
Analytical and Numerical Simulations to Observe the Seawater Cooling Phenomena 

Through a Single Rectangular Plate-Fin 

Arief Goeritno  

Electrical Engineering Study Program, Universitas Ibn Khaldun Bogor; Jalan Sholeh Iskandar km.2, Kedungbadak, Tanah 

Sareal, Bogor 16164, West Java, Indonesia 

Corresponding Author Email: arief.goeritno@uika-bogor.ac.id

https://doi.org/10.18280/mmep.090120 ABSTRACT 

Received: 5 September 2021 

Accepted: 30 November 2021 

This paper describes several simulations of the seawater cooling phenomenon using a 

theoretical approach based on analytical method, numerical method of Euler’s and 

Runge-Kutta of fourth-order (RK4). These research objectives, i.e. to get the energy 

balance equations, to use the solution equations, and to do the simulation processes. The 

methods used, i.e. (i) do the completion of mathematical equations to get the constants 

for energy balance based on the ordinary differential equations (ODEs), (ii) do the made 

of solving equations for simulation, and (iii) does the simulation processes assisted by 

a spreadsheet application and result in analysis. The results are in the form of (a) the 

constants for energy balance, i.e. b1 is 0.9134∙10-3 sec-1 and b2 is 0.31∙10-6 sec-1, (b) 

produced three solving equations for the simulation, and (c) obtained curves of the 

temperature changes. The results of the simulation processes based on a spreadsheet 

application have obtained the results, that the time span 1800 seconds (30 minutes) can 

cause changes in the temperature of the fluid from 25℃ to (i) 4.823770℃ with a rate 

of change of 0.092%, if used of the analytical method; (ii) 4.819088℃ with a rate of 

change of 0.092%, if used the numerical method of Euler’s; and (iii) 5.600404℃ with 

a rate of change of 0.083%, if used the numerical method of RK4’s. The conclusion in 

this paper, that all the curves of changes in the temperature of the fluid are the non-

linear curves. Even though the final value of temperature is the highest, but the RK4 

more thoroughly. Suggestions for future work, that the simulation of its phenomena 

must be begun with making the mathematical models with the analytical and/or 

numerical method and implemented them into the computer application.  
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1. INTRODUCTION

The closed-form or analytic solutions to mathematical 

problems and applications known as actual or exact solutions 

[1-4]. All mathematical problems cannot be solved by exactly, 

because the completion processes are often quite complicated 

and take a lot of time, making its inefficient [5]. In this case, 

most of the forms are low-degree polynomials which are 

solved by the exact solution [6], in the other words, analytic 

solutions are not easy to find [7, 8]. The limitations of 

analytical solutions contained in these mathematical problems 

solved by numeric, although no exact value generated, at least 

the expectation values has been approached [7-13]. The nature 

of numerical solutions is only in the form of approximation 

solutions, but errors from approximation solutions can always 

calculated [2, 7, 14-17]. A condition where there are several 

conditions and methods used for obtaining a good settlement 

result, so if the problem has been a problem that has a high 

complexity, so even numerical solutions cannot with a good 

solution, then the simulation method must be used [2, 7, 16-

20]. 

The cooling process of solid or fluid or solid to fluid is a 

physical operation and there is a temperature difference and 

the heat has removed [20-23]. The state of the cooling process 

is a form of the phenomenon that has explained by the 

implementation of Newton's Law [11, 19, 20-25]. Newton’s 

Law described that the rate of change of the temperature of an 

object is proportional to the difference between its temperature 

and the ambient temperature of its surroundings [21-23]. The 

statement about an instantaneous rate of change of the 

temperature in Newton's Law will then be a function equation 

that tracks the complete record of the temperature over time 

[18, 24, 25]. It will see that when it translates this verbal 

statement into a differential equation. In the other sentence, the 

object’s temperature can be modeled to a differential equation. 

It is arriving at a differential equation as the solution to the 

cooling process phenomena [21-25]. 

The phenomena of a seawater cooling process are also with 

a temperature difference and a removing the heat. The 

temperature difference that is completely recorded over time 

and the heat that has removed from the process is a physical 

operation [11, 21-25] that has calculated using the ordinary 

differential equations (ODEs) [18, 20, 26-28]. The general 

form of ODEs is an equation with variables 𝑥 , 𝑦 , and 

derivatives of 𝑦 to 𝑥 that has written with the Eq. (1) [26-28] 

while the form of linear equations with order-n has written as 

the Eq. (2) [20, 26-28]. 

𝐹 (𝑥, 𝑦,
𝑑

𝑑𝑥
𝑦,
𝑑2

𝑑𝑥2
𝑦,⋯ ,

𝑑𝑛

𝑑𝑥𝑛
𝑦) = 0 (1) 
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𝑎0(𝑥)
𝑑𝑛

𝑑𝑥𝑛
𝑦 + 𝑎1(𝑥)

𝑑𝑛−1

𝑑𝑥𝑛−1
𝑦 + ⋯+ 𝑎𝑛−1(𝑥)

𝑑

𝑑𝑥
𝑦

+ 𝑎𝑛(𝑥)𝑦 = 𝑓(𝑥) 
(2) 

 

where, 𝑎0, 𝑎1, ⋯, 𝑎𝑛−1, 𝑎𝑛, and 𝑓 is a free variable function 

of 𝑥 and 𝑎0 ≠ 0. 

The form of ODEs such as Eq. (2) has solved by methods 

of analytical (exact) and/or numerical (approximation) [2, 7, 

11, 12, 14, 16, 18, 20, 29] used the numerical methods of 

Euler’s [2, 7, 12, 29], or its development, and/or Runge-Kutta 

fourth-order method (RK4) [2, 7, 11, 12, 16, 30]. Analytic 

solution based on the Eq. (2) [26-28] for the seawater cooling 

process [24, 25], if: 

#i) with 𝑛 = 1, has known as linear differential equations of 

order-1, as shown in the Eq. (3), i.e. 

