
Flood Peak Equations Based on Partial Duration Series (PDS) Approach of Rainfall Data 

Selection in Lack-Data Agricultural Catchment 

I. Gede Tunas*, Yassir Arafat, Rudi Herman

Water Resources Engineering and Management Group, Department of Civil Engineering, Universitas Tadulako, Jalan 

Soekarno-Hatta Km.9 Palu, Central Sulawesi 94117, Indonesia  

Corresponding Author Email: tunasw@yahoo.com

https://doi.org/10.18280/mmep.090125 ABSTRACT 

Received: 22 September 2021 

Accepted: 13 January 2022 

The present work aims to develop a flood peak equation because of data limitations due 

to the impact of damage to the streamflow measuring instrument as a result of the 2015 

floods at an agricultural catchment in Sulawesi, Indonesia. Hydrologic data for the 

period 2002-2014 obtained from two hydrologic stations and one hydrometric station 

were applied to establish the research variables. Three variables were determined using 

the frequency analysis approach: design rainfall generated from partial duration series 

(RDP) and annual maximum series (RDA) of daily rainfall data, and design streamflow 

predicted from annual maximum series of daily streamflow data (QDA). Four types of 

frequency distributions are tested to determine those variables, consisting of Normal, 

Log Normal, Log Pearson Type III and Gumbel distributions. The third distribution was 

selected for determining all the variables with the largest difference in 2 and  values 

based on Chi-squared and Kolmogorov–Smirnov tests respectively. The design 

streamflow equation that represents the peak of the flood was formulated by substituting 

the QDA with an equation generated from the regression analysis of those three 

variables. A streamflow peak equation was successfully developed as a function of RDP 

in the form of a power equation with excellent performance measured using Mean 

Absolute Error (MAE) and Correlation Coefficient (r). This equation could be applied 

in all of the catchments by accommodating the area's weighting factor of the sub-

catchments. 
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1. INTRODUCTION

One of the most important parts in hydrologic analysis 

related to water resource management in a catchment is data, 

particularly rainfall and streamflow data [1-3]. In general, both 

types of data can be obtained from various types of rainfall and 

streamflow measurement instruments installed in almost all 

areas of the globe for multipurpose. This instrument is 

basically installed in certain locations that are considered 

important for its management such as in agricultural, forest 

and settlement areas [4, 5]. However, the availability of the 

gauges is not spread evenly in various regions with several 

considerations such as the relatively expensive management 

costs and the difficulty of accessing the location if the gauges 

must be located in remote areas such as forests that are located 

very far from settlements [5, 6]. 

Technological developments have also been able to solve 

this problem, for example the use of rainfall radar or automatic 

rainfall and streamflow gauges to gather real time data [7]. The 

advantages of this instrument are not only the rapidity of data 

access but also the ability to record series data with very short 

time intervals such as minutes, hours and daily [8]. This type 

of data (rainfall) is spatially distributed so that it can present 

data with a wide area coverage. However, this type of 

instrument is installed in very limited quantities due to the very 

high investment, operation and maintenance costs. 

Another concern is that the range of data is very limited and 

hence does not meet statistical requirements for parametric 

data analysis [9]. This limitation can be caused by a short data 

recording period and damage to instruments that cannot record 

data. Data with non-continuous series also cannot be used for 

analysis due to statistical reasons that must be fulfilled, 

especially those related to the frequency and time of series 

analysis. Actually, the limitations of the data can be 

supplemented by data from other instrument sources or 

performing predictions to complete the missing data. This 

method can be applied if the reference instrument also 

provides sufficient range of data. 

One important product in the analysis of both types of data 

is streamflow peak analysis (design flood). This parameter is 

generally used as a reference for designing various types of 

hydraulic structures such as weir, dam, hydropower 

construction, flood dyke and river channel normalization [10]. 

The best approach to determine design flood is based on 

observational streamflow data with a long series using the 

frequency analysis approach. Some researchers such as 

Ntegeka et al. [11] recommend the use of daily discharge data 

with a range of more than 10 years. If this data is not available 

in a catchment, daily rainfall data can be used instead [11-13]. 

