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 The article proposes using the Levenberg – Marquardt (L – M) method to optimize the 

fin with the longitudinal profile. The objective in optimizing the fin shape: The fin 

volume achieved the minimum value, with the optimization variables being the fin's 

width and length. The research performed two problems about optimal design the fin 

with the straight profile for triangular and rectangular shapes, obtained a tiny relative 

error compared to the results of the published studies. Specifically, the problem with 

the triangular-shaped fin, the relative error of the minimum volume compared to the 

two published is 0.022% & 0.092%; and the problem with the rectangular-shaped fin, 

the relative error is 0.68% & approximately 0%, respectively. 
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1. INTRODUCTION 

 

The fin plays an essential role in cooling devices such as 

automobile engines, electronic devices, air condition systems, 

ambient air, etc. In recent decades, fin optimization addressed 

to help create a compact design and reduce production costs 

[1]. Thus, many researchers still focused on the optimal 

problems for fin. 

When the rate of heat transfer is known, the minimum 

volume of the fins is a popular parameter to be optimized. For 

the first time, the fin profile is parabolic, which has been 

investigated by Schmidt [2]. The evaluation of the results by 

performing some strong mathematical models [3] and the 

results in the study [4] have proved that the problem in Ref. [2] 

is still valid for the optimization of the fin in the case where 

the convection heat transfer coefficient varies according to the 

power law. The simpler approach for the fin optimizing 

problem to achieve the maximum possible heat transfer rate in 

a defined volume unit or to meet the heat dissipation capacity 

with a minimum volume is to select the right profile for the fin 

(e.g., triangular and/or rectangular profile, etc.). 

However, in optimizing the fin with the parabolic profile, 

the curved surface with the thickness at the top is almost zero, 

increasing complexity and high cost in actual production. It is 

easier and now widely used to design and fabricate fins for 

heat dissipation systems with triangular and/or rectangular 

profiles, allowing for a quicker approach. Therefore, the 

optimization of fin size with triangular and/or rectangular 

profiles has been presented in many studies. Assuming 

constant heat parameters, no significant influence of initial 

heat transfer, the approximation for the one-way heat transfer 

equation: the common profile of the fin has been optimized in 

[1]. An overview of the optimization of fin size with common 

profiles has been presented by Aziz [5]. The optimization 

problem with convection boundary conditions for triangular 

and rectangular radiator fins has been studied [6]. The 

optimum design has been performed with step-change 

according to the cross-sectional area of the rectangular fins 

according to the constant thermal parameter [7]. Similarly, the 

results for optimizing the rectangular profile of the fin provide 

many ideas for subsequent studies [8-11]. Most of the above 

studies performed the optimization based on analytical 

methods, not yet solving general nonlinear problems in the fin 

design. At the same time, not yet much-published research 

proposes an effective method in the design optimization of the 

size of the fins with triangular and/or rectangular profiles in 

the linear and/or rectangular case nonlinear. 

Through slanting perforation for rectangular fins to improve 

efficiency, the Degenerate Hypergeometric Equation (DH 

Equation) was used to find the energy and the Signum function 

used to model the heat transfer zone. The two inputs: angle and 

size of perforations of the existing model, have been optimized 

to achieve the largest heat transfer area and the smallest fin 

weight. However, the optimal score results are outside the 

range of inclination angles mentioned in the study [12]. 

The research on optimizing rectangular fin design in natural 

convection has been carried out by analyzing heat transfer 

characteristics and flow patterns in the fin structure. The CFD 

(Computational Fluid Dynamics) optimization algorithm 

determined the impact on heat transfer through the parameters 

of fin spacing, fin length, and height. By dynamic-Q algorithm, 

the results of the optimal global design show that the above 

parameters strongly influence the flow through the ends of the 

fin channel [13]. 
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The heat exchanger structure with the wavy fin-and-

elliptical tube has been optimized with a combination of Latin 

Hypercube (LH) sampling, Computational Fluid Dynamics 

(CFD) simulation, and the radical basis function. Optimal 

parameters include the Colburn coefficient, the friction factor, 

air temperature, pressure, heat transfer rate. The results 

showed that the Colburn coefficient increased by about 5%, 

the coefficient of friction decreased by about 23%, the air 

temperature raised by 4.6 K, the pressure decreased by 10%, 

and the heat transfer rate was faster. At the same time, the use 

of the field synergy principle to explain the optimal heat 

transfer and efficiency basis is the theoretical basis for 

optimizing the design of the heat exchanger structure [14]. 