 
𝑑

𝑑𝑥
𝑦 + 𝑃(𝑥)𝑦 = 𝑄(𝑥) (3) 

 

#ii) with 𝑄(𝑥) = 0 , hence 
𝑑

𝑑𝑥
𝑦 + 𝑃(𝑥)𝑦  the order of 

homogeneous linear differential equations of order-1 has used 

a general solution as shown in the Eq. (4) [26-28], i.e. 

 

𝑦 = 𝐾 ∙ 𝑒−∫𝑃(𝑥)𝑑𝑥 (4) 

 

#iii) with 𝑄(𝑥) ≠ 0, hence 
𝑑

𝑑𝑥
𝑦 + 𝑃(𝑥)𝑦 = 𝑄(𝑥) is known 

as a non-homogeneous differential equation with a general 

solution has shown in Eq. (5) [26-28], i.e. 

 

𝑦 = 𝐾 ∙ 𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑒−∫𝑃(𝑥)𝑑𝑥 ∙ ∫ 𝑒−∫𝑃(𝑥)𝑑𝑥 ∙ 𝑄(𝑥)

∙ 𝑑𝑥 

(5) 

 

where, 𝐾  as an integration constant according to boundary 

conditions. 

The numerical solution was been done through the simplest 

linear differential equations solving, i.e. solving with Euler's 

numerical based on the description of the Taylor series [2, 7, 

11, 12, 14, 16, 18, 20, 26-29]. The explanation of the Taylor 

series of a function in mathematics is a sum of terms in an 

infinite condition that is expressed in terms of the derivatives 

of a function at a single point. The general form of Taylor 

series as shown in Eq. (6). 

 

𝑓(𝑥𝑖+1) = 𝑓(𝑥𝑖) + 𝑓
′(𝑥𝑖)

∆𝑥

1!
+ 𝑓′′(𝑥𝑖) 

∆𝑥2

2!

+ 𝑓′′′(𝑥𝑖) 
∆𝑥3

3!
+ ⋯

+ +𝑓𝑛(𝑥𝑖) 
∆𝑥(𝑛)

𝑛!
+ 𝑅𝑛 

(6) 

 

Based on Eq. (6), it can be explained that if a function 𝑓(𝑥) 
is known at point 𝑥𝑖 and all derivatives of 𝑓 with respect to 𝑥 

are known at that point, then the Taylor series can be expressed 

the value of 𝑓 at point of 𝑥𝑖+1 which is located at a distance 

∆𝑥 from point of 𝑥𝑖. Another form of the Taylor series is Eq. 

(7). 

 

𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥) +
𝑑

𝑑𝑥
𝑦 ∙ ∆𝑥 +

𝑑2

𝑑𝑥2
𝑦 ∙ ∆𝑥2 +⋯ (7) 

 

where: 
𝑑

𝑑𝑥
𝑦 =

𝑓(𝑥+∆𝑥)+𝑓(𝑥)

∆𝑥
. 

Furthermore, Eq. (7) can be expressed by Eq. (8). 

 

𝑓(𝑥 + ∆𝑥) = ∑
𝑦(𝑛)(𝑥0)

𝑛!

∞

𝑛=0

∆𝑥𝑛 (8) 

 

Or written as Eq. (9). 

 

𝑓(𝑥) = ∑
𝑦(𝑛)(𝑥0)

𝑛!

∞

𝑛=0

(𝑥 − 𝑥0)
𝑛 (9) 

 

The results of ordinary differential equations models for 

observing the phenomena of temperature changes on a single 

rectangular plate-fin [20] refers to the book by Bird et al. [21]. 

The results are about the changes of temperature value on the 

copper bar and the fluid [20]. A shape of a single rectangular 

plate-fin with a thick much smaller than length (B << L) [21, 

20] as shown in Figure 1. 

 

 
 

Figure 1. A shape of a single rectangular plate-fin with a 

thick much smaller than length (B << L) 

 

Based on Figure 1 can be explained, that the mathematical 

equation on the copper bar has shown in Eq. (10) [20]. 

 

𝑇𝑐𝑢 =

cosh [√
ℎ𝑐𝑢 ∙ 𝐿

2

𝑘𝑐𝑢 ∙ 𝐵
∙ (1 −

𝑧
𝐿
)]

cosh√
ℎ𝑐𝑢 ∙ 𝐿

2

𝑘𝑐𝑢 ∙ 𝐵

∙ (𝑇𝑤 − 𝑇𝑓) + 𝑇𝑓 (10) 

 

The temperature value on the fluid has influenced by the 

time has shaped by the exponential curve with an initial 

temperature value of 20 degrees that based on the Eq. (10) as 

shown in Eq. (11) [20]. 

 
𝑑

𝑑𝑡
𝑇𝑓 = −

ℎ𝑐𝑢 ∙ 𝐴𝑐𝑢
𝑚𝑓 ∙ 𝐶𝑝𝑓

∙ (𝑇𝑐𝑢 − 𝑇𝑓) +
𝑈𝑤 ∙ 𝐴𝑤
𝑚𝑓 ∙ 𝐶𝑝𝑓

∙ (𝑇𝑓 − 𝑇𝑤) 

(11) 

 

Based on several descriptions about the current status that 

have been published, then the determined three research 

objectives. The first, to get the constants of energy balance 

through completion of mathematical equations based on ODEs. 

The second, to made the three solving equations for simulation 

in the form of analytic, numerical of Euler’s, and RK4 solution. 

