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Moisture-induced swelling, or hygroexpansion, has been known to greatly deteriorate 

the durability of wood fiber-polymer composites (WPC). It is generally very expensive 

to perform experiments to completely obtain the diffusion kinetics as the process occurs 

in a very extended period of time. For the first time, we have developed a space-time 

finite element algorithm that employs time discontinuous Galerkin (TDG) method for 

time-dependent 3D hygro-mechanical behaviours of WPC. The formulation of matrix 

equations in spatial and temporal domains are explained in detail. A block Gauss-Seidel 

iterative method is used in the predictor/multi-corrector multi-pass algorithm, which 

efficiently yields unconditionally stable and high-order accurate solutions. The model 

is validated by comparing the predicted time-dependent hygroexpansion with that 

obtained in a previous experimental study. The quantitative analysis ensures the 

reliability of model, based on a Fickian diffusion process. With our adaptive time-

stepping scheme that bases on the embedded solution from the multi-pass iterations, the 

model efficiently progresses the kinetics with relatively large time steps. A runtime of 

a few hours compared to about three months of actual laboratory experimentation 

confirms the novelty and robustness of our model. 
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1. INTRODUCTION

As is well known, wood fiber reinforced composites have 

been used in the building materials industry for several 

decades due to their low cost, light weight, biodegradability, 

abrasion resistance, and good specific properties. However, 

moisture-induced expansion, i.e., hygroexpansion, is one of 

the major drawbacks of wood-based composites. Unlike wood 

fibers, matrix components in wood-based composites, such as 

polymers, are much less susceptible to water absorption than 

wood [1-3]. The drastic difference in hygroelastic properties 

can even lead to serious problems in the case of wood fiber-

polymer composites (WPC), such as buckling and warping of 

the installed WPC panels [4]. Therefore, studying the hygro-

mechanical behaviours of WPC is an essential part of 

improving the durability of the materials. 

It has been shown experimentally [5-8] that the diffusion 

kinetics of water in WPC takes place over a very long period 

of time - from weeks to a few months, depending on the 

diffusivity of the materials. Therefore, laboratory experiments 

are sometimes too expensive to obtain fully meaningful results. 

Consequently, hygro-mechanical modeling is becoming 

increasingly important. Numerous hygro-mechanical 

modeling studies are conducted for wood-based materials [9-

12] and for polymeric materials [13-15], but there is very little

research on predicting the time-dependent hygro-mechanical

behaviours of WPC. There is particularly little research that

attempts to accurately predict the three-dimensional

anisotropic responses of WPC subjected to water absorption.

Mbacké et al. [16] have used a numerical method to study 

the hygro-mechanical behaviours of homogenised composites, 

determining the time-dependent mechanical properties as a 

function of the moisture content of the materials. However, the 

model ignores the complexity of the anisotropy of materials 

and uses simple linear interpolation to obtain the resulting 

properties, leading to inaccurate predictions in the case of 

WPC. In another study [17], a multi-scale analytical model for 

stress-dependent moisture diffusion in fiber-reinforced 

polymer matrix composites was proposed under the 

assumption that the fibers do not absorb moisture. Thus, it is 

not applicable to the case of WPC where both constituents 

respond to moisture transport to different extents. 

The finite element method (FEM) has been used extensively 

in the modeling and analysis of a composite structure with 

randomly distributed short fiber reinforced composites [18, 

19]. Time-dependent problems are usually solved using FEM 

by first discretising the spatial domain and solving the 

resulting ordinary differential equation in discrete time steps. 

This method is commonly known as semi-discretisation. Like 

heat transfer problems, moisture diffusion in materials can be 

considered as a first-order parabolic problem, and perhaps the 

most commonly used methods for time integration are 

classified as single-step/single-solver methods (SS/SS) [20]. 

Such methods are based on solving a system of 𝑛𝑒𝑞  linear

equations leading to second-order accuracy by unconditionally 

stable implicit SS/SS methods such as the trapezoidal method. 

However, in applications where time is greatly extended, 

the SS/SS methods can lead to an accumulation of errors when 

using large time steps. The most efficient way to solve the 

above problems is to discretise the temporal domain with an 
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accuracy no less than that of the spatial domain. This is also 

known as space-time finite element method, which was 

developed by Hughes and Hulbert [21]. The method is based 

on the time-discontinuous Galerkin finite element method 

(TDG-FEM), which is possibly considered one of the best 

methods for time integration in a discretised temporal domain. 

It provides relatively high accuracy with good stability. Due to 

the large linear space-time linear systems of equations and the 

relatively high computational cost of solving non-symmetric 

TDG matrices directly, several techniques [22-24] have been 

developed. As a result, there are now several applications of 

TDG-FEM [25-28] However, to our knowledge, there are no 

studies using TDG-FEM to investigate the hygro-mechanical 

behaviours of WPC. 

The current study has two objectives: 1) to develop a 

complete and efficient TDG-FEM algorithm written in 

MATLAB for hygro-mechanical behaviours of WPC and 2) to 

validate the model by comparing the solutions with 

corresponding experiments, investigating and discussing the 

reliability with respect to Fick’s theory. 

The present paper is organised as follows. First, the 

formulation of the TDG-FEM matrix equations in space and 

time for the hygro-mechanical behaviours of WPC is 

presented. Then, the predictor/multi-corrector is described 

using a multi-pass algorithm from [24] and applied to the first-

order parabolic moisture diffusion problem. A suitable 

adaptive time-stepping scheme is briefly explained. Then, the 

overall algorithm with the necessary defined material 

parameters is used to calculate the moisture evolution and the 

resulting hygroexpansion of the composites. The convergence 

of the mesh is considered. The efficiency of the time-stepping 

scheme using the embedded solution approach is discussed. It 

is followed by model validation and quantitative analysis of 

model reliability.  

 

 

2. HYGRO-MECHANICAL BEHAVIOURS 

 

The general diffusion equation of moisture in a given 

material according to Fick’s second law reads: 

 
𝜕𝑊

𝜕𝐻

𝜕𝐻

𝜕𝑡
= ∇ ⋅ (𝐷ℎ∇𝐻) (1) 

 

where, ∂W/∂H is the moisture capacity that can be obtained 

through the equilibrium adsorption isotherm of the material, H 

represents the relative humidity ranging from zero to one, ∇H 

denotes the gradient vector of humidity. Also, Dh is the 

diffusion coefficient of moisture in the material or moisture 

diffusivity in m2/s. In a 3D Cartesian system or X space:  

 

𝐷ℎ = [

𝐷ℎ,𝑥 0 0

0 𝐷ℎ,𝑦 0

0 0 𝐷ℎ,𝑧

] (2) 

 

where, Dh,x, Dh,y and Dh,z are the diffusion coefficients in the 

respective directions, which are are assumed to be constant. 