Besides, the study used the modified Newton – Raphson 

(MNR) method to optimize the volume of a longitudinal fin 

with a few typical profiles, showing high efficiency [15, 16]. 

However, the MNR method has some disadvantages, such as 

the convergence problem may fail if choosing an inappropriate 

initial value, especially in highly non-linear problems. 

Therefore, it is necessary to propose a stable and simple 

solution to achieve the best convergence rate. 

In this article, the Levenberg - Marquardt (L - M) method is 

proposed to solve the optimal design problem: optimizing the 

size of the longitudinal fin to achieve the minimum volume. 

This method is shown to be effective in applying to non-linear 

problems, such as the optimization problem performed in Ref. 

[16]. The "volume updating" mechanism has been inset to the 

L - M algorithm to solve the optimization problem and is 

implemented as the inverse problem. Specifically, the finite 

element method (FEM) solves the heat transfer process of the 

fin (forward problem), and the optimal volume of the fin is 

found by the L - M method (inverse problem). In the following 

section, this article presents in detail showing the high 

feasibility of the proposed method. 

 

 

2. PROBLEM STATEMENT 

 

Figure 1 shows the two-dimensional and three-dimensional 

triangular (left) and rectangular (right) profiles of the 

longitudinal fin. 

 

 
 

Figure 1. The triangular and rectangular longitudinal fin 

 

The heat transfer equation for a fin with a two-dimensional 

profile, cooled by natural convection and radiation, in a 

steady-state, without an internal heat source, is shown as 

following [16]:  
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and the boundary conditions are expressed as follows: 
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where, θ is the undefined temperature field in the fin domain, 

k is the thermal conductivity, Ab is the cross-sectional area at 

the fin base, inq  is the total of toward the inside heat loss at the 

base, h is the convective heat transfer coefficient,  is the 

emissivity coefficient,  is Stefan-Boltzmann constant, θ∞ is 

the ambient temperature, θsur is the surrounding environment 

temperature, n is the convective surface exterior normal vector. 

The finite element method is used to solve the forward 

problem: with the fin dimensions and boundary conditions 

known, the fin and the base's temperature field results are 

achieved [17]. 

 

 

3. METHODOLOGY 

 

3.1 Levenberg – Marquardt method (L - M method) 

 

The dimensions of the fin are described by length (L) and 

width (2W) for both triangular and rectangular profiles (see 

Figure 1). The optimization results in this article: the 

longitudinal fin volume is minimized so that the heat loss is 

given and the base temperature is specified. Thus, the posed 

problem included the two optimal variables: l - length and w - 

width of the fin (see Figure 2). 

 

 
(a) Triangular fin                      (b) Rectangular fin 

 

Figure 2. The optimal variables for two profiles 

 

To ensure continuity in the optimization process, the control 

points' positions satisfy Eq. (5): 
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The application of the L - M method to specify the optimal 

value for the variables needs to provide the desired base 

temperature θe and the desired fin volume Ve. Firstly, through 

the forward problem, the calculated temperature 𝜃𝑐
𝑖  and the 

calculated volume Vc are recorded. Next, the optimal 

dimension estimation with minimize volume is done by 

minimizing the sum of the square equation as follows: 
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where, N is the calculated temperature point number at the fin 

base, 𝛩𝑖  consist 𝜃𝑐
𝑖 and �̂�𝑐. 