The third, to do the simulation processes using the spreadsheet 

application and result in analysis after simulation has been 

done. 
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2. MATERIALS AND METHODS OF SIMULATION 

 

2.1 Materials of the simulation 

 

The equation of energy balance in the form of the single 

rectangular plate-fin (fin beams simple single rod) has done 

through the application of the calculation of cooling efficiency 

[21, 20]. Solving with other numerical methods, i.e. the 

solution using the RK4 method which is a development of the 

basic Euler’s method. The basic Euler’s method and the 

Euler’s method which has improved and modified, both of 

which are one-step methods, because they use initial 

information at a starting point, for example, (𝑡0, 𝑦0)  to get 

estimates on 𝑦(𝑡1) [2, 7, 11, 12, 16, 29, 30]. Furthermore, the 

estimated value of 𝑦(𝑡1) will use for estimation of 𝑦(𝑡2). And 

so on, where at each stage the value of 𝑡1 has advanced by ℎ1 

and the value of 𝑦 will change by 𝜕𝑦𝑖  [2, 7, 11, 12, 16, 29, 30]. 

Use mathematic, the process can be formulated by Eq. (12) 

[29, 30]. 

 

𝑦𝑖+1 = 𝑦𝑖 + 𝑒𝑠𝑡. [𝜕𝑦𝑖] (12) 

 

Based on Eq. (12), the value of 𝑒𝑠𝑡. [𝜕𝑦𝑖] has determined. 

The basic Euler’s method for determining value of 𝑒𝑠𝑡. [𝜕𝑦𝑖] 
as shown in the Eq. (13) [2, 7, 11, 12, 16, 29], i.e. 

 

𝜕𝑦𝑖 = ∫ 𝑦𝑖
′

𝑡𝑖+1

𝑡1

𝑑𝑡 ≈ 𝑦𝑖
′(𝑡𝑖+1 − 𝑡𝑖) (13) 

 

Eq. (12) has substituted into Eq. (13), so Eq. (14) has 

obtained [2, 7, 11, 12, 16, 29]. 

 

𝑦𝑖+1 = 𝑦𝑖 + (𝑡𝑖+1 − 𝑡𝑖)𝑦𝑖
′
= 𝑦𝑖 + ∆𝑡 ∙ 𝑦𝑖

′ (14) 

 

The basic Euler’s method has improved and modified 

through the application for estimation of 𝜕𝑦𝑖uses a value of 𝑦𝑖
′ 

is smaller than true value and vice versa, if the value of 𝜕𝑦𝑖  is 

estimated with a value of 𝑦𝑖+1
′ , then the value of 𝜕𝑦𝑖  has 

estimated will be greater. Euler's method improved through 𝑦𝑖
′ 

and 𝑦𝑖+1
′ for the determination the value of 𝜕𝑦𝑖  as shown in 

Eq. (15) [2, 7, 11, 12, 16, 29], i.e. 

 

𝜕𝑦𝑖 = 
ℎ

2
(𝑦𝑖

′ + 𝑦𝑖+1
′) (15) 

 

Eq. (15) described as shown in Eq. (16). 

 

𝜕𝑦𝑖 = 
ℎ

2
[𝑓(𝑡i, 𝑦𝑖) + 𝑓(𝑡𝑖+1, 𝑦𝑖+1)] (16) 

 

Based on Eq. (16), the value of 𝜕𝑦𝑖  cannot calculated, 

because the value of 𝑦𝑖+1 unknown. The revised and modified 

application of the basic Euler method requires the value of 

𝑦𝑖+1  to calculated first using the basic Euler’s method 

according to Eq. (14), so that Eq. (17) obtained [2, 7, 11, 12, 

16, 29]. 

 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
{𝑓(𝑡i, 𝑦𝑖)

+ 𝑓[𝑡𝑖+1, 𝑦𝑖+1 + ℎ ∙ 𝑓(𝑡i, 𝑦𝑖)]} 
(17) 

 

Based on Eq. (17) shown, that the improved and modified 

Euler’s method is more accurate than the basic Euler’s method. 

The Runge-Kutta method uses the average weight approach 

to determine the value of 𝜕𝑦𝑖  with the aim that the acquisition 

of 𝜕𝑦𝑖 value with an accuracy approach that can be achieved 

through the Taylor series [2, 7, 11, 12, 16, 30]. The value of 

𝜕𝑦𝑖 calculated by Eq. (18). 

 

𝜕𝑦𝑖 = [𝑎1(𝑘1)𝑖 + 𝑎2(𝑘2)𝑖 +⋯+ 𝑎𝑟(𝑘𝑟)𝑖] ∙ ℎ (18) 

 

where: 

𝑎1, 𝑎2, ⋯ , 𝑎𝑟 are constants 

𝑘 is a function of 𝑓(𝑡, 𝑦)given in the form as Eq. (19). 

 

(𝑘1)𝑖 = 𝑓(𝑡i, 𝑦𝑖) (𝑘2)𝑖 = 𝑓(𝑡𝑖 + 𝑝1ℎ, 𝑦𝑖 +

𝑞1,1𝑘1ℎ) 

⋮ 

(𝑘𝑟)𝑖 = 𝑓 (
𝑡𝑖 + 𝑝𝑟−1ℎ, 𝑦𝑖 + 𝑞𝑟−1,1𝑘1ℎ + 𝑞𝑟−1,2𝑘2ℎ

+⋯+ 𝑞𝑟−1,𝑟−12𝑘𝑟−1ℎ
) 

(19) 

 

The 𝑟  denotes the level of the Runge-Kutta method. For 

𝑟 =  1, the RK method called the RK1 method. The RK2 

method obtained from 𝑟 =  2, as well as the RK4 method 

obtained from 𝑟 =  4. 