The hybrid frequency analysis and rainfall-runoff 

transformation approaches can be adopted to predict flood 

peaks using this data [14]. 

Various methods have been developed to formulate flood 

peaks either based on statistical analysis, hydrograph units, or 
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rational [15]. Streamflow peak estimates with limited data are 

generally more realistically analyzed by statistical procedures 

such as frequency analysis using both annual maximum series 

(AMS) and partial duration series (PDS) approaches [16-18]. 

The PDS approach is an alternative for formulating flood peak, 

specifically for catchments with very minimal data. Data series 

can be extended by assigning specific methods to rainfall or 

streamflow data [5]. This initial threshold reference is the 

smallest maximum data from the selected data. Threshold 

values can be decreased if the number of data selected is not 

representative and then carried out in the same way until the 

data reaches the expected number [5, 19]. 

Studies related to the analysis of hydrological data using the 

PDS approach have been conducted by a number of 

researchers. Initial publications have indicated that the PDS 

method has been compared with the AMS method by 

evaluating the estimator of the efficiency of the event's return 

period [20]. PDS estimators are more efficient on negative 

shape parameters while AMS estimators are more efficient on 

positive shape parameters. In more detailed observations of the 

results of the study, the estimator, and shape parameters may 

change at different data ranges. It is implied that both methods 

can be applied to a data observation site depending on the 

estimator value of the recurrence interval. Similar studies also 

confirm the performance of AMS and PDS based on the 

statistical distribution method applied [21]. Both approaches 

have shown the same opportunities for acceptance and 

rejection depending on their distribution. Zin et al. also 

investigated similar topics based on observable rainfall data in 

Peninsular Malaysia with a long range [22, 23]. In this case the 

PDS method shows better performance than the AMS method 

using the Generalized Pareto (GP) Distribution. The suitability 

of this type of distribution has also been affirmed in the 

research work carried out by Guru et al. [10, 24]. However, in 

other types of statistical distributions the AMS method often 

shows good performance in the other statistical distributions 

tested [21, 23], as also confirmed by Karim et al. [25, 26]. 

Further studies related to the application of PDS have also 

been conducted. Another approach as an alternative solution 

to frequency analysis for establishing design flood and design 

rainfall has also been evaluated. Generalized linear regression 

statistical approach was used to formulate the relationship 

between PDS data and RDP [27]. The least squares regression 

approach was previously adopted to predict the RDP from the 

short-duration daily rainfall data [28]. The statistical approach 

is considered to provide excellent performance by referring to 

the results of frequency analysis predictions. Guru and Jha 

[29] applied the adaptive neuro-fuzzy inference system 

(ANFIS) approach to predict QDA. The prediction results 

from GP were used for testing and training the model. The 

results of the work indicate that the PDS approach can also 

demonstrate excellent qualifications for extreme data analysis. 

However, none of the aforementioned works confirms that 

they have developed a peak streamflow equation using the 

PDS approach and its relationship with AMS and QDA. All 

studies were concerned with data analysis in the same cluster. 

Design rainfall was predicted from rainfall data and likewise 

the design flood was estimated from streamflow data as 

performed by Kamal et al. [30, 31]. The relationship between 

design flood and design rainfall is statistically correlated very 

well. Therefore, the flood peak equation generated from the 

RDP will be very helpful in catchment management with 

limited data, especially if there is a disturbance in the rainfall 

or streamflow gauging station. 

In connection with this issue, this research was conducted 

at one of the agricultural catchments in Indonesia with limited 

hydrological data. This research emphasizes the use of short 

data series with the aim of formulating flood peak equations 

based on PDS approach to be applied to flood mitigation 

programs in the area. Large floods in the years 2015-2019 in 

this catchment, not only caused damage to the hydrometric 

measuring instrument but also the impact of losses on various 

sectors, especially damage to agricultural land as the main 

commodity of the economy for the resident community. The 

greatest flood categorized as a flash flood on 28-29 April 2019, 

as a result of landslides triggered by the 7.5 magnitude Palu 

Earthquake in 2018 even caused damage to all residential areas 

and various supporting facilities [32]. Therefore, this research 

becomes important as a solution to provide information on the 

magnitude of flooding using limited data with a rainfall-

streamflow equation.  