The normalized volume �̂�𝑐 is expressed as follow: 
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V
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To minimize S(x, l) (in Eq. (6)), the values of the length and 

width fin, (x,l), fulfill the following set of nonlinear equations: 
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where, x={w, l} is the vector including the width variable of w 

and the length variable of l. 

In other words, the solution of Eq. (8) is the fin optimal 

width and length value of the fin. In this article, Eq. (8) is 

solved by the L - M method. The iteration of the convergence 

is controlled through the  parameter in the proposed method. 

The equation to find the optimal variables using the L - M 

method is written as follows:  

 
1 1( ) ( )k k T T

ex x D D Ω D Θ + −= − + −  (9) 

 

where, 𝑫 =
𝜕𝜣

𝜕𝒙
 is the sensitivity matrix,   is the diagonal 

matrix and k is the iteration index. 

The two parameters that need to be given in Eq. (9) for a 

solution are the desired base temperature and the suitable 

volume. In which the fin volume is undetermined. It is the 

parameter that the goal of this study performs optimization. 

Based on the "curve fitting" mechanism in the L - M method, 

a mechanism called "volume updating" is inset in the L - M 

algorithm to optimize the required parameter. With this 

mechanism, the finest approximation value, which minimizes 

the sum of squared differences between the calculated and 

estimated values, is the result of the solution. The larger the 

number of the calculated temperature point N, the more 

accurate the solution obtained. Here are the four basic steps of 

the "volume updating" mechanism [16]:  

Step 1: Set the N value is large enough, and the beginning 

fin volume value is small. 

Step 2: Solve Eq. (6) - Eq. (9) to find the fin volume. 

Step 3: Update the new value in Step 2 and return to Step 1. 

Step 4: Stop the algorithm when the stopping criteria is 

pleased. 

 

3.2 The stopping criteria 

 

To achieve the goal of the posed problem: the fin volume 

reaches the minimum value, two optimal variables w and l in 

the vector x  have been mentioned. In the L - M method, the 

iterative process to find xk+1 from xk into Eq. (9) stops if please 

two criteria as follows [18]: 
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and the stopping criterion of iteration in the L - M method is 

stated: 

 

e eeΘ  −   (11) 

 

or 
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where, e and  are the convergence tolerances. 

 

3.3 Computational algorithm 

 

Set the convergence tolerance e and δ, the beginning control 

point x0, the beginning fin volume 𝑉𝑒
0 , and the adjusting factor 

μ. At the k-th iteration, the xk value is known, and the xk+1 value 

is estimated as follows: 

Step 1: Calculate θc base on Eq. (1) – Eq. (4) (the forward 

problem).  

Step 2: Compute xk+1 by Eq. (9) and specify the new S 

through Eq. (6). 

Step 3: If 𝑆(𝒙𝑘+1) > 𝑆(𝒙𝑘) or Eq. (5)'s condition is not 

pleased, reset 𝜇𝑘 = 10𝜇𝑘, and go back to Step 3. Otherwise, 

get the new 𝒙𝑘+1. 

Step 4: Update the new fin volume if Eq. (10)’s criterion is 

pleased, reset k by k+1, 𝜇𝑘 = 0.1𝜇𝑘and go back to Step 1. 

Step 5: Finish the algorithm if the stopping criterion in Eq. 

(11) and Eq. (12) are pleased. Otherwise, reset k by k+1, 𝜇𝑘 =
0.1𝜇𝑘 and go back to Step 1. 

 

 

4. RESULTS AND DISCUSSIONS 

 

This section of the research presents two specific cases to 

find the value for the optimal variables to achieve the 

minimum longitudinal fin volume with both triangular and 

rectangular profiles, demonstrating the feasibility of the 

proposed method. Besides, the results of this optimization 

problem are also compared with the results (the theory [1]) and 

the modified Newton – Raphson (MNR) method [16]. 