Using the RK2 method, it is necessary to determine the 

values 𝑎1, 𝑎2, 𝑝1, and 𝑞1,1 according to Eqns. (18) and (19), 

then the value of 𝑦𝑖+1 given by Eq. (20) [2, 7, 11, 12, 16, 29]. 

 

𝑦𝑖+1 = 𝑦𝑖 + 𝑎1𝑘1ℎ + 𝑎2𝑘2ℎ (20) 

 

Eq. (20) described as shown in Eq. (21). 

 

𝑦𝑖+1 = 𝑦𝑖 + 𝑎1𝑓(𝑡𝑖, 𝑦𝑖)ℎ
+ 𝑎2𝑓(𝑡𝑖 + 𝑝𝑖ℎ, 𝑦𝑖 + 𝑞1−1𝑘1ℎ)ℎ 

(21) 

 

The third term on the right side of Eq. (21), which is 

𝑓(𝑡𝑖 + 𝑝𝑖ℎ, 𝑦𝑖 + 𝑞1−1𝑘1ℎ) can expressed in the Taylor series 

so that it obtained like Eq. (22) [2, 7, 11, 12, 16, 30]. 

 

𝑓(𝑡𝑖 + 𝑝𝑖ℎ, 𝑦𝑖 + 𝑞1−1𝑘1ℎ)

=  𝑓(𝑡𝑖 , 𝑦𝑖) + 𝑝𝑖ℎ
𝜕

𝜕𝑡
𝑓

+ 𝑞1,1𝑘1ℎ
𝜕

𝜕𝑡
𝑓 + 0(ℎ2) 

(22) 

 

Eq. (22) substituted into Eq. (21) with stages, i.e.  

 

𝑦𝑖+1 = 𝑦𝑖 + 𝑎1𝑓(𝑡𝑖, 𝑦𝑖)

+ 𝑎2 [𝑓(𝑡𝑖, 𝑦𝑖) + 𝑝𝑖ℎ
𝜕

𝜕𝑡
𝑓

+ 𝑞1,1𝑘1ℎ
𝜕

𝜕𝑡
𝑓 + 0(ℎ2)] ℎ 

 

 

𝑦𝑖+1 = 𝑦𝑖 + 𝑎1𝑓(𝑡𝑖 , 𝑦𝑖)ℎ + 𝑎2𝑓(𝑡𝑖 , 𝑦𝑖)ℎ

+ 𝑎2 (𝑝𝑖ℎ
𝜕

𝜕𝑡
𝑓) ℎ

+ 𝑎2 (𝑞1,1𝑘1ℎ
𝜕

𝜕𝑡
𝑓) ℎ

+ 𝑎2(0(ℎ
2))ℎ 

 

 

Eq. (23) is obtained. 

Referring to the equation 
𝜕

𝜕𝑡
𝑓 =

𝜕

𝜕𝑡
𝑓(𝑡, 𝑦) and 

𝜕

𝜕𝑦
𝑓 =

𝜕

𝜕𝑦
𝑓(𝑡, 𝑦) compared to Eq. (23), the value of 𝑦𝑖+1  from the 

Taylor series method obtained as Eq. (24) [2, 7, 11, 12, 16, 30]. 
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𝑦𝑖+1 = 𝑦𝑖 + [𝑎1𝑓(𝑡𝑖 , 𝑦𝑖) + 𝑎2𝑓(𝑡𝑖 , 𝑦𝑖)]ℎ

+ [𝑎2𝑝1
𝜕

𝜕𝑡
𝑓

+ 𝑎2𝑞1,1𝑓(𝑡𝑖 , 𝑦𝑖)
𝜕

𝜕𝑡
𝑓] ℎ2

+ 𝑎20(ℎ
3) 

(23) 

 

𝑦𝑖+1 = 𝑦𝑖 + ℎ
𝜕

𝜕𝑡
𝑦|
𝑖
+
1

2
ℎ2ℎ

𝜕2

𝜕𝑡2
𝑦|
𝑖

+ 0(ℎ3) (24) 

 

where: 

 
𝜕

𝜕𝑡
𝑦|
𝑖
= 𝑓(𝑡𝑖, 𝑦𝑖) (25) 

 

𝜕2

𝜕𝑡2
𝑦|
𝑖

= 𝑓2(𝑡𝑖, 𝑦𝑖) =
𝜕

𝜕𝑡
𝑓 +

𝜕

𝜕𝑡
𝑓 +

𝜕

𝜕𝑡
𝑦 (26) 

 

The substitution of Eqns. (25) and (26) to Eq. (24) obtained 

as Eq. (27). 

 

𝑦𝑖+1 = 𝑦𝑖 + 𝑓(𝑡𝑖 , 𝑦𝑖)ℎ + (
𝜕

𝜕𝑡
𝑓 +

𝜕

𝜕𝑡
𝑓 +

𝜕

𝜕𝑡
𝑦)
ℎ2

2
+ 0(ℎ3) 

(27) 

 

Comparison between Eq. (23) and Eq. (27), the values are 

obtained as Eq. (28). 

 

𝑎1 + 𝑎2 = 1; 𝑎2 ∙ 𝑝1 = 0.5; and 𝑎2 ∙ 𝑞1,1 = 0.5 (28) 

 

For four unknown variables from the three equations, one 

variable must be assumed [2, 7, 11, 12, 16, 30]. For 𝑎2  it 

assumed to be 0.5, then other constants obtained 𝑎1 = 0.5 and 

𝑝1  = 𝑞1,1  = 1. This method known as the Heun’s method 

(RK2). The constants that have obtained, substituted for Eq. 

(27), then the equation for the solution using the RK4 method 

obtained as Eq. (29) [2, 7, 11, 12, 16, 30]. 