The fundamental finding of this research is an equation of 

peak discharge as a function of maximum rainfall data with 

very good performance. This very simple equation may 

overcome the limitations of discharge data and rainfall data to 

predict flood peaks in such catchment. In advanced stages and 

wider applications, it can be used for disaster mitigation-based 

catchment management programs in the study area and the 

surrounding area [33]. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Data and site description 

 

The baseline data for this study were collected from two 

rainfall and one streamflow gauging stations in the Bangga 

Catchment, one of the agricultural sub-basins in Sulawesi, 

Indonesia (Figure 1). Those two hydrologic instruments 

identified as Bangga A and Bangga B are located at GPS 

coordinates of 119°53'50"E and 01°16'55"S and 119°55'23"E 

and 01°14'25"S respectively. Meanwhile, the hydrometric 

instrument is geographically situated approximately 30 meters 

upstream of the Bangga Weir with coordinates of 

119°55'10.31"E and 01°15'6.79"S. Data from the gauging 

stations for the period 2002-2014 were grouped into two types 

of data, daily rainfall and daily streamflow data. 

The Bangga catchment is a part of the Palu River Basin with 

an area of around 68.19 km2 [34]. The catchment function is 

very important as it is the primary source of water supply and 

irrigation system in the middle and lower part of the catchment. 

Almost all residents who live in this catchment work as 

wetland and dry land farmers. The main commodities resulting 

from this agricultural practice are seasonal crops such as rice, 

corn, soybean, peanuts, and various types of vegetables, and 

long-lived crops such as cacao, coconut and hazelnut. 

This catchment is a flood-prone area. Damage to the 

hydrometric instrument and flooding of residential and 

agricultural areas is one of the major impacts of flooding in the 

catchment. The flash flood in 2019 was the largest flood event 

ever to occur as a secondary impact of the 2018 Palu 

earthquake [32]. Debris flow triggered by the accumulation of 

heavy rainfall and landslides in the upper area, not only 

damages agricultural and residential areas but also causes a 

number of fatalities. Illustration of water disasters in this 

catchment requires emergency management at present and 

future program implementation. 
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Figure 1. Site of hydrologic and hydrometric gauges in the study area around the catchment as the main data source 

 

2.2 Methods 

 

The initial step of this study was carried out by selecting the 

average maximum daily rainfall data from the two rainfall 

gauges, as performed by Ahmad et al. [18]. A similar 

procedure was also applied to daily streamflow data. Two 

stages of rainfall data selection were applied. The first stage is 

selecting daily maximum rainfall data using the AMS 

approach and lastly is determining rainfall data based on peak 

over threshold (PDS). The selection of maximum daily 

streamflow data was also executed using the AMS method. 

RDP, RDA and QDA were determined from selection of 

each data using frequency analysis. Four statistical distribution 

methods consisting of Normal, Normal Log, Pearson Log 

Type III and Gumbel were applied to perform the analysis. The 

general equation of the four distributions is given with the 

following formula [35]: 

 

𝑥𝑡 = �̅� + 𝐾𝑡𝜎 (1) 

 

where, 𝑥𝑡= the magnitude of the T-year rainfall/streamflow 

event of such specified probability, �̅� and 𝜎 are the average 

and standard deviation of 𝑥, 𝐾𝑡 = frequency factor depending 

on the function of probability distribution and the recurrence 

interval of event. For Log Normal and Log Pearson Type III 

Distributions, 𝑥𝑡 , 𝜇 and 𝜎  are expressed in the logarithmic 

transformation. 𝐾𝑡 is obtained from the frequency factor table 

of each statistical distribution. However, several formulas 

have been developed to calculate 𝐾𝑡. 