Therefore, Eq. (1) can be re-written for the 3D diffusion 

equation as:  

 

𝜕𝐻

𝜕𝑡
=

1

𝜕𝑊/𝜕𝐻
(𝐷ℎ,𝑥

𝜕2𝐻

𝜕𝑥2
+ 𝐷ℎ,𝑦

𝜕2𝐻

𝜕𝑦2
+ 𝐷ℎ,𝑧

𝜕2𝐻

𝜕𝑧2
) (3) 

 

The moisture absorption gives rise to hygroexpansion of 

material via:  

 

𝜺ℎ =

{
 
 

 
 
𝜀ℎ,𝑥
𝜀ℎ,𝑦
𝜀ℎ,𝑧
0
0
0 }

 
 

 
 

= Δ𝐻

{
 
 

 
 
𝛽𝑥
𝛽𝑦
𝛽𝑧
0
0
0 }
 
 

 
 

 (4) 

 

where, ΔH is the change in humidity content, and βx, βy and βz 

are the directional hygroexpansion coefficients of material. 

The hygroexpansion strains do not contribute to shear 

deformation, leading to zero shear strains in Eq. (4). 

Consequently, the hygroelastic stress-strain relationships in 𝑋 

of the total strain, ε, elastic strains, εm can, therefore, be written 

as:  

 

𝜎 = 𝐷𝑚𝜀𝑚 = 𝐷𝑚(𝜀 − 𝜀ℎ) (5) 

 

where, 

 

𝜎 =  𝑇{𝜎𝑥   𝜎𝑦   𝜎𝑧  𝜏𝑥𝑦  𝜏𝑦𝑧  𝜏𝑧𝑥} (6) 

 

and 

 

𝜀𝑚 =  𝑇{
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
,
𝜕𝑤

𝜕𝑧
,
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
,
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
,
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
} (7) 

 

The symbol T denotes transpose operation, σ denotes normal 

stresses, τ denotes shear stresses, u, v and w are the 

components of strain in x, y and z respectively, Dm is defined 

as: 

 
𝐷𝑚

=

[
 
 
 
 
 
 
1/𝐸𝑥 −𝑣𝑥𝑦/𝐸𝑥 −𝑣𝑥𝑧/𝐸𝑥 0 0 0

−𝑣𝑦𝑥/𝐸𝑦 1/𝐸𝑦 −𝑣𝑦𝑧/𝐸𝑦 0 0 0

−𝑣𝑧𝑥/𝐸𝑧 −𝑣𝑧𝑦/𝐸𝑧 1/𝐸𝑧 0 0 0

0 0 0 1/𝐺𝑦𝑧 0 0

0 0 0 0 1/𝐺𝑧𝑥 0
0 0 0 0 0 1/𝐺𝑥𝑦,]

 
 
 
 
 
 
−1

 
(8) 

 

where, E’s and G’s are elastic and shear moduli. v’s are 

Poisson’s ratios. 

The equilibrium equations of a differential volume element 

that are satisfied over the physical domain are given in a tensor 

notation as:  

 

σ𝑖𝑗,𝑗 + 𝑓𝑖 = 0 (9) 

 

where, σij are the stress components in the Cartesian stress 

tensor, fi is the component of the body force vector along the i 

direction, and j represents partial differentiation with respect 

to the j coordinate. Respectively, the essential and natural 

boundary conditions are: 

 

𝑢𝑖(𝑋) = �̅�𝑖; on Γ𝑢 (10) 

 

𝜎𝑖𝑗�̂�𝑗 = 𝑡�̅�;  on Γ𝑡 (11) 

 

where, ui(X) is the displacement along the 𝑖 direction of the 

point at coordinates X, �̅�𝑖  is the corresponding specified 

boundary displacement at the point, �̂�𝑗  is the component of 
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unit normal vector in the j direction, and 𝑡�̅�  is the specified 

boundary stress along the i direction. 

Therefore, the governing equations of three-dimensional 

hygro-mechanical behaviours in a matrix form can be obtained 

by substituting the corresponding stress components from Eq. 

(6) into that of Eq. (9). 

 

 

3. NUMERICAL METHODS 

 

There is no or very little commercial software capable of 

modeling such a time-dependent moisture diffusion problem 

using high-accuracy adaptive time integration methods. 

Therefore, to simulate the hygro-mechanical behaviours of 

WPC, we have developed a complete algorithm written in 

MATLAB [29]. With the following series of FE formulations 

in space and time, the overall algorithmic structure is 

summarised in Figure 1. 

 

 
 

Figure 1. Overall FE-based algorithm. ← and → denote 

input and output respectively 

 

3.1 3D FE formulation in spatial domain 

 

For each element in space, i.e. Ωe, an eight-node hexahedron 

with natural coordinates Ξ as shown in Figure 2 is used. 

Trilinear Lagrange interpolation functions (ξj, ηj, ζj) of local 

node j are applied:  

 

Ψ𝑗
𝑒(Ξ) =

1

8
(1 + 𝜉𝜉𝑗)(1 + 𝜂𝜂𝑗)(1 + 𝜁𝜁𝑗) (12) 

 

The element displacements, i.e., Ue=T{ue  ve  we}, are 

interpolated in terms of the shape functions in Eq. (12) and 

nodal displacements 𝑢𝑗
𝑒 , 𝑣𝑗

𝑒  and 𝑤𝑗
𝑒  as:  

 

𝑢𝑒 = ∑8𝑗=1 Ψ𝑗
𝑒𝑢𝑗

𝑒, 𝑣𝑒 = ∑8𝑗=1 Ψ𝑗
𝑒𝑣𝑗

𝑒 , 𝑤𝑒 =

∑8𝑗=1 Ψ𝑗
𝑒𝑤𝑗

𝑒  
(13) 

 

The values of H are also interpolated from the nodes, in 

which semi-discretisation is used. The approximated humidity 

over Ωe is as follows: 

 

𝐻𝑒(𝑋, 𝑡) = Ψ𝑒(𝑋)𝐻𝑒(𝑡) (14) 

 

where, He(t) contains the nodal humidity values at time t. The 

first order time derivative of Eq. (14) is, therefore, obtained as: 

 
𝜕

𝜕𝑡
𝐻𝑒(𝑋, 𝑡) = Ψ𝑒(𝑋)

𝜕𝐻𝑒(𝑡)

𝜕𝑡
= Ψ𝑒(𝑋)�̇�𝑒(𝑡) (15) 

 

 
 

Figure 2. An eight-node hexahedron (brick) element, Ωe, 

with the coordinate systems. Cartesian (x, y, z) or X (left), and 

natural (ξ, η, ζ) or Ξ (right) with nodal coordinates 

 

