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 Network modelling is a critical step in the analysis of distribution networks. It is used 

to relate the input currents and voltages with the output currents and voltages. This work 

aims to construct a new admittance matrix for distribution networks. The new 

admittance matrix is derived based on ABCD matrix, which presents the exact model 

of different types of power distribution networks considering the unbalance/balanced 

and single/three phase characteristics. The model takes into account shunt admittances 

to reflect the accurate performances of the components in the distribution networks, 

especially in the presence of distributed generation units. The importance of considering 

shunt admittance is due to the presence of capacitive charging current which can affect 

the node voltages. Application of the new admittance matrix of distribution networks 

in Newton-Raphson power flow analysis is performed. The standard IEEE 37 bus 

system is used to test the validity of the proposed approach. MATLAB environment is 

used to confirm the results. Simulation results show the accuracy of new network 

admittance matrix in power flow analysis. 
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1. INTRODUCTION 

 

Electric power networks are one of the most complex 

systems [1]. Traditionally, power is produced by large power 

generation units and is transferred to users through 

transmission lines in a one-way direction. The distribution 

power systems have been considered as passive networks 

since the power flow is unidirectional (from the substation to 

the users). They generally rely on the transmission network for 

system control. However, the future electrical networks are 

hosting many loads, distributed generations and ancillary 

service devices. Such utilization makes distribution systems 

active due to the power generation inside their networks. 

Indeed, active networks can supply the excessive power to the 

high-voltage side. This creates bidirectional power flow in the 

system. Thus, the network complexity and size are 

significantly increased. This means that electrical networks are 

quickly changing and becoming harder to analysis and control 

[2].  

Network modelling is a crucial stage in analysis of 

distribution networks. This is due to fact that network 

modelling can reflect the performance of network components 

in power system operation [3]. It is used to relate the input 

currents and voltages with the output currents and voltages [4]. 

The importance of selecting an appropriate and exact model 

for a particular power network can be understood in different 

issues such as power flow analysis, sensitivity analysis, and 

short circuit analysis. In power system literature, several 

methods were developed for power flow calculation [5-41], 

sensitivity analysis [42, 43], and short circuit analysis [44, 45] 

on distribution networks. 

In this work, the authors focus on the issue of power flow 

computation. Indeed, power flow is an important analysis for 

future distribution systems. Many network issues like energy 

management, optimization, state estimation, and network 

reconfiguration depend on power flow results. Such issues are 

the heart of system operation, control and planning. Power 

flow calculation determines the steady state behaviour of the 

network by computing the voltages magnitudes and phase 

angles of power networks. 

An efficient power flow approach is needed for three-phase 

unbalanced distribution systems in the presence of distributed 

generations and other active resources. The traditional power 

flow methods for transmission networks, such as Gauss Seidel, 

Newton-Raphson, and fast decoupled power flow are widely 

used for network analysis. However, these methods are 

associated with convergence problems when they are 

performed on distribution networks due to their special 

characteristics. Thus, many researchers have developed 

Backward–Forward sweep-based algorithms [11-18]. These 

methods can handle the radial networks but they are not 

suitable for meshed networks. This approach also depends on 

iterative processes in which two computational steps are 

required. Other researchers have modified the conventional 
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methods (Newton-Raphson and Gauss–Seidel) to handle the 

characteristic of distribution networks [19-41]. A decoupled 

load-flow approach for distribution system is developed [19]. 

In the study [23], the Newton-Raphson method in complex 

form was studied. The Newton-Raphson method was studied 

based on current injections [24-26]. According to the study 

[27-29], the Newton-Raphson method was extended to include 

the unbalanced distribution networks. Loop frame of reference 

based three-phase power flow for unbalanced radial 

distribution networks is proposed [30]. A new power flow 

algorithm for islanded microgrids based on Newton trust 

region method is developed in Refs. [33-35]. The load flow 

computation is improved with an optimization factor [36]. A 

new method for solving the power flow problem in the ill-

conditioned systems is developed [39]. Some of them show 

that the convergence characteristics are improved, and they are 

suitable to be implemented in distribution networks. However, 

this type of methods doesn’t include the exact models of 

network components in formulating system admittance matrix 

and thus in network analysis. They are usually formulating the 

system using the series admittances and mutual coupling 

between phases ignoring the shunt admittances. The effect of 

the shunt admittances is significant in power flow analysis in 

distribution systems, especially with the incorporation of 

distributed generation. The integration of distributed 

generation can change the unidirectional characteristics of 

power flow, and thus the impact of shunt admittances may be 

changed. Taking into account that considering the shunt 

admittance increases the accuracy of power flow results. 