 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
𝑓(𝑡𝑖 , 𝑦𝑖) +

ℎ

2
𝑓[𝑡𝑖 + ℎ, 𝑦𝑖 + ℎ𝑓(𝑡𝑖 , 𝑦𝑖)] (29) 

 

2.2 Methods of the simulation 

 

In this simulation, we assume a cooling chamber and a 

rectangular fin-shaped copper rod connected to the copper 

plate covering the cooling chamber. Cross section of the 

cooling container for simulation as shown in Figure 2. 

 

 
 

Figure 2. Cross section of the cooling container for 

simulation 

The assumption values have explained in the following 

descriptions. 

#a) A rectangular box of seawater with the dimensions: 

#a1) length, 𝑙𝑠𝑝𝑎𝑐𝑒= 15 cm = 0.15 m; 

#a2) width, 𝑤𝑠𝑝𝑎𝑐𝑒= 15 cm = 0.15 m; 

#a3) height, ℎ𝑠𝑝𝑎𝑐𝑒= 20 cm = 0.2 m; and  

#a4) cooling container volume, 𝑣𝑜𝑙𝑠𝑝𝑎𝑐𝑒= (0.15∙0.15∙0.2) 

m3 = 0.0045 m3. 

#b) The cover of the box is maintained at a temperature of 

0 0C and in the center of the cover is given a rectangular copper 

rod, 5 cm ∙ 5 cm and a length of 10 cm. 

#c) The initial temperature of the seawater is at 25℃. 

#d) A heat insulator is made of cork with a thickness of 5 

cm. 

#e) Additional information: 

#e1) Density of copper, 𝜌𝑐𝑢= 8.9 x 103 [kg/m3]; 

#e2) Density of cork (for wall), 𝜌𝑤= 160 [kg/m3]; 

#e3) Density of seawater, 𝜌𝑓= 1.00 x 103 [kg/m3]; 

#e4) Heat capacity of copper, 𝐶𝜌,𝑐𝑢= 0.3831 [kJ/kg.K]; 

#e5) Heat capacity of cork (for walls), 𝐶𝜌,𝑤= 0.35 [kJ/kg.K]; 

#e6) Heat capacity of water (fluid), 𝐶𝜌,𝑓= 4.2 [kJ/kg.K]; 

#e7) Heat loss coefficient (assumed), 𝑈𝑤= 4.8 [watts/m2. ℃] 

= 0.01758 [watts/m2K]; 

#e8) Heat coefficient of water (fluid), ℎ𝑓 = 1.0 

[watts/m2. ℃]; 

#e9) Initial Condition (IC): 𝑡 = 0; 𝑇𝑐𝑢 = 0 0C; and (fluid 

temperature) 𝑇𝑓 = 25℃; 

#e10) Boundary Condition (BC): 𝑡 ≥ 0; (air temperature), 

𝑇𝑎 = constant = 28℃; and (wall temperature), 𝑇𝑤 = constant = 

25℃. 

An assumption is also complemented, that no additional 

energy loss in the study. 

The steps in the simulation are: (a) making assumptions 

about the length, width, and height of the cooling room made 

of cork; (b) provision of preliminary conditions and limits; (c) 

implementing the stages of solving energy balance and 

obtaining mathematical equations for simulation (using 

analytical and numerical methods of Euler’s and RK4); and (d) 

implementation of simulations assisted by a spreadsheet 

application of the equations obtained, both using the analytical 

and numerical methods of Euler’s and RK4. 

 

 

3. RESULTS AND DISCUSSIONS 

 

This chapter explains the objectives of the simulation that 

includes the completion of mathematical equations to get the 

constants for energy balance, solving equations for simulation, 

and simulation processes assisted by a spreadsheet application 

and result in analysis. 

 

3.1 The constants for energy balance 

 

The solution to the energy balance based on Eq. (11) 

obtained Eq. (30). 

 
𝑑

𝑑𝑡
𝑇𝑓 = −𝑏1 ∙ (𝑇𝑐𝑢 − 𝑇𝑓) + 𝑏2 ∙ (𝑇𝑓 − 𝑇𝑤) (30) 

 

where: 𝑏1 =  
ℎ𝑐𝑢∙𝐴𝑐𝑢

𝑚𝑓∙𝐶𝑝𝑓

 and 𝑏2 =
𝑈𝑤∙𝐴𝑤

𝑚𝑓∙𝐶𝑝𝑓

. 

 

Further solution to Eq. (30) obtained Eq. (31). 
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𝑑

𝑑𝑡
𝑇𝑓 = −𝑏1 ∙ 𝑇𝑐𝑢 + 𝑏1 ∙ 𝑇𝑓 + 𝑏2 ∙ 𝑇𝑓 − 𝑏2 ∙ 𝑇𝑤 (31) 

 

Eq. (31) simplified to Eq. (32). 

 
𝑑

𝑑𝑡
𝑇𝑓 = (𝑏1 +  𝑏2)  ∙ 𝑇𝑓 − 𝑏1 ∙ 𝑇𝑐𝑢 − 𝑏2 ∙ 𝑇𝑤 (32) 

 

Another form of Eq. (32) is Eq. (33). 

 
𝑑

𝑑𝑡
𝑇𝑓 − (𝑏1 +  𝑏2)  ∙ 𝑇𝑓 = −𝑏1 ∙ 𝑇𝑐𝑢 − 𝑏2 ∙ 𝑇𝑤 (33) 

 

The form of Eq. (33) identical to the form of Eq. (3), so that: 

 

# 
𝑑

𝑑𝑡
𝑇𝑓 = 

𝑑

𝑑𝑥
𝑦, 

 

# −(𝑏1 +  𝑏2)  ∙ 𝑇𝑓 =  𝑃(𝑥)𝑦, and 

 

# −𝑏1 ∙ 𝑇𝑐𝑢 − 𝑏2 ∙ 𝑇𝑤 = 𝑄(𝑥). 
 

Based on the value of 𝑄(𝑥) ≠ 0, the analytical solution to 

Eq. (32) must be in the form of Eq. (5), so that a general 

solution obtained such as Eq. (34). 