 

2.2.1 Normal distribution 

𝐾𝑡 is formulated as: 

 

𝐾𝑡 = 𝑍 (2) 

 

𝑍 is the variate of standard normal distribution with unit 

standard deviation and a mean of zero. 𝑍 is equivalent to the 

following equation [36, 37]: 

𝑍 = 𝑊 − 𝑊′ (3a) 

 

𝑊′ =
2.515517 + 0.802853𝑊 + 0.010328𝑊2 

1 + 1.432788𝑊 + 0.189269𝑊2 + 0.0013083
 (3b) 

 

𝑊 = {
√𝑙𝑛

1

𝑝
, 0 < 𝑝 ≤ 0.5

1 − 𝑝, 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠 𝑝

 (4) 

 

where, 𝑝= probability exceedence which is equal to 1/𝑇. 

 

2.2.2 Log normal distribution 

𝐾𝑡 can be calculated similar to 𝑍 using Eq. (3) provided that 

all parameters are converted into a logarithmic transformation. 

However, if the transformation is not performed, 𝐾𝑡  can be 

predicted using the classical frequency factor: 

 

𝐾𝑡 = (
1

𝐶𝑣

) 〈𝑒𝑥𝑝 [ 𝑍{𝑙𝑛 (1 + 𝐶𝑣
2)}

1
2

−0.5{𝑙𝑛(1 + 𝐶𝑣
2)}

] − 1〉 (5) 

 

where, 𝐶𝑣  is coefficient of variance (
𝜎

𝜇
)  of the normal 

distribution data. Using this 𝐾𝑡, then 𝑥𝑡 computation is carried 

out as in Normal distribution. 

 

2.2.3 Log Pearson Type III distribution 

There are some equations for calculating 𝐾𝑡 in this 

distribution such as Wilson-Hilferty approximation [38]. The 

equation was recommended for skewness coefficient (𝐶𝑠)  2 

and 0.01 ≤ 𝑝 ≤ 0.99. 

 

𝐾𝑡 =

[
 
 
 
 𝑍 + (𝑍2 − 1)

𝐶𝑠

6
+

1

3
(𝑍3 − 6𝑍) (

𝐶𝑠

6
)

2

−(𝑍2 − 1) (
𝐶𝑠

6
)

3

+ 𝑍 (
𝐶𝑠

6
)

4

−
1

3
(
𝐶𝑠

6
)

5

]
 
 
 
 

 (6) 
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Figure 2. Characteristics of average rainfall at study sites in 2002-2014. (a). Monthly rainfall series, (b). Annual rainfall, 

minimum and maximum average of monthly rainfall respectively (January and August), and (c). Average monthly rainfall, 

annual minimum (2004) and annual maximum (2007) 

 

2.2.4 Gumbell distribution 

Onen and Bagatur [39] proposed an equation to estimate 𝐾𝑡 

by substituting the reduced mean variable using regression 

analysis in original equation of Gumbel. 

 

𝐾𝑡 =
− 𝑙𝑛 {𝑙𝑛 (

𝑇
𝑇 − 1

)} − 0.5775𝑛
(−

0.66
𝑛

)

1.2811𝑛
(−

1.268
𝑛

)
 (7) 

 

where, 𝑛= the number of data.  

The analysis in this work was performed using frequency 

analysis package named as AProb_4.1. The software was 

developed by Istiarto (2014) in the University of Gadjah Mada, 

Indonesia [40]. The package also involves other statistical tests 

such as the test of the significance of the distribution variable 

by evaluating the goodness of fit of the observed and predicted 

𝑥𝑡. The two approaches used to assess it were Chi-square (2) 

and Kolmogorov–Smirnov (K-S) tests.  

The final step of the study was to perform the relationship 

between RDP and RDA, RDA and QDA and RDP and QDA. 