Therefore, system stability limits can be accurately determined 

under different loading conditions. Moreover, the allowable 

upper and lower voltage limits of system buses can be 

precisely set. This, in turn, would increase the accuracy of 

knowing the voltage regulation (V. R) on each bus. 

In this regard, this work aims to formulate a new system 

admittance matrix for distribution networks considering the 

exact modelling of system components. It deals with the 

representation of distribution network components under 

normal operating conditions. The representation can be done 

by an equivalent model with appropriate fundamental circuit 

parameters. The component modelling is presented through 

ABCD matrix, which could simplify the analysis procedure of 

power network. The new admittance matrix is then utilized in 

Newton-Raphson based power flow.  

The main contribution of this work is to include the exact 

models of network components in formulating the system 

admittance matrix. Compared with well-known methods, this 

method includes the shunt admittances in the analysis. 

The rest of this work is organized as follows. Section 2 

present the component modelling of different types of 

distribution power networks. Section 3 presents the new 

system admittance matrix. Section 4 shows simulation results. 

The conclusions and future works are stated in Section 5. 

 

 

2. MODELING OF NETWORK COMPONENTS 

 

This section deals with the representation of distribution 

network components under normal operating conditions. The 

representation can be done by an equivalent model with 

appropriate fundamental circuit parameters. A general form of 

representing a segment (component) is shown in Figure 1. The 

segment is between two nodes “n” and “m”. The current passes 

from node “n” to node “m”.  

 
 

Figure 1. Two-port representation of a network segment 

 

By applying Kirchhoff’s voltage and current laws (KVL and 

KCL), we can obtain the following general equations: 

 

𝑉𝑛 = 𝐴𝑉𝑚 + 𝐵𝐼𝑚  (1) 

 

𝐼𝑛 = 𝐶𝑉𝑚 + 𝐷𝐼𝑚 (2) 

 

In matrix form: 

 

[
𝑉𝑛
𝐼𝑛

] = [
𝐴 𝐵
𝐶 𝐷

] [
𝑉𝑚
𝐼𝑚

] (3) 

 

where, n: sending end of the segment; m: receiving end of the 

segment; Vn: input voltage; Vm: output voltage; In: input current; 

Im: output current; ABCD: segment parameters. 

Eqns. (1) and (2) represent the relation between the input 

(voltage & current) and the output (voltage & current) of a 

segment. The equations can be written in terms of the circuit 

coefficients (i.e. ABCD constants). Thus, the segment can be 

represented by a two-port system with ABCD model. 

According to the type (or characteristics) of distribution 

networks, network modeling can be classified as presented in 

the next subsections.  

 

2.1 Single-phase networks (Approximate model) 

 

The representation of single-phase distribution networks 

can be done by an equivalent model on a per phase basis. The 

terminal voltage is represented as line to neutral and the 

current is for one phase.  

 

2.1.1 Distribution line modeling 

The distribution overhead and underground line segments 

in a single-phase distribution network can be approximately 

modeled by series impedances as shown in Figure 2. This 

approximation is due to fact that shunt admittances of line 

segments can be ignored in some cases.  

 

 
 

Figure 2. Approximate model of a single-phase line 

 

where, Z is the total impedance of the line. R and X represent 

the total resistance and reactance of the line. The total line 

impedance can be represented as (r+jwL)l=R+jX. The values; r 
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and L are the per phase resistance and inductance per unit 

length, respectively. l is the line length. Vn and In are the phase 

voltage and current at the sending end of the line, and Vm and 

Im are the phase voltage and current at the receiving end of the 

line. IL represents the line current. 

Set of equations can be developed to model the line segment. 

For the line segment of Figure 2, the equations that relate the 

input (node n) voltage and current to the output (node m) 

voltage and current are developed as follows: 

By applying KVL, the phase voltage at the sending end is: 

 

𝑉𝑛 = 𝑉𝑚 + 𝑍𝐼𝐿 (4) 

 

By applying KCL, the phase current at the sending end is: 

 

𝐼𝑛 = 𝐼𝑚 (5) 

 

By comparing (4) and (5) with the general model Eqns. (1) 

and (2), we obtain that A=D=1; C=0; B=Z. In matrix form, we 

obtain: 

 

[
𝑉𝑛
𝐼𝑛

] = [
1 𝑍
0 1

] [
𝑉𝑚
𝐼𝑚

] (6) 

 

2.1.2 Distribution transformer modeling 

The equivalent circuit for a two-winding transformer in a 

single-phase system can be approximately represented as 

shown in Figure 3. This approximation is due to fact that shunt 

admittances of transformers can be ignored in some cases. The 

equivalent circuit of Figure 3 can be modified by referring the 

primary impedance (Z1) to the secondary side as shown in 

Figure 4. It is clear that the equivalent circuit of single-phase 

transformer consists of an ideal transformer together with 

elements which represent its real performance. 