 

4.1 Case 1 

 

In case 1, the optimization problem is carried out for fin 

with the triangular profile. The initial data of the problem are 

as follows: 

The fin height: H=0.2 m; 

The thermal conductivity: 𝑘 = 58.3 
𝑊

mK
; 

The desirable dissipates heat flow: Q=20 W; 

The base temperature: θb=400 K; 

The surrounding temperature: θa=300 K; 

The convective heat transfer: ℎ̄ = 5.2564 
𝑊

𝑚2𝐾
 [16]; 

The beginning volume: 𝑉𝑒
0 = 4𝑒 − 5 𝑚3; 

The beginning dimensions: l0=0.3 m and w0=0.001 m; 

The stopping criteria values: δ=10-4 and ε=10-4. 

The optimal results obtained by the theory [1], and the MNR 

method [16], and the L – M method for the triangular shape 

are shown in Table 1. 

 

Additionally, the relative error of the fin optimal parameters 

between the L - M method with [1] and between the L - M 

method with the MNR method [16] for the triangular shape 

(see Table 2). 
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Table 1. Compare the optimal results between the L-M 

method, the theory [1], and the modified Newton – Raphson 

(MNR) method [16] for the triangular shape 

 
The fin optimal 

parameters 

The L - M 

method 

The 

theory [1] 

The MNR 

method [16] 

The l length m 1.6024e-1 1.6022e-1 1.6020e-1 

The w width m 1.3494e-3 1.3498e-3 1.3503e-3 

The V minimum 

volume m3 
4.3246e-5 4.3255e-5 4.3265e-5 

 

Table 2. The relative error between the L - M method with 

the theory [1] and between the L - M method with the MNR 

method [16] for the triangular shape 

 

The fin optimal 

parameters 

Error% 

The L - M 

method and 

[1] 

The L - M method 

and the MNR 

method [16] 

The l length 0.012 0.025 

The w width 0.030 0.067 

The V minimum 

volume 
0.022 0.092 

 

Furthermore, the relation between the temperature and the 

length in case the triangular shape of the theory [1], the MNR 

method [16], and the L - M method (the Present) is illustrated 

in Figure 3. 

 

 
 

Figure 3. The temperature versus the length in case the 

triangular shape 

 

As shown, in Case 1, the optimized values of longitudinal 

fin with the triangular profile: the length of l=0.16024 m, the 

width of w=1.3494e-3 m, and the minimum volume 𝑉 =
4.3246𝑒 − 5m3. Besides, the relative error between the [1], 

[16] and the Present studies is very small. The largest relative 

error is 0.092% for the optimal volume between the L - M 

method with the MNR method [16] (see Table 2). This means 

that the L - M method can accurately estimate the minimum 

volume value of fin with the triangular profile through the 

desirable dissipate heat flow and the base temperature. 

Furthermore, the L - M method achieves results after 25 

iterations, while the MNR method [16] is more than 100 

iterations. This shows that the L - M method (the Present) has 

the faster convergence rate than the MNR method [16]. 

4.2 Case 2 

 

The optimal fin problem with rectangular shape is 

investigated. The thermal properties are similar to Case 1. In 

case 2, The beginning dimensions: 𝑙0 = 0.2 𝑚  and 𝑤0 =
0.001 𝑚. 

The optimal results achieved by the theory [1], and the 

modified Newton – Raphson (MNR) method [16], and the L – 

M method for the rectangular shape are visible in Table 3. 

 

Table 3. Compare the optimal results between the L - M 

method, the theory [1], and the modified Newton – Raphson 

(MNR) method [16] for the rectangular shape 

 
The fin optimal 

parameters 

The L-M 

method 

The theory 

[1] 

The MNR 

method [16] 

The l length m 1.5025e-1 1.5178e-1 1.5022e-1 

The w width m 1.0347e-3 1.0313e-3 1.0350e-3 

The V minimum 

volume m3 
6.2188e-5 6.2613e-5 6.2188e-5 

 

The relative error of the fin optimal parameters in Table 4 

is between the L - M method with [1] and between the L - M 

method with the MNR method [16] for the rectangular shape. 