With x, y, z physical coordinates of node j in X, the Jacobian 

matrix, Je can be calculated as: 

 

𝐽𝑒 =

[
 
 
 
 
 
 
 Σ𝑖=1
8

𝜕Ψ𝑗
𝑒

𝜕𝜉
𝑥𝑖 Σ𝑖=1

8
𝜕Ψ𝑗

𝑒

𝜕𝜉
𝑦𝑖 Σ𝑖=1

8
𝜕Ψ𝑗

𝑒

𝜕𝜉
𝑧𝑖

Σ𝑖=1
8

𝜕Ψ𝑗
𝑒

𝜕𝜂
𝑥𝑖 Σ𝑖=1

8
𝜕Ψ𝑗

𝑒

𝜕𝜂
𝑦𝑖 Σ𝑖=1

8
𝜕Ψ𝑗

𝑒

𝜕𝜂
𝑧𝑖

Σ𝑖=1
8

𝜕Ψ𝑗
𝑒

𝜕𝜁
𝑥𝑖 Σ𝑖=1

8
𝜕Ψ𝑗

𝑒

𝜕𝜁
𝑦𝑖 Σ𝑖=1

8
𝜕Ψ𝑗

𝑒

𝜕𝜁
𝑧𝑖

]
 
 
 
 
 
 
 

 (16) 

 

The invertibility of Jacobian matrix in Eq. (16) is ensured 

by setting the initial shapes of all elements as close to a square 

as possible with all internal angles being 90 degrees. 

Additionally, moisture-induced strains do not contribute to 

shear deformation regarding to Eq. (4), meaning that 

anomalous distortion or twisting of an element is not possible. 

So, the derivatives in X can be found via:  

 
𝜕

𝜕𝑋
= 𝐽𝑒−1

𝜕

𝜕Ξ
 (17) 

 

The essential boundary conditions of the nodes on surface 

boundaries Γ are: 

 

𝐔(𝑋, 𝑡) = �̅�; on Γ𝑢, (18) 

 

𝐇(𝑋, 𝑡) = �̅�; on Γℎ , (19) 

 

where, �̅�  and �̅� are specified displacements and humidities 

imposed on the nodes of corresponding boundaries. Also, the 

initial conditions are:  

 

𝐔(𝑋, 𝑡 = 0) = 0;  𝐇(𝑋, 𝑡 = 0) = 0;  𝑜𝑣𝑒𝑟 Ω (20) 

 

By Galerkin Method of Weighted Residuals, the weak-form 

of Eq. (9) can be obtained through:  
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∫
Ω

𝛿𝑈𝑖(𝜎𝑖𝑗,𝑗 + 𝑓𝑖)𝑑Ω = 0 (21) 

 

where, δUi denotes the weight functions on the i direction. 

Integration by parts yields: 

 

∫
Ω

𝛿𝑈𝑖,𝑗𝜎𝑖𝑗𝑑Ω = ∫
Ω

𝛿𝑈𝑖𝑓𝑖𝑑Ω +∫ 𝑑𝑈𝑖t̅idΓ 
Γt

 (22) 

 

In this work, body-force is neglected (fi=0), and there are no 

mechanical tractions (𝑡�̅�=0)on the boundaries. The weak-form 

of the original problem in Eq. (9) is now simplified as: 

 

∫
Ω

𝛿𝑈𝑖,𝑗𝜎𝑖𝑗𝑑Ω = 0. (23) 

 

Note that the non-trivial solutions arise from the moisture-

induced strains from Eq. (5) and by substituting Eq. (5) into 

Eq. (23), the general 3D FE-discretised linear elasticity 

equation can be written as: 

 

𝐾𝑚
𝑒 𝑑𝑒 = 𝐹𝑚

𝑒  (24) 

 

where, 

 

𝐾𝑚
𝑒 = ∫

Ω𝑒
 𝑇𝐵𝑚

𝑒 𝐷𝑚
𝑒 𝐵𝑚

𝑒 |𝐽𝑒|𝑑𝜉𝑑𝜂𝑑𝜁 (25) 

 

𝑑𝑒 =  𝑇{𝑢1
𝑒  𝑣1

𝑒   𝑤1
𝑒   𝑢2

𝑒   𝑣2
𝑒   𝑤2

𝑒   …  𝑢8
𝑒   𝑣8

𝑒   𝑤8
𝑒}, (26) 

 

𝐹𝑚
𝑒 = ∫

Ω𝑒
 𝑇𝐵𝑚

𝑒 𝐷𝑚
𝑒 𝜀ℎ

𝑒|𝐽𝑒|𝑑𝜉𝑑𝜂𝑑𝜁. (27) 

 

|Je| is the determinant of Je. 𝐵𝑚
𝑒  is the strain-displacement 

transformation matrix given as:  

 

𝐵𝑚
𝑒

6×24
= [[𝐵𝑚,1

𝑒 ]
6×3

[𝐵𝑚,2
𝑒 ]
6×3

[𝐵𝑚,3
𝑒 ]
6×3

… [𝐵𝑚,8
𝑒 ]
6×3

] (28) 

 

From 𝜀𝑒 = 𝐵𝑚
𝑒 𝑑𝑒  and with Eqns. (7), (14), (16), (17) and 

(26), each 𝐵𝑚,𝑖
𝑒  in Eq. (28) is given as: 

 

𝑩𝑚,𝑖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕Ψ𝑖
𝜕𝜉

𝜕𝜉

𝜕𝑥
0 0

0
𝜕Ψ𝑖
𝜕𝜂

𝜕𝜂

𝜕𝑦
0

0 0
𝜕Ψ𝑖
𝜕𝜁

𝜕𝜁

𝜕𝑧

0
𝜕Ψ𝑖
𝜕𝜁

𝜕𝜁

𝜕𝑧

𝜕Ψ𝑖
𝜕𝜂

𝜕𝜂

𝜕𝑦
𝜕Ψ𝑖
𝜕𝜁

𝜕𝜁

𝜕𝑧
0

𝜕Ψ𝑖
𝜕𝜉

𝜕𝜉

𝜕𝑥
𝜕Ψ𝑖
𝜕𝜂

𝜕𝜂

𝜕𝑦

𝜕Ψ𝑖
𝜕𝜉

𝜕𝜉

𝜕𝑥
0

]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (29) 

 

Similarly, by using the above approach, the FE matrix 

equations of moisture diffusion can be obtained. With δH 

being the weight functions of H, and by substitution of Eq. (14) 

and Eq. (15) into Eq. (3), and no moisture flux being posed to 

any boundary, the following first-order parabolic moisture 

diffusion equation can be obtained: 

 

𝑀𝑒�̇�𝑒(𝑡) + 𝐷𝑒𝐻𝑒(𝑡) = 0 (30) 

 

where, 

 