 

 
 

Figure 3. Approximate model of a single-phase transformer 

 

 
 

Figure 4. Modified approximate model of a single-phase 

transformer 

 

The total impedance Z of the transformer is given by: 

 

𝑍 = 𝑛𝑡
2𝑍1 + 𝑍2 

 

where, nt represent the turn ratio of the transformer and can be 

calculated as: 

 

𝑛𝑡 =
𝑁2

𝑁1

 

where, Z1: impedance of the primary winding; Z2: impedance 

of the secondary winding; R1: resistance of the primary winding; 

R2: resistance of the secondary winding; X1: reactance of the 

primary winding; X2: reactance of the secondary winding; N1: 

number of turns of the primary winding; N2: number of turns of 

the secondary winding. 

Referring to Figure 4, the equation for the ideal transformer 

becomes: 

 

𝐸2 = 𝑛𝑡  𝐸1 

 

Applying KVL in the secondary circuit, we obtain 

 

𝐸2 = 𝑉𝑚 + 𝑍𝐼𝑚 

 

The input voltage of the transformer is: 

 

𝑉𝑛 = 𝐸1 =
1

𝑛𝑡

𝐸2 

 

Thus,   𝑉𝑛 =
1

𝑛𝑡

𝑉𝑚 +
𝑍

𝑛𝑡

𝐼𝑚 (7) 

 

The input current to the transformer is: 

 

𝐼𝑛 = 𝑛𝑡  𝐼𝑚 (8) 

 

By comparing (7) and (8) with the general model equations: 

we obtain that: 

 

[
𝑉𝑛
𝐼𝑛

] = [

1

𝑛𝑡

𝑍

𝑛𝑡

0 𝑛𝑡

] [
𝑉𝑚
𝐼𝑚

] (9) 

 

2.2 Single-phase networks (Exact model) 

 

The exact model of single-phase networks can be obtained 

by including the shunt admittances of line segments and 

transformers as shown in Figure 5 and Figure 6, respectively. 

The only difference between the exact and the approximate 

models is the parameters of ABCD matrix.  

 

 
 

Figure 5. Exact model of a single-phase line 

 

where, Y is the total shunt admittance of the line and can be 

represented as: 

 

𝑌 = (𝑗𝑤𝑐)𝑙 
 

where, c is the per phase capacitance per unit length, 

respectively.  

170



 

 
 

Figure 6. Exact model of a single-phase transformer 

 

where, Rc1 and Xm1 are the core resistance and magnetizing 

reactance, respectively. The transformer shunt admittance Y 

can be obtained as Rc1//Xm1. 

By repeating the same procedure presented in section 2.1.1, 

we obtain that the matrix ABCD of single-phase lines is 

changed as: 

 

[
𝑉𝑛
𝐼𝑛

] = [
1 +

𝑍𝑌

2
𝑍

𝑌 (1 +
𝑍𝑌

4
) 1 +

𝑍𝑌

2

] [
𝑉𝑚
𝐼𝑚

]  (10) 

 

Similarly, by repeating the same procedure presented in 

section 2.1.2, we also obtain that the matrix ABCD of single-

phase transformers is changed as: 

 

[
𝑉𝑛
𝐼𝑛

] = [

1

𝑛𝑡

𝑍

𝑛𝑡

𝑌

𝑛𝑡

𝑌𝑍

𝑛𝑡
+ 𝑛𝑡

] [
𝑉𝑚
𝐼𝑚

]  (11) 

 

2.3 Balanced three-phase networks 

 

The representation of balanced three-phase distribution 

networks can be done by an equivalent model on a “per-phase” 

basis, similar to models presented in section 2.1. The 

parameters (Z and Y) are represented per phase. The terminal 

voltage is presented from line to neutral and the current is for 

one phase. Thus, the relations expressed in (6), (9) are used for 

approximate modelling of balanced three phase networks while 

the expressions illustrated in (10) and (11) are used for exact 

modelling of balanced three phase networks. 

 

2.4 Unbalanced three-phase networks (Exact model) 

 

For unbalanced systems, it is necessary to involve the actual 

phasing and the correct spacing between segments (or 

windings). The impedances and admittances parameters are 

represented per phase. 

 

2.4.1 Distribution line modelling  

The distribution overhead and underground line segments in 

an unbalanced three-phase distribution network can be 

represented as shown in Figure 7. 