 

𝑦 = 𝐾 ∙ 𝑒∫(𝑏1 + 𝑏2)𝑑𝑡 + 𝑒∫(𝑏1 + 𝑏2)𝑑𝑡 ∙ ∫ 𝑒∫(𝑏1 + 𝑏2)𝑑𝑡

∙ (−𝑏1 ∙ 𝑇𝑐𝑢 − 𝑏2 ∙ 𝑇𝑤) ∙ 𝑑𝑡 
(34) 

 

Further solution to Eq. (34) is obtained Eq. (35). 

 

𝑇𝑓(𝑡) = 𝐾 ∙  𝑒
(𝑏1 + 𝑏2)∙𝑡 + 𝑒(𝑏1 + 𝑏2)∙𝑡  

∙  
(−𝑏1 ∙ 𝑇𝑐𝑢 − 𝑏2 ∙ 𝑇𝑤)

(−𝑏1 −  𝑏2)
 

∙ 𝑒(𝑏1 + 𝑏2)∙𝑡 

(35) 

 

Simplifying Eq. (35) obtained Eq. (36). 

 

𝑇𝑓(𝑡) = 𝐾 ∙ 𝑒
(𝑏1 + 𝑏2)∙𝑡 − 

(−𝑏1 ∙ 𝑇𝑐𝑢 − 𝑏2 ∙ 𝑇𝑤)

(𝑏1 + 𝑏2)
 (36) 

 

Using Eq. (32) and 
𝑑

𝑑𝑡
𝑇𝑓 =

𝑇𝑓(𝑖+1)− 𝑇𝑓

Δ𝑡
, then it obtained Eq. 

(37). 

 
𝑇𝑓(𝑖+1) − 𝑇𝑓

Δ𝑡
= (𝑏1 + 𝑏2) ∙ 𝑇𝑓 − 𝑏1 ∙ 𝑇𝑐𝑢 − 𝑏2 ∙ 𝑇𝑤 (37) 

 

Further simplification of Eq. (37) obtained Eq. (38). 

 

𝑇𝑓(𝑖+1) = 𝑇𝑓 + [(𝑏1 + 𝑏2) ∙ 𝑇𝑓 − 𝑏1 ∙ 𝑇𝑐𝑢 − 𝑏2 ∙ 𝑇𝑤]

∙ Δ𝑡 
(38) 

 

The solution using the numerical method of RK4 based on 

Euler's numerical method, so that Eqns. (38) and (29) used to 

obtain solving equation, such as Eq. (39) through some stages 

and detailed derivation process in the appendix. 

 

𝑇𝑓(𝑖+1) = 𝑇𝑓 +
4

6
{[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]

2

∙ ∆𝑡} 
(39) 

 

In achieving many stages, three basic forms of equations for 

the solution have generated, i.e. #i) the analytical method uses 

Eq. (36), #ii) the Euler's numerical uses Eq. (38), and #iii) the 

RK4 numerical uses Eq. (39). Based on the three equations, i.e. 

Eqns. (36), (38), and (39), it is necessary to determine the 

values of values 𝑏1 and 𝑏2. The calculation to get the values of 

𝑏1 and 𝑏2 have done through: 

(*) the fluid used is seawater, then: 

𝑚𝑓 = 𝜌𝑓 ∙ 𝑣𝑜𝑙𝑓 = 𝜌𝑓(𝑣𝑜𝑙𝑠𝑝𝑎𝑐𝑒 − 𝑣𝑜𝑙𝑐𝑢) [(kg/ ∙ m3]= 

4.35625 kg; 

𝐶𝑝,𝑓 = 1 [kJ/kg.K]; and 

𝑚𝑓 ∙ 𝐶𝑝,𝑓 = 4,35625 [kJ/K]; 

(**) fin simple block form is made of copper, then the value 

according to Adams and Rogers in 1973 [18] as like Eq. (40). 

 

ℎ𝑐𝑢 = −𝐶𝑝,𝑐𝑢 ∙ 𝑘𝑐𝑢 ∙ 𝜃
′(0) ∙

4

3
∙ 𝐿

3
4⁄

𝐿
⁄  (40) 

 

with: 

 value of 𝜃′(0) = 0.5046; 

 value of 𝐶𝑝,𝑐𝑢 = 0.3831= 0.3831 [kJ/kg.K]; 

 value of 𝑘𝑐𝑢= 386 [watts/m.K]; 

 length of copper rod, 𝐿 = 0.1 m; 

so that the value of ℎ𝑐𝑢 contained in Eq. (39) is: 

 

ℎ𝑐𝑢 = (-0.3831) ∙ 386 ∙ (-0.5046)∙  
4

3
∙ 0.1

3
4⁄

0.1
⁄   

 

ℎ𝑐𝑢 = (-0.3831) ∙ 386 ∙ (-0.5046) ∙ 1.333 ∙ 1.1778  

 

ℎ𝑐𝑢 = 176.851 [watt/m2.K]. 

 

Besides, it is also obtained: 

 

𝐴𝑐𝑢 = (0.05 ∙ 0.05) + 4 (0.05 ∙ 0.1) = 0.0225 m2;  

 

𝑏1 =  
ℎ𝑐𝑢∙𝐴𝑐𝑢

𝑚𝑓∙𝐶𝑝𝑓

= (176.851 ∙ 0.0225)/4.35625 = 3.9792 

[watts/K]/4.35625 [kJ/K] = 0.9134 [watts/kJ] = 0.9134 ∙10-3 

sec-1. 