𝑀𝑒 = ∫
Ω𝑒
    𝑇Ψ𝑒Ψ𝑒|𝐽𝑒|𝑑𝜉𝑑𝜂𝑑𝜁 (31) 

 

𝐷𝑒 = ∫
Ω𝑒
    𝑇𝐵ℎ

𝑒𝐷ℎ
𝑒𝐵ℎ

𝑒|𝐽𝑒|𝑑𝜉𝑑𝜂𝑑𝜁 (32) 

 

𝐻𝑒 =  𝑇{𝐻1
𝑒     𝐻1

𝑒     𝐻3
𝑒 …    𝐻8

𝑒} (33) 

 

�̇�𝑒 =  𝑇{�̇�1
𝑒    �̇�1

𝑒     �̇�3
𝑒 …    �̇�8

𝑒} (34) 

 

𝐵ℎ
𝑒  is the transformation matrix used to obtain moisture 

gradients, which can be defined as:  

 

𝐵ℎ
𝑒

3×8
=

{
  
 

  
 
𝜕

𝜕𝜉

𝜕𝜉

𝜕𝑥
𝜕

𝜕𝜂

𝜕𝜂

𝜕𝑦
𝜕

𝜕𝜁

𝜕𝜁

𝜕𝑧}
  
 

  
 

{Ψ1 Ψ2 Ψ3 … Ψ8} (35) 

 

Upon the assembly operation for Eqns. (24) and (30) over 

Ω, the global matrix equations of hygro-mechanical 

behaviours can be given as: 

 

𝐊 𝐔 = 𝐅 (36) 

 

and 

 

𝐌 �̇� + 𝐃 𝐇 = 𝟎 (37) 

 

where, K, F, M and D respectively denote the global stiffness 

matrix, global force matrix, global mass matrix and global 

diffusivity matrix, while vectors �̇�, H of size neq and vector U 

of size 3 neq contain solutions of humidity rate, humidity and 

displacements respectively. 

 

3.2 TDG formulation in temporal domain 

 

To solve Eq. (37), we employ time-discontinuous Galerkin 

finite element method (TDG-FEM). This method allows 

unconditionally stable, highly accurate time integration via 

using high-order p polynomial approximation with the 

accuracy order of 2p+1 at the end of each time step. 

The formulation of TDG-FEM is developed by partitioning 

the time domain for each time step, 𝑡 ∈ 𝐼 =(0, tf] into N 

intervals, In=(tn, tn+1), with time step size of Δtn=tn+1-tn. The 

trial solutions are members of the set of polynomial functions 

of order p: 

 

𝒱ℎ = {𝐇ℎ ∈ ⋃

𝑁−1

𝑛=0

(𝑃𝑝(𝐼𝑛))
𝑛𝑒𝑞} (38) 

 

The method allows unknowns Hh(t) to be discontinuous 

across the interface of time intervals, and the approximations 

at time tn are written as: 

 

𝐇ℎ(𝑡𝑛
+) = lim

𝛿𝑡→0
𝐇ℎ(𝑡𝑛 + 𝛿𝑡);  𝛿𝑡 > 0 (39.1) 
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𝐇ℎ(𝑡𝑛
−) = lim

𝛿𝑡→0
𝐇ℎ(𝑡𝑛 − 𝛿𝑡);  𝛿𝑡 > 0 (39.2) 

 

An illustration of time discontinuous approximation is 

provided in Figure 3. 

 

 
 

Figure 3. Time discontinuous approximation of solutions 

 

In such discontinuous solutions, the jump operator across 

each time interface tn is defined as: 

 

𝐇ℎ(𝑡𝑛) = 𝐇ℎ(𝑡𝑛
+) − 𝐇ℎ(𝑡𝑛

−) (40) 

 

where, n=0, 1, 2, …, N-1. The principle of TDG-FEM [21] is 

to find 𝐇ℎ(𝑡) ∈ 𝒱ℎ such that for all 𝐖ℎ(𝑡) ∈ 𝒱ℎ, such that: 

 

𝑎(𝐖ℎ, 𝐇ℎ)𝑛 = 𝑙(𝐖𝑛
ℎ) (41) 

 

where, 

 

𝑎(𝐖ℎ , 𝐇ℎ)𝑛 ≔ (𝐖ℎ , 𝐌�̇�ℎ)𝐼𝑛 + (𝐖
ℎ , 𝐃𝐇ℎ)𝐼𝑛

+𝐖ℎ(𝑡𝑛
+) ⋅ 𝐌𝐇ℎ(𝑡𝑛

+) 
(42) 

 

and 

 

𝑙(𝐖𝑛
ℎ):= 𝐖ℎ(𝑡𝑛

+) ⋅ 𝐌  𝐇ℎ(𝑡𝑛
−) (43) 

 

in which Hh(t0)=H0. The L2-inner product for the time interval 

can be obtained as:  

 

(𝐖,𝐇)𝐼𝑛 = ∫𝐼𝑛
𝐖𝐇𝑑𝑡 = lim

𝛿𝑡→0
∫
𝑡𝑛+1−𝛿𝑡

𝑡𝑛+𝛿𝑡
𝐖𝐇𝑑𝑡; 

𝛿𝑡 >0 
(44) 

 

From Eq. (43), it can be seen that the solutions of 𝐇ℎ(𝑡𝑛
−) 

from the end of the previous time step are to be used as initial 

conditions for the current time step. The approximations to H(t) 

are given as:  

 

𝐇ℎ(𝑡) = 𝐇𝑛
− + [𝝋(𝑡) ⊗ 𝐈𝑛𝑒𝑞]�̅�, 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1) (45) 

 

where, 𝐇𝑛
−  is a column vector of size neq, containing neq 

humidity values at the end of the previous time step, 𝝋(𝑡) =
[𝜑0(𝑡), 𝜑1(𝑡), … , 𝜑𝑝(𝑡)] - a row vector of size p+1, containing 

the time shape functions of each polynomial order, from 0 to 

p. �̅� =   𝑇[�̅�0, �̅�1, … , �̅�𝑝] - a column vector of size (p+1) neq, 

in which, each �̅�𝑖  denotes the vector of undetermined 

coefficients corresponding to humidity, ⊗  represents the 

Kronecker (tensor) product, 𝐈𝑛𝑒𝑞 is the identity matrix of order 

neq. 