 

 
 

Figure 7. Unbalanced three- phase distribution line model 

 

where, Zaa, Zbb, and Zcc are self-impedances for the line a, b and 

c respectively. Zab, Zbc, and Zca are mutual impedances between 

the lines. Thus, the impedance matrix Zabc and shunt admittance 

matrix Yabc for the three phases can be obtained as: 

 

𝑍𝑎𝑏𝑐 = [

𝑍𝑎𝑎 𝑍𝑎𝑏 𝑍𝑎𝑐

𝑍𝑏𝑎 𝑍𝑏𝑏 𝑍𝑏𝑐

𝑍𝑐𝑎 𝑍𝑐𝑏 𝑍𝑐𝑐

] , 𝑌𝑎𝑏𝑐 = [

𝑌𝑎𝑎 𝑌𝑎𝑏 𝑌𝑎𝑐

𝑌𝑏𝑎 𝑌𝑏𝑏 𝑌𝑏𝑐

𝑌𝑐𝑎 𝑌𝑐𝑏 𝑌𝑐𝑐

] 

 

By applying KCL and KVL concepts, we can obtain the 

ABCD matrix of three-phase lines is as presented in (12)-(15) 

conclude that: 

 

[
𝑉𝑛

𝑎𝑏𝑐

𝐼𝑛
𝑎𝑏𝑐 ] = [

𝐴 𝐵
𝐶 𝐷

] [
𝑉𝑚

𝑎𝑏𝑐

𝐼𝑚
𝑎𝑏𝑐 ] (12) 

 

where, 𝑉𝑛
𝑎𝑏𝑐 = [

𝑉𝑛
𝑎𝑔

𝑉𝑛
𝑏𝑔

𝑉𝑛
𝑐𝑔

] , 𝑉𝑚
𝑎𝑏𝑐 = [

𝑉𝑚
𝑎𝑔

𝑉𝑚
𝑏𝑔

𝑉𝑚
𝑐𝑔

] , 𝐼𝑛
𝑎𝑏𝑐 = [

𝐼𝑛
𝑎

𝐼𝑛
𝑏

𝐼𝑛
𝑐

] , 𝐼𝑚
𝑎𝑏𝑐 =

[

𝐼𝑚
𝑎

𝐼𝑚
𝑏

𝐼𝑚
𝑐

]. 

From the analysis of KVL and KCL concepts ABCD 

parameters can be found as: 

 

𝐴 = 𝐷 = 𝑈 +
1

2
𝑍𝑎𝑏𝑐𝑌𝑎𝑏𝑐 (13) 

 

𝐵 = 𝑍𝑎𝑏𝑐  (14) 

 

𝐶 = 𝑌𝑎𝑏𝑐 +
1

4
𝑌𝑎𝑏𝑐𝑍𝑎𝑏𝑐𝑌𝑎𝑏𝑐  (15) 

 

where, U is a diagonal matrix and their elements equal to 1. 

 

2.4.2 Distribution transformer modeling 

The distribution transformers can be divided into several 

types based on their winding’s connection. The transformer 

modelling depends on the winding connection. A general three-

phase transformer is shown in Figure 8. 

 

 
 

Figure 8. General three-phase transformer bank 

 

By applying KVL and KCL on the transformer terminals, 

we conclude that: 

 

[
𝑉𝑛

𝑎𝑏𝑐

𝐼𝑛
𝑎𝑏𝑐 ] = [

𝐴 𝐵
𝐶 𝐷

] [
𝑉𝑚

𝑎𝑏𝑐

𝐼𝑚
𝑎𝑏𝑐 ] (16) 

 

where, 

𝑉𝑛
𝑎𝑏𝑐 = [

𝑉𝑛
𝐴𝑁

𝑉𝑛
𝐵𝑁

𝑉𝑛
𝐶𝑁

],𝑉𝑚
𝑎𝑏𝑐 = [

𝑉𝑚
𝑎𝑛

𝑉𝑚
𝑏𝑛

𝑉𝑚
𝑐𝑛

],𝐼𝑛
𝑎𝑏𝑐 = [

𝐼𝑛
𝐴

𝐼𝑛
𝐵

𝐼𝑛
𝐶

],𝐼𝑚
𝑎𝑏𝑐 = [

𝐼𝑚
𝑎

𝐼𝑚
𝑏

𝐼𝑚
𝑐

]. 
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The ABCD parameters of different types of distribution 

transformer are summarized in Table 1. 

where, 

 

𝑍𝑡𝑎𝑏𝑐 = [

𝑍𝑡𝑎 0 0
0 𝑍𝑡𝑏 0
0 0 𝑍𝑡𝑐

] (17) 

 

𝑊𝑉−1 =
1

3
[

4 −2 1
1 4 −2

−2 1 4
] (18) 

𝑊𝐼−1 =
1

3
[
2 0 1
1 2 0
0 1 2

] (19) 

 

The terms VLL and VLN denote the line- line voltage and line-

neutral voltages, respectively. The subscripts p and s represent 

the primary and secondary winding, respectively. nt is the 

effective turn ratio. The impedances Zta, Ztb, and Ztc are 

impedances for Y connected windings. The impedances Ztab, 

Ztbc, and Ztca are impedances for Δ connected windings.  