 

𝑈𝑤= 0.01758 [watts/m2K];  

 

𝐴𝑤 = (0.15∙0.15)+4(0.15∙0.2)+[(0.15∙0.15)-

(0.05∙0.050)] = 0.7625 m2; 
 

 

𝑏2 =
𝑈𝑤∙𝐴𝑤

𝑚𝑓∙𝐶𝑝𝑓

= (0.017∙0.7625)/4.35625 = 0.01365 [watts/K]/ 

4.35625 [kJ/K] = 0.31∙10-6 s-1. 

 

3.2 The solving equations for simulation 

 

Based on the values of 𝑏1 = 0.9134∙10-3 sec-1 and 𝑏2 = 

0.31∙10-6 sec-1, a mathematical equation for the rate of change 

in fluid temperature with time obtained using the analytical 

and numerical methods of Euler’s and RK4. The use of 

analytical methods for obtaining mathematical equations 

based on Eq. (36) and substituting the values of 𝑏1 = 

0.9134∙10-3 sec-1 and 𝑏2 = 0.31∙10-6 s-1 with stages: 

 

𝑇𝑓(𝑡)

= 𝐾 ∙ 𝑒(−0.9134∙10
−3 + 0.31∙10−6)∙𝑡

− 
(0.9134 ∙ 10−3  ∙ 𝑇𝑐𝑢 − 0.31 ∙ 10

−6 ∙∙ 𝑇𝑤)

(−0.9134 ∙ 10−3 + 0.31 ∙ 10−6)
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𝑇𝑓(𝑡)

= 𝐾 ∙ 𝑒−0.91309∙10
−3∙𝑡

− 
(0.9134 ∙ 10−3  ∙ 𝑇𝑐𝑢 − 0.31 ∙ 10

−6 ∙∙ 𝑇𝑤)

−0.91309 ∙ 10−3
 

 

 

So that the Eq. (36) turns into Eq. (41). 

 

𝑇𝑓(𝑡) = 𝐾 ∙ 𝑒
−0.91309∙10−3∙𝑡 + 1.000339507 ∙ 𝑇𝑐𝑢
− 0.000339507 ∙ 𝑇𝑤 

(41) 

 

For the solution to Eq. (41) used IC and BC that have 

determined. Substituting IC and BC into Eq. (41) the value of 

𝐾 obtained is: 

 

25 = 𝐾 ∙ 𝑒−0.91309∙10
−3∙0 + 1.000339507 ∙ 0

− 0.000339507 ∙ 0 

25 = 𝐾 ∙ 𝑒0 + 0 − 0 >>> 25 = 𝐾 ∙ 1 >>> 25 = 𝐾 

𝐾 = 25. 

 

Substituting the value of 𝐾 = 25 into Eq. (41), the equation 

for the cooling rate obtained using an analytical method such 

as Eq. (42). 

 

𝑇𝑓(𝑡) = 25 ∙ 𝑒
−0.91309∙10−3∙𝑡 + 1.000339507 ∙ 𝑇𝑐𝑢

− 0.000339507 ∙ 𝑇𝑤 
(42) 

 

The final equation form for the analytical solution given by 

Eq. (42), that change in temperature value (in seawater fluid) 

as a function of the time influenced by the initial fluid 

temperature, the copper rod temperature, and the wall 

temperature. 

The use of the numerical methods of Euler’s for obtaining 

mathematical equations based on Eq. (38), substituting the 

values of 𝑏1 = 0.9134∙10-3 sec-1 and 𝑏2 = 0.31∙10-6 sec-1, and 

used IC and BC that have determined, so that the Eq. (38) turns 

into Eq. (43), i.e. from, 
 

𝑇𝑓(𝑖+1) = 𝑇𝑓 + (−0.91309 ∙ 10
−3 ∙ 𝑇𝑓 + 0.9134

∙ 10−3 ∙ 𝑇𝑐𝑢 − 0.31 ∙ 10
−6 ∙ 𝑇𝑤)

∙ Δ𝑡 

 

 

become: 

 

𝑇𝑓(𝑖+1)

= 𝑇𝑓 − (
0.0009134 ∙ 𝑇𝑓 + 0.0009134 ∙ 𝑇𝑐𝑢

−0.00000031 ∙ 𝑇𝑤
) Δ𝑡 

(43) 

 

The final equation form for the numerical methods of 

Euler’s solution given by Eq. (43), that change in temperature 

value (in seawater fluid) as a function influenced by the 

previous temperature of fluid, minus the sum or difference in 

temperature of the fluid, copper rod, and wall, and multiplied 

by the change in time. 

The use of the numerical methods of RK4’s for obtaining 

mathematical equations based on Eq. (39), substituting the 

values of 𝑏1 = 0.9134∙10-3 sec-1 and 𝑏2 = 0.31∙10-6 sec-1, and 

used IC and BC that have determined, so that the Eq. (39) turns 

into Eq. (44), i.e. from, 

 

𝑇𝑓(𝑖+1) = 𝑇𝑓 +
4

6
{[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]

2

∙ ∆𝑡} 
 

become: 

 

𝑇𝑓(𝑖+1)

= 𝑇𝑓 +
4

6

∙ (
−0.9134 ∙ 10−3 ∙ 𝑇𝑐𝑢 − 0.91309 ∙ 10

−3 ∙ 𝑇𝑓

−0.31 ∙ 10−6 ∙ 𝑇𝑤
)

2

∙ ∆𝑡 

(44) 

 

The final equation form for the numerical methods of RK4’s 

solution given by Eq. (44), that change in temperature value 

(in seawater fluid) as a function influenced by the previous 

temperature of fluid, plus four-sixths of the square of the 

difference between the temperatures of the copper rod, fluid, 

and wall, and multiplied by the change in time. 