As to achieve an optimally efficient iterative algorithm with 

high-order accuracy, the time shape functions are obtained 

thereby mapping of monomial basis {1, t, t2, …, tp}. The time 

interval, t is normalized to an interval �̂� ∈ (0,1), using linear 

scaling, i.e. 𝑡 = 𝑡𝑛
+(Δ𝑡𝑛)�̂�. For choices of time shape functions, 

we adopt those defined in Eq. (56) in a previous study [24], 

which reads:  

 

𝜑𝑖(�̂�) = ∑

𝑖

𝑘=0

(−1)𝑘𝑘! 𝛾𝑘 (
𝑖
𝑘
)
2

�̂�𝑖−𝑘 (46) 

 

for i=0, 1, 2, …, p and (
𝑖
𝑘
) denotes the binomial coefficient, 

𝛾 ̂ = 1/(2𝑝 + 1). 
By the substitution of the trial functions from Eq. (45) into 

Eq. (41), the coupled matrix equations for each time interval 

are obtained as:  

 

(𝐴 ⊗𝐌 + 𝐵 ⊗𝐃)�̅� = −𝑏 ⊗𝐌𝐇𝑛
− (47) 

 

where, A and B, of size (p+1)×(p+1), are defined as follows:  

 

𝐴 = ∫
1

0

 𝑇𝝋(�̂�)�̇�(�̂�)𝑑�̂� +  𝑇𝝋(0)𝝋(0) (48) 

 

𝐵 =  𝑇𝐵 = Δ𝑡𝑛∫
1

0

 𝑇𝝋(�̂�)𝝋(�̂�)𝑑�̂� (49) 

 

and 

 

𝑏 = Δ𝑡𝑛∫
1

0

 𝑇𝝋(�̂�)𝑑�̂� (50) 

 

From above, the number of linear equations in Eq. (47) is 

(p+1) times larger than the system of the second order accurate 

SS/SS algorithm such as that of generalized trapezoidal 

method. Plus, direct solutions of the large system of coupled 

equations �̅�𝑖 require high computational costs. In this work, 

we have adapted the numerical implementation proposed in 

[24] to solve first-order parabolic moisture diffusion equations. 

Taking Eq. (47) and multiplying both sides by (𝐴−⊗ 𝐈𝑛𝑒𝑞) 

yields:  

 

(𝐼𝑝+1⊗𝐌+𝑊⊗𝐃)�̅� = −𝑑 ⊗𝐌𝐇𝑛
− (51) 

 

where, Ip+1 is the identity matrix of order p+1, W=A-1B and 

 

𝑑 = 𝐴−1𝑏 = Δ𝑡𝑛∫
1

0

=  𝑇{𝛾Δ𝑡𝑛, Δ𝑡𝑛, 0,0, … ,0} (52) 

 

Let D and E be the diagonal and off-diagonal parts of W; 

W=D+E, where 𝐷 = 𝛾𝐼𝑝+1 = 𝛾Δ𝑡𝐼𝑝+1, and 

 

𝐸 =

[
 
 
 
 
 
 
 
0 𝐸01 𝐸02 𝐸03 … 𝐸0𝑝
𝐸10 0 𝐸12 𝐸13 … 𝐸1𝑝
𝐸20 𝐸21 0 𝐸23 … 𝐸2𝑝
𝐸30 𝐸31 𝐸32 0 … 𝐸3𝑝
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝐸𝑝0 𝐸𝑝1 𝐸𝑝2 𝐸𝑝3 … 0

]
 
 
 
 
 
 
 

 (53) 

 

To develop a predictor-corrector algorithm, the left-hand 

side of Eq. (51) is re-written as:  
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(𝐼𝑝+1⊗ [𝐌+ 𝛾𝐃] + 𝐸 ⊗𝐃)�̅� = −𝑑 ⊗𝐌𝐇𝑛
− (54) 

 

where, 𝛾 = 𝛾Δ𝑡 . To achieve for an efficient multi-pass 

algorithm, a Gauss-Seidel block matrix iterative scheme is 

employed. This is done by splitting matrix 𝐸 into upper and 

lower triangular matrices, i.e., E=EU+EL. So, Eq. (54) can be 

re-written as: 

 

Algorithm 1. Predictor/multi-corrector multi-pass 

algorithm at time t. 

Input: 𝐌∗, 𝐃, 𝝋(�̂�), 𝛾, 𝐸, 𝑝, 𝑙𝑚𝑎𝑥  

Output: 𝐇𝑡
ℎ 

𝐌∗ ← 𝐌+ 𝛾𝐃 Form effective mass matrix 

�̅�𝑖
(0)
← 𝟎; i=0, 1, 2, …, p 

for 𝑙 ← 1 to lmax do 

for 𝑖 ← 1 to p do 

�̃�𝑖
(𝑙) ← 𝐇𝑛

− + 𝐸𝑖𝑖−1
𝐿 �̅�𝑖−1

(𝑙) + ∑
𝑝
𝑗=𝑖+1 𝐸𝑖𝑗

𝑈�̅�𝑗
(𝑙−1)

 

Predictor phase 

𝐌∗�̅�𝑖
(𝑙)
← −𝐃 �̃�𝑖

(𝑙) Corrector phase 

end for 

end for 

𝐇𝑛+1
− ← 𝐇𝑛

− + ∑
𝑝
𝑖=0 𝜑𝑖(1)�̅�𝑖 Update solutions 

 
(𝐼𝑝+1⊗ [𝐌+ 𝛾𝐃] + 𝐸𝐿⊗𝐃)�̅�(𝑙)

= −𝑑 ⊗𝐌𝐇𝑛
− − 𝐸𝑈⊗𝐃�̅�(𝑙−1) 

(55) 

 

where, l=1, 2, …, lmax, and �̅�(𝑙) denotes the solutions obtained 

from the lth iterate. With a given set of initial values, �̅�(0) = 0, 

Eq. (55) is repeated to determine �̅�(𝑙𝑚𝑎𝑥). The solutions Hh(t) 

can then be calculated via Equation (45). The above iterative 

scheme is written in the form of the predictor/multi-corrector 

(v-form) multi-pass algorithm is summarised in Algorithm 1. 

In order to investigate and ensure the stability and accuracy 

of the proposed algorithm, a homogeneous first-order problem 

with one degree of freedom is taken: 

 

�̇�(𝑡) + 𝜆𝐻(𝑡) = 0;    𝑡𝑛
+ ≤ 𝑡 ≤ 𝑡𝑛+1

−  (56) 

 

𝐻(𝑡𝑛
−) = 𝐻𝑛

− (57) 

 

For the current time step, the solutions at the end of the 

interval is written as: 

 

𝐻ℎ(𝑡𝑛+
− ) = 𝒜(𝑙)𝐻ℎ(𝑡𝑛

−) (58) 

 

where, 𝒜(𝑙) is the amplification matrix at the lth iterate. The 

algorithm is considered unconditionally stable, i.e. A-stable, if 

|𝒜| < 1  for all positive λΔtn. The graphs of amplification 

factor obtained by TDG-FEM and by second-order accurate 

methods as a function of normalized frequency, λΔtn are 

plotted in Figure 4. It shows that the solutions obtained by 

TDG-P2 are the most accurate, with reference to the exact 

solutions.  