 

Table 1. ABCD parameters of different types of distribution transformer 

 
Transformer connection ABCD parameters 

Node n Node m nt A B-1 C D 

Y-G Y-G 
𝑉𝐿𝑁,𝑝

𝑉𝐿𝑁,𝑠
 𝑛𝑡 𝑈 

1

𝑛𝑡
[

𝑍𝑡𝑎 0 0
0 𝑍𝑡𝑏 0
0 0 𝑍𝑡𝑐

]

−1

 0 
1

𝑛𝑡
 𝑈 

Y-G Δ 
𝑉𝐿𝑁,𝑝

𝑉𝐿𝐿,𝑠
 𝑛𝑡  𝑊𝑉−1 

1

𝑛𝑡

[
 
 
 
 
 
 

1

𝑍𝑡𝑎𝑏
0

−1

𝑍𝑡𝑐𝑎

−1

𝑍𝑡𝑎𝑏

1

𝑍𝑡𝑏𝑐
0

0
−1

𝑍𝑡𝑏𝑐

1

𝑍𝑡𝑐𝑎]
 
 
 
 
 
 

 0 
1

𝑛𝑡
 𝑊𝐼−1 

Y Δ 
𝑉𝐿𝑁,𝑝

𝑉𝐿𝐿,𝑠
 𝑛𝑡  𝑊𝑉−1 

1

𝑛𝑡

[
 
 
 
 
 
 

1

𝑍𝑡𝑎𝑏
0

−1

𝑍𝑡𝑐𝑎

−1

𝑍𝑡𝑎𝑏

1

𝑍𝑡𝑏𝑐
0

0
−1

𝑍𝑡𝑏𝑐

1

𝑍𝑡𝑐𝑎]
 
 
 
 
 
 

 0 
1

3𝑛𝑡
[

2 0 1
2 3 1

−1 0 1
] 

Δ 
Y-G 

 

𝑉𝐿𝐿,𝑝

𝑉𝐿𝑁,𝑠
 

−𝑛𝑡

3
[
0 2 1
1 0 2
2 1 0

] 

 

−1

3𝑛𝑡

[
 
 
 
 
 
 
−2

𝑍𝑡𝑎

1

𝑍𝑡𝑎

4

𝑍𝑡𝑎

4

𝑍𝑡𝑏

−2

𝑍𝑡𝑏

1

𝑍𝑡𝑏

1

𝑍𝑡𝑐

4

𝑍𝑡𝑐

−2

𝑍𝑡𝑐]
 
 
 
 
 
 

 0 
1

𝑛𝑡
[

1 −1 0
0 1 −1

−1 0 1
] 

Δ Δ 
𝑉𝐿𝐿,𝑝

𝑉𝐿𝐿,𝑠
 𝑛𝑡 𝑈 𝑊𝑉−1 0 

1

𝑛𝑡
 𝑈 

Open Y-G (phase c) 
Open Δ 

(phase c) 

𝑉𝐿𝑁,𝑝

𝑉𝐿𝐿,𝑠
 𝑛𝑡 [

1 −1 0
0 1 −1

−1 0 1
] 

−1

3𝑛𝑡

[
 
 
 
 
 
 

1

𝑍𝑡𝑎
0 0

−1

𝑍𝑡𝑎

1

𝑍𝑡𝑏
0

0
−1

𝑍𝑡𝑏
0
]
 
 
 
 
 
 

  
1

𝑛𝑡
[
1 0 0
0 0 −1
0 0 0

] 

 

 

3. NEW NETWORK ADMITTANCE MATRIX OF 

DISTRIBUTION NETWORKS 

 

Figure 9 presents a one-line diagram of a balanced three-

phase distribution system. The network consists of four buses. 

The voltage magnitude Vn, phase angle δn, active and reactive 

power Pn, Qn are the common quantities linked with every bus. 