 

3.3 The simulation processes assisted by spreadsheet 

application and result in analysis 

 

Using Eqns. (42), (43), and (44) and assisted by a 

spreadsheet application, the curve of temperature change in the 

fluid obtained. Changes in temperature on the fluid as shown 

in Figure 3. 

 

 

 

 
 

Figure 3. Changes in temperature on the fluid 
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Based on Figure 3 can explained, that the results of the 

simulation processes based on a spreadsheet application have 

obtained the results, that the time span 1800 seconds (30 

minutes) can cause changes in the temperature of the fluid 

from 25℃ to (i) 4.823770℃ with a rate of change of 0.092%, 

if used of the analytical method; (ii) 4.819088℃ with a rate of 

change of 0.092%, if used the numerical method of Euler’s; 

and (iii) 5.600404℃ with a rate of change of 0.083%, if used 

the numerical method of RK4’s. All the curves of changes in 

the temperature of the fluid are the non-linear curves. Even 

though the final value of temperature is the highest, but the 

RK4 more thoroughly. 

 

 

4. CONCLUSIONS 

 

Based on results and discussions can concluded according 

to the research objectives. The completion of mathematical 

equations to get the constants for energy balance, i.e. the 

values of constant 𝑏1 is 0.9134∙10-3 sec-1 and constant b2 is 

0.31∙10-6 sec-1. Constants b1 and b2 are important factors for 

making the solving equations for simulation related to the 

analytical method, the numerical method of Euler’s, and the 

numerical method of RK4’s. All non-linear curves that 

obtained based on an exponential mathematical equation. 

Predicting the final temperature value for a time span of 1800 

seconds, using the RK4 numerical method is the best because 

the error value is the smallest, even though the temperature 

value is the highest. Suggestions for future work, for all the 

simulation of its phenomena and/or the others that use the 

ODE’s begin with making the mathematical models and 

implemented them into the computer application with the 

analytical method or numerical methods of Euler’s and/or RK-

4 has chosen. 
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NOMENCLATURE 

 

ODEs ordinary differential equations 

RK Runge-Kutta 

𝑥  independent variable; 𝑥-axis 

𝑦  dependent variable; 𝑦-axis 

𝐹, P, Q, 𝑓  functions 

K an integration constant according to 

boundary conditions 

𝑑 differentiating with one variable 

𝜕 differentiating with two or more variables 

𝑒 exponential number = 2.71828… 

∫ integrating 

𝑓(𝑥𝑖)  function at point of 𝑥𝑖 
𝑓(𝑥𝑖+1)  function at point of 𝑥𝑖+1 

𝑓′, 𝑓′′, ⋯ 𝑓(𝑛)  the first, second, ..., nth derivative of the 

function 

Δ𝑥  distance between 𝑥𝑖 and 𝑥𝑖+1 

𝑅𝑛  truncation error 

∑ summing 

Δ  the segment of a 

𝑛  constant 

!  factorial operator 

𝐵  fin thickness 

𝐿  fin lengthiness 

𝑊  fin widths 

𝑧  𝑧-axis 

𝑞  heat flux at the surface 

ℎ  heat transfer coefficient 

𝑇  absolute temperature 

𝑘  thermal conductivity, W.m-1. K-1 

𝐶𝑝 specific heat, J. kg-1. K-1 

𝑎1, 𝑎2, ⋯ , 𝑎𝑟  contants 

𝑘1, 𝑘2,⋯ , 𝑘𝑟  contants 

𝑡0  initial time for information at a starting 

point 

𝑦0  initial dependent variable for information 

at a starting point 

𝑡1  estimate time for information 

𝑦1  estimate dependent variable for 

information 

𝑦𝑡+1  next-order in time for estimate dependent 

variable 

𝑡  time 

𝑈  over-all heat transfer coefficient 

𝐴  area, m2 

IC initial conditions 

BC boundary conditions 

𝑣𝑜𝑙𝑓  volume of fluid  

𝑣𝑜𝑙𝑠𝑝𝑎𝑐𝑒   volume of cooling space 

𝑣𝑜𝑙𝑐𝑢   volume of copper bar 

 

Greek symbols 

 

Θ  dimensionless temperature 

𝜁  dimensionless distance 

𝛮  dimensionless heat transfer coefficient 

 

Superscripts 

 

1 , 2 , 𝑛 , 𝑛 −
1 

sequence to  

(𝑛)  n-th derivative 

 

Subscripts 

 

1, 2, 𝑛 sequence to  

𝑚𝑒𝑡.  metal 

𝑐𝑢  copper 

𝑎  air 

𝑓  fluid 

𝑤   wall 

𝑧  in 𝑧-axis 

 

 

APPENDIX 

 

The detailed of derivation process to get Eq. (39). 

 

𝑇𝑓(𝑖+1) = 𝑇𝑓 +
1

6

(

 
 
 

{
 
 

 
 

[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]

+4 [
−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤

2
]

+[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤] }
 
 

 
 

[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]∆𝑡 )
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𝑇𝑓(𝑖+1) = 𝑇𝑓 +
1

6

(

 
 {

2[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤] +

4 [
−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤

2
]
}

[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]∆𝑡 )

 
 

 

𝑇𝑓(𝑖+1) = 𝑇𝑓 +
1

6
(
{
2[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤] +

2[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]
}

[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]∆𝑡

) 

𝑇𝑓(𝑖+1) = 𝑇𝑓 +
1

6
{4[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]

∙ [−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]∆𝑡} 

𝑇𝑓(𝑖+1) = 𝑇𝑓 +
4

6
{[−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]

∙ [−𝑏1𝑇𝑐𝑢 − (𝑏1 − 𝑏2)𝑇𝑓 − 𝑏2𝑇𝑤]∆𝑡} 
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