The accuracy of the algorithm is measured by replacing Hh 

in Eq. (58) by exact values H. Then, the local truncation error 

of solution in each iteration pass l at the end of time step tn is 

given as:  

 

𝜀(𝑙) = 𝐻(𝑡𝑛+1
− ) − 𝒜(𝑙)𝐻(𝑡𝑛

−) (59) 

 

and by using the Taylor’s series at about Δt=0 to obtain the 

expansion of Eq. (59), the local order accuracy is defined as:  

𝜏(𝑙)(𝑡𝑛) = 𝐶𝑘Δ𝑡
𝑘 + 𝐶𝑘+1Δ𝑡

𝑘+1 + …  (60) 

 

where, C are time-independent coefficients. The consistency 

of algorithm is measured as the order of k where k>0 and 

|𝜏(𝑡)| ≤ 𝐶𝑘Δ𝑡
𝑘  for 𝑡 ∈ [0, 𝑡𝑓] . The orders of accuracy 

achieved by the proposed iterative algorithms of linear, when 

p=1, and quadratic, when p=2, are illustrated in Table 1. 

 

Table 1. Accuracy and stability of iterative algorithms 

 
Algorithm lmax Error Rate |Ck| Stability 

TDG-P1 

1 Δt 0.05556 A-stable 

2 Δt3 0.01698 A-stable 

3 Δt3 0.01389 A-stable 

Direct Solution Δt3 0.01389 A-stable 

TDG-P2 

1 Δt2 0.02133 A-stable 

2 Δt4 0.00064 A-stable 

3 Δt5 0.00014 A-stable 

Direct Solution Δt5 0.00014 A-stable 

 

The iterative algorithms of TDG-P1 and TDG-P2 methods 

require three iteration passes (lmax=3) to achieve the same 

orders of accuracy and coefficients as that calculated by direct 

solving. Therefore, a high order of accuracy obtained by only 

a few iterations passes means that the algorithm is efficient and 

stable.  

 

 
 

Figure 4. Amplification factors of different methods 

 

3.3 Adaptive time-stepping method 

 

Usually, moisture diffusion occurs in a very extended 

period of time in normal environmental conditions. This 

means that the smaller the time step, the more expensive the 

calculations. To minimise the simulation time with reliable 

accuracy, we employ the embedded pair approach. This 

method has been successfully implemented in the Runge-

Kutta methods [30-32], where the resulting parameters 

determined by the higher-order (q) accurate algorithm are used 

in the algorithm with a lower order (r) of accuracy. 

From Table 1, since our TDG-P2 iterative method with 

three passes, i.e., TDG-P2(3) yields the optimal accuracy, the 

embedded solutions are, hence, of a lower-order accuracy with 

two passes, i.e., TDG-P2(2) such that r=q-1. The difference: 

 

𝐞 = 𝐇𝑛+1
− − �̂�𝑛+1

−  (61) 

 

is used as a local error estimate, where 𝐇𝑛+1
−  and �̂�𝑛+1

−  are the 

solutions by TDG-P2(3) and TDG-P2(2) respectively. Using 

the standard rule to predict the new step size [33-35] leads to:  
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Δ𝑡𝑛+1 = 𝛼Δ𝑡𝑛(
𝜂𝑡𝑜𝑙
𝜂
)1/𝑝 (62) 

 

where, α is a safety factor, and p=2 for TDG-P2. ηtol is the 

specified tolerance being equal to 0.1% in this work, and η is 

the relative local error estimate:  

 

𝜂 =
||𝐞||𝐸
||𝐔||𝐸

× 100% (63) 

 

Using the error measured in total energy norm, the 

estimated local error becomes:  

 

||𝐞||𝐸 = (  𝑇𝐞  𝐃  𝐞)1/2 (64) 

 

and, thus, ||𝐔||𝐸 is the maximum total energy norm recorded 

during the simulation: 

 

||𝐔||𝐸 = max
𝑖=0,1,…,𝑛+1

( 𝑇𝐇𝑖
−  𝐃  𝐇𝑖

−)1/2 (65) 

 

To make the time stepping method efficient and reliable, the 

new step size Δtn+1 from Eq. (62) is accepted only when η<ηtol. 

Also, to avoid drastic changes in step size, the limit of time 

step change is imposed, i.e., Δtn+1≤βΔtn, in which β is the 

control factor, which is taken as 4 in this work. In the case 

where the error does not satisfy the criterion, i.e. η>ηtol, the 

updated solutions from the current step are rejected, and the 

determination of 𝐇𝑛+1
−  is attempted with the new smaller step 

size Δtn+1.  

 

3.4 Material parameters and conditions 

 

The orthotropic elastic constants of wood fibers are 

determined, using the model proposed by Charupeng and 

Kunthong [36]. The model requires bulk density and 

lignocellulosic composition of wood fibers, and completely 

estimates all the essential elastic constants of wood fibers. 

Then, the formulation of FE equations in 3-D space for the 

initial configuration (t=0) are constructed, using representative 

volume element method (RVE), as shown in Figure 5(a). This 

method has been proven to be reliable with modeling the 

mechanical properties of wood fiber composites [37-40]. With 

a given value of ϕ and densities of matrix and fibers, the 

physical parameters a, b, c, T and L can be determined. 

However, the full RVE model is rather expensive to simulate 

and unnecessary. We, instead, use a reduced model which is 

split about the three planes of symmetry in Cartesian system, 

as depicted in Figure 5(b). This reduces the total number of 

elements in calculations by a factor of 8. 

The geometrical parameters shown in Figure 5(a) can be 

determined as follows. The volume fraction of fiber is 

determined from basic materials properties as:  

 

𝑓 =

𝑤𝑓

𝜌𝑓
𝑤𝑓

𝜌𝑓
+
1−𝑤𝑓

𝜌𝑚

  (66) 

 

where, wf and ρf are the weight fraction and bulk density of 

wood fibers, ρm is the density of matrix material. 

The volume fraction is then used to approximate the initial 

geometrical parameters a and b of the model - for a constant 

thickness of fiber wall, a=b=t. The parameter c is determined 

by averaging the element sizes along the x and y direction. 

Given the volume of model V, fiber width ϕ and width-to-

thickness ration; k=ϕ/T, the average element size along the 

fiber direction c=L/Nz; Nz is the number of elements along the 

fiber direction, and 𝐿 =
𝑉

(𝜙+2𝑎)(𝜙/𝑘+2𝑏)
. Finally, the corrected 

value of t is determined via:  

 

𝑓 =
𝜙2(𝐿 − 2𝑐)

𝑘(𝜙 + 2𝑡)(𝜙/𝑘 + 2𝑡)
  (67) 

 

where, according to literature [41], k=2. 