 

 
 

Figure 9. One line diagram of a balanced three phase 

distribution feeder 
 

By applying KCL at each node and considering the general 

formula illustrated in (2), we obtain:  

At node 1 (Where 0 denotes the ground): 

 

𝐼1 = (𝐶10𝑉1) + (𝐶12𝑉2 + 𝐷12𝐼12) (20) 

 

At node 2: 

 

0 = (𝐶21𝑉1 + 𝐷21𝐼21) + (𝐶23𝑉3 + 𝐷23𝐼23) (21) 

 

At node 3: 

 

0 = (𝐶32𝑉2 + 𝐷32𝐼32) + (𝐶34𝑉4 + 𝐷34𝐼34) (22) 

 

At node 4: 

 

−𝐼4 = (𝐶43𝑉3 + 𝐷43𝐼43) (23) 
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where, the subscripts “n” & “m” of the terms (Cnm, Dnm, and 

Inm) denote the branch n-m. the subscript “0” denotes the 

ground. Since the buses 2 and 3 are tie buses, their current 

injections are zero. Bus 4 is a load bus and therefore it was 

assigned with a negative value.  

The currents Inm can be obtained from the general equation 

illustrated in (2) as: 

 

𝐼𝑛𝑚 =
𝑉𝑛 − 𝐴𝑛𝑚𝑉𝑚

𝐵𝑛𝑚

 (24) 

 

By substituting (24) into (20), (21),  (22) and (23), we obtain 

 

𝐼1 = (𝐶10 + 𝐷12𝐵12
−1)𝑉1 + (𝐶12 − 𝐷12𝐵12

−1𝐴12)𝑉2 (25) 

 

0 = (𝐶21 − 𝐷21𝐵21
−1𝐴21)𝑉1

+ (𝐷21𝐵21
−1 + 𝐷23𝐵23

−1)𝑉2

+ (𝐶23 − 𝐷23𝐵23
−1𝐴23)𝑉3 

(26) 

 

0 = (𝐶32 − 𝐷32𝐵32
−1𝐴32)𝑉2

+ (𝐷32𝐵32
−1 + 𝐷34𝐵34

−1)𝑉3

+ (𝐶34 − 𝐷34𝐵34
−1𝐴34)𝑉4 

(27) 

 

−𝐼4 = (𝐶43 − 𝐷43𝐵43
−1𝐴43)𝑉3 + 𝐷43𝐵43

−1𝑉4 (28) 

 

or 

 

𝐼1 = 𝑌11𝑉1 + 𝑌13𝑉2 + 0𝑉3 + 0𝑉4 (29) 

 

0 = 𝑌21𝑉1 + 𝑌22𝑉2 + 𝑌23𝑉3 + 0𝑉4 (30) 

 

0 = 0𝑉1 + 𝑌32𝑉2 + 𝑌33𝑉3 + 𝑌34𝑉4 (31) 

 

−𝐼4 = 0𝑉1 + 0𝑉2 + 𝑌43𝑉3 + 𝑌44𝑉4 (32) 

 

By comparing (29)-(32) with (25)-(28), we obtain: 

 

𝑌11 = 𝐶10 + 𝐷12𝐵12
−1 (33.a) 

 

𝑌22 = 𝐷21𝐵21
−1 + 𝐷23𝐵23

−1 (33.b) 

 

𝑌33 = 𝐷32𝐵32
−1 + 𝐷34𝐵34

−1 (33.c) 

 

𝑌44 = 𝐷43𝐵43
−1 (33.d) 

 

𝑌12 = 𝑌21 = 𝐶12 − 𝐷12𝐵12
−1𝐴12 (34.a) 

 

𝑌23 = 𝑌32 = 𝐶23 − 𝐷23𝐵23
−1𝐴23 (34.b) 

 

𝑌34 = 𝑌43 = 𝐶34 − 𝐷34𝐵34
−1𝐴34 (34.c) 

 

𝑌24 = 𝑌42 = 𝑌13 = 𝑌31 = 𝑌14 = 𝑌41 = 0 (35) 

 

From (33)-(35), we can conclude a general formula for the 

elements of system impedance matrix. The diagonal elements 

can be obtained as: 

 

𝑌𝑛𝑛 = 𝐶𝑛0 + ∑ 𝐷𝑛𝑚𝐵𝑛𝑚
−1

𝑁

𝑚=1

 (36) 

 

The non-diagonal elements can be obtained as: 

𝑌𝑛𝑚 = 𝑌𝑚𝑛 = 𝐶𝑛𝑚 − 𝐷𝑛𝑚𝐵𝑛𝑚
−1𝐴𝑛𝑚 (37) 

 

If there is no connection between the any two buses, then: 

 

𝑌𝑛𝑚 = 0 (38) 

 

Thus, in general form, the nodal current equations can be 

written as: 

 

[
 
 
 
 
 
𝐼1.
.
𝐼𝑖.
.

𝐼𝑁]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑌11 . .
. . .
. . .

 
𝑌1𝑖 .
. .
. .

