety of 

fields, and which distinguishes them from classical data 

processing techniques.  

This example demonstrates how neural networks may be 

utilized as defect classifiers. To improve the performance of 

the classifier, you can also try using techniques such as 

principal component analysis to reduce the dimensionality of 

the data used for neural network training. 
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