In each complete iteration, the development of moisture, i.e., 

ΔH calculated by the aforementioned algorithm in Algorithm 

1, gives rise to non-zero components in matrix F of Eq. (36). 

With the pre-defined global stiffness matrix K, the global 

displacements U are determined, and hence used to update the 

physical coordinates of the domain. This process is repeated 

until the simulation time is reached. The final geometry is 

post-processed to obtain meaningful results. 

All the linear systems of equations are solved by 

preconditioned conjugate gradient (PCG) method [42]. This 

method offers a relatively short period of time to converge and 

good reliability in solving symmetric positive definite 

matrices. The convergence of PCG calculation is ensured by 

setting the tolerance to 1×10-7 and the maximum iteration 

number at 10,000. which are then used to update the physical 

coordinates for the next time step. 

In order to illustrate a numerical example as well as validate 

the algorithm, the experimental results in Ref. [5] are taken for 

comparison. There are two matrix polymers: polylactic acid 

(PLA) and polypropylene (PP). The fibers are bleached birch 

kraft fibers. The essential material parameters are summarised 

in Table 2. The properties of polymers are assumed to be 

isotropic. The diffusion coefficients and elastic constants are 

assumed to be independent upon moisture absorption. 

 

Table 2. Parameter inputs. Referenced studies from which 

values are taken are included. %C, %H and %L denote the 

weight fractions of cellulose, hemicellulose and lignin 

respectively 

 
Constituent Parameter Value Ref. 

Birch 

ρ(kgm-3) 690 [43] 

%C 71.7 [43] 

%H 26.1 [43] 

%L 2.0 [43] 

ϕ(μm) 21.3 [44] 

Dh,x(10-12 m2 s-1) 2.26 [45] 

Dh,y(10-12 m2 s-1) 2.26 [45] 

Dh,z(10-12 m2 s-1) 5.65 [45] 

PLA 

ρ(kgm-3) 1230 [46] 

E(GPa) 1.93 [46] 

ν 0.35 [47] 

D(10-13 m2 s-1) 1.77 [48] 

∂W/∂H 1×10-2 [49] 

PP 

ρ(kgm-3) 925 [50] 

E(GPa) 1.6 [51] 

ν 0.45 [52] 

D(10-13 m2 s-1) 1.90 [53] 

∂W/∂H 8×10-4 [54] 
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The hygroexpansion coefficient is generally very small in 

polymeric materials [3, 55] compared to that of wood, and 

hence assumed to be zero. As the moisture capacity of fiber 

usually varies with relative humidity, we employ the 

Guggenheim-Andersen-de Boer (GAB) three-parameter 

sorption Eq. [56], in which the equilibrium moisture content 

in cellulose fibers can be determined via:  

 

𝑊 =
𝑉𝑚 × 𝑐 × 𝑘 × 𝐻/100

(1 − 𝑘 × 𝐻/100)(1 + (𝑐 − 1)𝑘 × 𝐻/100)
 (68) 

 

where, H is the relative humidity, and for adsorption 

parameters of birch wood, Vm=0.058, c=8.9, k=0.78 [57]. So, 

∂W/∂H, can be determined by differentiating Eq. (68). 

Also, by using the FE algorithm [36] with inputs from Table 

2 -ρ, %C, %H and %L, the elastic constants of wood fibers are 

estimated and summarised in Table 3. The above properties of 

the homogenised fiber model are used to simulate the birch 

pulp in the experiments [5]. 

 

Table 3. Elastic constants of homogenised birch fibers 

 

𝐸𝑥 

(GPa) 

𝐸𝑦 

(GPa) 

𝐸𝑧 

(GPa) 

𝐺𝑦𝑧 

(GPa) 

𝐺𝑧𝑥 

(GPa) 

𝐺𝑥𝑦  

(GPa) 

𝜈𝑧𝑦 𝜈𝑧𝑥 𝜈𝑥𝑦 

2.62 2.62 42.8 4.23 4.23 1.19 0.447 0.447 0.104 

 

 
 

Figure 5. RVE model of WPC; fiber(brown), matrix(yellow). 

(a) full model with annotated multi-view projection. (b) 

actual physical domain used for simulation. ϕ, T and L are the 

width, thickness and length of the homogenised fiber 

respectively 

 

With reference to Figure 5(b), the boundary conditions 

imposed at all time steps are: 

 

𝐇(∞, 𝑦, 𝑧) = 𝐇(𝑥,∞, 𝑧) = 𝐇(𝑥, 𝑦,∞) = 𝑅𝐻 (69) 

 

𝐮(0, 𝑦, 𝑧) = 𝐯(𝑥, 0, 𝑧) = 𝐰(𝑥, 𝑦, 0) = 0 (70) 

 

where, RH is the relative humidity, u, v and w are nodal 

displacements along the x, y and z directions, and ∞ indicates 

the boundary on a specific dimension. In other words, Eq. (69) 

are posed on to the nodes with coordinates (
𝜙

2
+ 𝑎, 𝑦, 𝑧) , 

(𝑥,
𝑇

2
+ 𝑏, 𝑧) , and (𝑥, 𝑦,

𝐿

2
+ 𝑐)  where ϕ, T, L, a, b, c are 

parameters according to Figure 5(a). And from Eq. (70), u=0 

are posed on to the nodes with coordinates (0, y, z), v=0 are 

posed on to the nodes with coordinates (x, 0, z), and w=0 are 

posed on to the nodes with coordinates (x, y, 0). 

The initial conditions from Eq. (20) are used on all nodes 

except that with the imposed essential conditions above. 

 

4. NUMERICAL RESULTS AND VALIDATION 

 

As for the FE discretisation, the dimensions of the RVE 

model are specified such that the total volume of the model 

equals the total volume of the specimens in the experiments. 

The uniformity of mesh is ensured by making all element as 

close to a square as possible. Using the concepts of RVE, the 

average out-of-plane hygroexpansion, is plotted against time 

for convergence tests as shown in Figure 6. 

 

 
 

Figure 6. Effects of mesh geometry on the solutions obtained 

for 30% birch and 70% PP by weight, at RH=0.97. 3×2×10 

indicates that the FE model has three elements, two elements 

and 10 elements along the x, y and z respectively 

 

The choices of cross-sectional dimensions xy-planes of 

elements are rather limited as to conserve the volume fraction 

of fiber and the fiber width-to-thickness ratio W/T. Refining 

the mesh from 2×2×10 to 3×2×10 and increasing the number 

of elements along the fiber direction yield converged solutions 

to less than 1% as the dimensions of each element become 

more uniform. However, the 4×3×13 mesh has the greatest 

number of elements but yields a rather different trend of 

solutions. This is because, in order to conserve the volume 

fraction of fibers, such mesh leads to uneven dimensions of 

elements on the cross-sections, and hence poor aspect ratios. 