. 𝑌1𝑁

. .

. . 
𝑌𝑖1 . .
. . ..

𝑌𝑁1

.

.
.
.

 

𝑌𝑖𝑖 .
. ..

𝑌𝑁𝑖

.

.

. 𝑌𝑖𝑁

. .

.

.

.
𝑌𝑁𝑁]

 
 
 
 
 
 

[
 
 
 
 
 
𝑉1.
.
𝑉𝑖.
.

𝑉𝑁]
 
 
 
 
 

 (39) 

 

Similarly, for unbalanced three phase distribution networks, 

The diagonal, non-diagonal elements, and the nodal current 

equation can be obtained as: 

 

𝑌𝑛𝑛
𝑎𝑏𝑐 = 𝐶𝑛0 + ∑ 𝐷𝑛𝑚𝐵𝑛𝑚

−1

𝑥

𝑚=1

 (40) 

 

𝑌𝑛𝑚
𝑎𝑏𝑐 = 𝑌𝑚𝑛 = 𝐶𝑛𝑚 − 𝐷𝑛𝑚𝐵𝑛𝑚

−1𝐴𝑛𝑚 (41) 

 

[
 
 
 
 
 
𝐼1
𝑎𝑏𝑐

.

.
𝐼𝑖
𝑎𝑏𝑐

.

.
𝐼𝑁
𝑎𝑏𝑐]

 
 
 
 
 

=

[
 
 
 
 
 
 
𝑌11

𝑎𝑏𝑐 . .
. . .
. . .

 
𝑌1𝑖

𝑎𝑏𝑐 .
. .
. .

. 𝑌1𝑁
𝑎𝑏𝑐

. .

. . 
𝑌𝑖1

𝑎𝑏𝑐 . .
. . ..

𝑌𝑁1
𝑎𝑏𝑐

.

.
.
.

 

𝑌𝑖𝑖
𝑎𝑏𝑐 .
. ..

𝑌𝑁𝑖
𝑎𝑏𝑐

.

.

. 𝑌𝑖𝑁
𝑎𝑏𝑐

. .

.

.

.
𝑌𝑁𝑁

𝑎𝑏𝑐]
 
 
 
 
 
 

[
 
 
 
 
 
𝑉1

𝑎𝑏𝑐

.

.
𝑉𝑖

𝑎𝑏𝑐

.

.
𝑉𝑁

𝑎𝑏𝑐]
 
 
 
 
 

 (42) 

 

where, 𝑉𝑖
𝑎𝑏𝑐 and 𝐼𝑖

𝑎𝑏𝑐 are vectors of the three phase voltages 

and current, respectively, of node i. 

The new admittance matrix can be utilized Newton-

Raphson power flow for accurate results.  

 

 

4. SIMULATION RESULTS 

 

To validate the proposed approach, the new admittance 

matrix is used for power flow analysis via Newton-Raphson 

power flow. The new admittance matrix considers the exact 

model of networks (i.e. series impedance, shunt admittances, 

ant transformer turn ratio).  

 

 
 

Figure 10. The standard IEEE 37 bus network 
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The standard IEEE 37-bus network shown in Figure 10 was 

chosen as an unbalanced test network. The power flow and the 

new admittance matrix algorithms were implemented in 

MATLAB software. Without loss of generality, only voltage 

magnitudes are considered for check the accuracy of the ne 

admittance matrix. Two cases are considered for the analysis 

as shown in the next subsections. 

 

4.1 At no distributed generation 

 

 
 

Figure 11. Voltage profile obtained from power flow results 

using the new admittance matrix at no distributed generation  

 

Table 2. The percent errors in the voltages at no distributed 

generation (×10-3) 

 
Bus Phase a Phase b Phase c 

799 0.00 0.00 0.00 

701 0.00 0.00 0.00 

702 0.14 0.23 0.34 

703 0.76 0.51 0.71 

727 0.25 0.49 0.77 

744 0.22 0.32 0.69 

728 0.15 0.14 1.12 

729 0.49 0.57 1.02 

730 0.11 0.55 0.34 

709 0.36 0.65 0.60 

708 1.05 1.14 0.66 

732 1.20 1.25 1.68 

733 0.95 0.56 0.78 

734 0.85 0.28 0.85 

710 1.80 0.48 1.81 

735 1.60 0.48 0.80 

736 1.68 1.24 0.91 

737 1.19 0.72 0.22 

738 1.66 1.08 0.55 

711 2.00 0.94 1.08 

740 0.46 0.61 0.89 

741 1.51 1.69 1.02 

731 1.90 2.03 1.93 

775 1.28 0.80 0.98 

705 0.16 0.12 0.23 

712 0.37 0.58 0.43 

742 0.24 0.03 0.16 

713 0.12 0.04 0.68 

704 0.99 0.44 0.27 

714 0.97 0.59 0.36 

718 0.36 0.74 0.82 

720 1.04 0.84 1.00 

706 0.67 0.82 0.37 

725 0.61 0.12 0.49 

707 0.45 0.35 0.86 

722 1.66 1.23 1.58 

724 1.92 1.80 2.00 

 