 

Table 4. The relative error between the L - M method with 

[1] and between the L - M method with the MNR method 

[16] for the rectangular shape 

 

The fin optimal 

parameters 

Error% 

The L - M 

method and 

[1] 

The L - M method 

and the MNR 

method [16] 

The l length 1.01 0.02 

The w width 0.33 0.03 

The V minimum 

volume 
0.68 0 

 

 
 

Figure 4. The temperature versus the length in case the 

rectangular shape 

 

Additionally, the relation between the temperature and the 

length in case the rectangular shape of the theory [1], the MNR 

method [16], and the L - M method (the Present) is illustrated 

in Figure 4. 

In Case 2, the optimized values of longitudinal fin with the 

rectangular profile: the length of l=0.15025 m, the width of 

w=1.0347e-3 m, and the minimum volume V=6.2188e-5 m3. In 
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Table 4, the relative error of the optimal volume between the 

L - M method and [1] is 0.68%, while that of between the L - 

M method and the MNR method [16] is 0%. Because the 

forward problem in the L - M method and the MNR method 

[16] is solved by the FEM method for the two-dimension 

model with the convective tip, so, the minimum volume value 

in two methods: the L - M method and the MNR method [16] 

is smaller. Besides, the results of the problem in [1] applying 

the one-dimensional model without the convective tip. 

Furthermore, the convergence rate by the L - M method (34 

iterations) is also dramatically more than that by the MNR 

method [16] (more 110 iterations). This shows that the L - M 

method (the Present) has a fast convergence rate, more than 

the MNR method [16]. Again showing the L - M method in 

this study is potent and efficient than the MNR method in [16]. 

 

 

5. CONCLUSION 

 

This article, optimizing the size of the longitudinal fin, with 

triangular and rectangular shapes, to achieve the minimum 

volume, is implemented by the Levenberg - Marquardt (L - M) 

method. The "volume updating" mechanism is inset to the L - 

M algorithm to determine the longitudinal fin volume is 

minimized so that the heat loss is given and the base 

temperature is expected. The results in the two given cases, 

applying the L - M method, are in good agreement with the 

results in the theory [1] and the MNR method [16]. Moreover, 

the relative error of the method presented in this article is very 

tiny with the two compared methods and has a much faster 

convergence rate than the MNR method [16]. Thereby, it is 

shown that the L - M method is a very effective and reliable 

method. At the same time, another highlight of this method is 

that it does not depend on the type of forwarding problem. 

Therefore, the Levenberg - Marquardt (L - M) method (the 

Present) contributes to reducing the cost of calculation, fin 

design, and improving productivity in actual production. 

Moreover, this method can be applied to the other fin shapes 

and considered to three-dimensional fin problems. 
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NOMENCLATURE 

 

k the thermal conductivity, W.m-1. K-1  

Ab the cross-sectional area at the fin base, m2 

qin the total of toward the inside heat loss at the 

base, W.m-2 

h the convective heat transfer coefficient, W.m-

2. K-1 

n the the convective surface exterior normal 

vector 

L, l the fin length, m 

W, w the fin width, m 

H the fin height, m 

N the calculated temperature point number at the 

fin base 

Ve the expected fin volume, m3 

Vc the computed volume of the fin, m3 

V the min volume, m3 

x={w,l} the vector including the width variable of w 

and the length variable of l 

D the sensitivity matrix 

 

Greek symbols 

 

θ the undefined temperature field in the fin 

domain, K 

 emissivity coefficient 

 Stefan-Boltzmann constant 

θ∞ and 

θsur 

the ambient and surrounding temperature, K 

θe the expected base temperature, K 

𝜃𝑐
𝑖 the computed temperature, K 

 the diagonal matrix 

µ the parameter to control the iterative 

convergence 

e and   the convergence tolerances 

 

Subscripts 

 

k the iteration index 

b base 

in inward 

e expected 

c computed 

i i-th point/location 

 ambient 

sur surrounding 
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