Therefore, the minimum refinement of mesh is 3 by 2 by 12 

elements. 

The preferred mesh refinement is taken for the evaluation 

of the efficiency of time-stepping algorithm. The initial time 

step is set to 100 seconds with β=4 to avoid large increases of 

step size, α=0.9 and ηtol=0.1%. The size of time step, Δtn, are 

plotted against iteration number, n, as shown in Figure 7. 
 

 
 

Figure 7. Time step progression vs step number. Labels of 

approximate day number in the simulated period are included 

for certain iterations. Runtime is approximately 6.5 hours 
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The results show that the step size rises rather rapidly for 

the first few steps to a certain range - around 104 seconds or 

three hours. It then increases from hours to days and weeks, as 

implied by the labelled day numbers. Such increasing intervals 

are also used commonly by numerous similar experimental 

studies [5-7]. This suggests that the algorithm quickly 

determines the appropriate step size from the solutions and 

progresses according to the hygro-mechanical behaviours. The 

fact that our algorithm requires 6.5 hours of runtime to 

simulate the actual period of 90 days indicates good robustness 

and its potential for industrial applications - predictions of 

dimensional stability and hence durability of materials are 

essential but expensive for laboratory experiments. 

Figure 8 shows the predicted time-dependent out-of-plane 

hygroexpansion as a function of time, for a series of different 

fiber volume fractions and material constituents. All FE 

calculations are performed with RH=0.97, Δt1=100s, α=0.9, 

ηtol=0.1% and β=4. The results are compared to corresponding 

experimental results. 

 

 
 

Figure 8. Time-dependent out-of-plane hygroexpansion 

predicted by our FEA model (solid lines) compared to the 

experiments [5] (dotted lines) 

 

There is good agreement between our FEA calculations and 

the results of the experiments [5]. The model accurately 

predicts accurately the hygroexpansion towards equilibrium 

moisture content with slight differences of up to 10% in the 

first 10-20 days. Within the aforementioned period, the 

reliability of the prediction is slightly lower, which is due to 

the fact that the magnitude of the diffusion coefficient in 

polymers can vary from 10-15 to 10-11 m2/s [58, 59]. Moreover, 

water absorption, although very small, can lead to 

rearrangement of the chemical chains and thus to a change in 

diffusivity [2]. 

While the numerical model assumes perfect interfaces 

between the fibers and the matrix, this is usually not the case 

in practice. The interfacial compatibility of wood fibers is poor 

in a PP matrix but strong in a PLA matrix, as evidenced by 

SEM micrographs according to the literature [5, 60]. Thus, as 

hygroexpansion progresses, microcracks and interfacial 

debonding develop, providing more channels for a greater 

extent of moisture diffusion. This has also been shown by Suri 

and Perreux [61] that damage and cracks lead to increased 

water diffusion rate in fiber composites. As a result, FEA 

calculations give higher values compared to the experiments 

in the case of 30 wt% fibers and 70 wt% PP after 20 days. 

It should also be noted that the simulation environments are 

assumed such that all the sides (boundary surfaces) of 

composite specimens are exposed to uniform relative humidity 

and that the specimen are kept at constant and standard 

temperature and pressure during the diffusion process. In 

terms of actual experimentation, the consistency with of such 

conditions is ensured by complying to the relevant standard 

ASTM D 570-81 [5]. 

To further evaluate the reliability and accuracy of the 

modeling methods, the kinetics of diffusion is analysed. The 

analytical equation describing the diffusion mechanism and 

kinetics can be given as follows:  

 

𝑙𝑜𝑔(
𝑀𝑡

𝑀∞

) = 𝑙𝑜𝑔(𝑘) + 𝑛𝑙𝑜𝑔(𝑡) (71) 

 

where, Mt and M∞ denote moisture content at time 𝑡 and that 

at the equilibrium respectively, k and n are constants [62]. For 

relative moistures of lower than 0.5 (Mt/M∞≤0.5), the 𝑛 value 

indicates the type of diffusion mechanism; n=0.5 for general 

Fickian diffusion processes [63]. Here, the value of Mt/M∞ is 

assumed to be equal to Ht/RH. The value of Ht is given by the 

average value of the nodal solutions from Eq. (37) at time t. 

Since the equilibrium value cannot exceed the relative 

humidity RH (see Eq. (19)), this value is set as the equilibrium 

value. 

 

 
 

Figure 9. Log of relative moisture against log time in 

seconds including trend lines 

 

Figure 9 shows log(Ht/RH) as a function of log(t) for the 

three composites. For all composites, the slopes of the trend 

line, i.e. n, are approximately equal to 0.5 - with a deviation of 

at most 6%. This is in agreement with the experimental study 

[6], according to which numerous natural fibers/ PP 

composites have n value of about 0.5, thus obeying the kinetics 

theory of a Fickian diffusion process. There is a slight 

difference between the log(k) values from the trend line 

equations of birch fiber/PLA composites because the RVE 

models are dimensioned differently due to the difference in 

fiber weight fractions. Moreover, the n value for birch fiber/PP 

composites is quite different due to the low interfacial 

compatibility mentioned earlier. The above analysis confirms 

that our model can effectively capture the physics of the 

hygro-mechanical behaviours of WPC as well as the kinetics 

according to Fick’s theory.  

 

 

5. CONCLUSIONS 

 

We have successfully developed a validated finite element 

model based on semi-discretization of space and time to study 

the three-dimensional hygro-mechanical behaviours of wood 
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fiber-polymer composites. The solutions are continuous in 

space but can be discontinuous in time, using TDG-FEM for 

the latter to achieve optimal accuracy. 

A predictor/multi-corrector using a Gauss-Seidel block 

matrix iterative scheme algorithm for solving the first-order 

parabolic problem in temporal domain has also been presented. 

It requires only up to three iterative passes to achieve the same 

accuracy as the direct solution. Moreover, the adaptive time-

stepping method using embedded solution approach with the 

maximum energy norm criterion has been shown to effectively 

determine the appropriate size of time step and to progress 

efficiently throughout the simulation period. A runtime of a 

few hours compared to about three months of actual laboratory 

experiments confirms the efficiency and robustness in 

predicting the complex time-dependent hygro-mechanical 

behaviours. 

As for the validation of the model, the FEA results are 

compared with the corresponding cases in previous 

experimental studies and show good agreement. The reliability 

of the prediction can increase with the interfacial compatibility 

between fiber and matrix. Diffusion at early stages may be 

more difficult to predict due to the variability of material 

parameters in polymeric materials. Data analysis of the time-

dependent moisture content confirms that Fick’s theory is very 

good at predicting the behaviours, with the characteristic n 

value in agreement with experiments. 
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