By performing the power flow on the test system and by 

considering the new admittance matrix, the three phase 

voltages are obtained. Figure 11 shows the three phase voltage 

profiles. It is clear that the voltage at slack bus equals 1 at the 

three phases. The results also show that the variation in the 

voltage from one bus to another bus is directly related to the 

physical connection between the nodes. The results of 

Newton-Raphson power flow that consider only the series 

impedances are also obtained. The percentage errors in the 

three phase voltages of network buses are presented in Table 

2. All the relative errors are in the order of 10-3-10-2, which 

demonstrate the importance of including the shunt admittances 

in the analysis for accurate results. Indeed, the exact models of 

electric power components reflect the charging currents that 

can be supplied to the network. 

 

4.2 With distributed generation 

 

The effect on the three phase voltages in case of integrating 

distributed generation into the system is also studied in this 

work. Two distributed generation units are installed in the 

system. Their locations are at buses 724 and 722. The capacity 

of each unit is half its own load. By performing the power flow 

analysis considering the new admittance matrix, we obtain the 

three-phase voltage profiles shown in Figure 12. It is clear that 

the voltages are significantly improved at (and near) the buses 

724 and 722. The results are also compared with power flow 

results without including the shunt admittances. The percent 

errors in the three phase voltages of network buses in the 

presence of distributed generation are presented in Table 3. 

The errors are also in the order of 10-3-10-2. This is due to the 

fact that including the shunt admittances in the analysis can 

affect the charging current injected into the network, and 

hence the bus voltages.  

 

 
 

Figure 12. Voltage profile obtained from power flow results 

using the new admittance matrix in the presence of 

distributed generation 

 

Table 3. The percent errors in the voltages in the presence of 

distributed generation (×10-3) 

 
Bus Phase a Phase b Phase c 

799 0.00 0.00 0.00 

701 0.00 0.00 0.00 

702 0.15 0.25 0.4 

703 0.81 0.54 0.8 

727 0.27 0.52 0.86 

744 0.24 0.34 0.73 

728 0.14 0.13 1.18 

729 0.55 0.67 1.08 
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730 0.10 0.58 0.31 

709 0.41 0.69 0.55 

708 1.17 1.35 0.78 

732 1.34 1.48 1.87 

733 1.12 0.66 0.87 

734 0.95 0.32 0.78 

710 2.00 0.54 1.65 

735 1.78 0.54 0.95 

736 1.77 1.45 1.08 

737 1.26 0.84 0.26 

738 1.94 1.20 0.62 

711 2.23 1.05 1.21 

740 0.52 1.01 0.94 

741 1.68 1.54 1.08 

731 2.21 1.85 2.25 

775 1.49 0.94 1.15 

705 0.18 0.14 0.26 

712 0.42 0.65 0.48 

742 0.27 0.04 0.18 

713 0.11 0.05 0.62 

704 0.9 0.47 0.25 

714 0.89 0.63 0.42 

718 0.41 0.87 0.92 

720 1.16 0.98 1.12 

706 0.75 0.92 0.44 

725 0.72 0.14 0.45 

707 0.53 0.41 1 

722 1.94 1.37 1.67 

724 2.14 2.01 2.11 

 

By obtaining the average percent errors for each phase 

voltage, we find that the average errors in case of the presence 

of distributed generation is higher than the normal case. This 

also demonstrates the necessity to include such new 

admittance matrix in the analysis, instead of the conventional 

matrix. It is worth mentioning that the errors can be higher in 

case of practical systems or large scale-systems.  
 

 

5. CONCLUSION 

 

This work developed a new admittance matrix for 

distribution network for Newton-Raphson power flow 

purposes. The new admittance matrix considers the exact 

models for network components. Newton-Raphson power 

flow was performed on standard IEEE 37 bus network. The 

results obtained using the proposed method showed that the 

voltage profiles among network buses coincide with the 

physical connection between the nodes. The results also 

showed that the percent errors (in the voltages obtained using 

the new admittance matrix and the conventional ones) are in 

the order of 10-3-10-2. This demonstrates the importance of 

including such new admittance matrix in the analysis to obtain 

accurate results. Besides, the average errors in case of presence 

of distributed generation were greater than in case of passive 

networks. 
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