The relationships of those variables were performed using 

linear regression analysis. Another more practical method is to 

use the trendline analytics tool in the spreadsheet program, and 

then the relationship between RDP and RDA as the final target 

of this work is solved analytically based on the RDP-RDA 

equation and RDA-QDA equations. 

 

 

3. RESULT AND DISCUSSION 

 

3.1 Rainfall and streamflow characteristics 

 

The 13-year series of rainfall data at the study location 

indicates that the annual trend of average monthly rainfall 

intensity fluctuates annually with a range from 9.1 mm to 

272.7 mm (Figure 2a). While the largest average annual 

rainfall was in 2007 and the lowest was in 2004 (Figure 2b). 

Accordingly, the minimum average monthly rainfall occurs in 

January and the maximum in August (Figure 2c). Rainfall 

patterns in this region are relatively similar to rainfall patterns 

in the tropics in general, although the rainfall peak shifts 

especially in the wet months. However, the annual rainfall in 

the range 722.2 mm and 1575.7 is lower than the average 

annual rainfall in the main catchment (Palu watershed) which 

reaches more than 2000 mm/year [32]. 

The rainfall pattern in the Bangga Catchment is also 

considered to represent the rainfall pattern in the Palu 

Watershed especially in the middle and downstream areas 

where the average annual rainfall for this region is below 1500 

mm [32]. The rainfall characteristics in this area are influenced 

not only by the climatic conditions in the Palu Valley but also 

by the climate of the mountainous areas on the west and east 

sides of the Palu River. The great air pressure in the Palu 

Valley, originating from the movement of air from the Gulf of 

Palu and high solar radiation throughout the year also impacts 

the intensity and distribution of rainfall. These climatic factors 

also cause the daily evapotranspiration rate to be higher than 

the average daily rainfall. As a result of this condition, 

vegetation in the mountainous areas on the west and east sides 

of the Palu watershed has largely been degraded into open land. 

Streamflow characteristics recorded at the gauging station 

in the period 2002-2014 also fluctuated throughout the year in 

proportion to the intensity of the channel. In the rainy season, 

streamflow increases and vice versa in the dry season, 

decreasing with relatively low variability. The indicator of the 

low variability of the streamflow is measured from the 

standard deviation of 2.5 m3/s. Within this time span, the 

streamflow fluctuates from 1.5 m3/s to 13.2 m3/s with an 

average of 4.6 m3/s. The relationship between monthly rainfall 

and average monthly discharge can be illustrated graphically 
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as in Figure 3. It is seen as a linear relationship that is classified 

as a moderate correlation in the range of 0.60 to 0.70 [41, 42]. 

Several factors can influence the relationship between rainfall 

and streamflow correlations that are not so strong, especially 

the pattern of rainfall distribution and rainfall movement [5]. 

High intensity rain that is not evenly distributed in the entire 

catchment causes the accumulation of streamflow, which is 

not optimal, therefore, the correlation is low. In addition, high-

intensity, fast moving rainfall also causes the same impact. 

The best solution to this problem is the availability of rainfall 

gauges which are installed evenly with high density in all 

catchment areas [43, 44]. 

 

 
 

Figure 3. A correlation graph of total monthly rainfall and 

average monthly streamflow in 2002-2014 

3.2 Rainfall and streamflow data selection 

 

The selection of rainfall and streamflow data as mentioned 

earlier is based on two approaches: AMS and ADS. The first 

approach is valid for both types of data, while the second 

approach is only applied to streamflow data. The results of 

data selection using both methods are presented in Table 1. 

The reference for applying the AMS method is to select the 

maximum data for each year from the daily data. Using this 

method, a total of 13 rainfall and streamflow data have been 

selected respectively. The PDS approach is applied based on 

such threshold value. In the case of this study, threshold value 

is set at the smallest annual maximum of rainfall data. The 

number of selected data using this method is 74. 

The selected rainfall data range based on the two approaches 

is 28.3 mm to 87.8 mm with an average of 55.83 mm for AMS 

and 43.26 mm for ADS. The variability of the data selected by 

the AMS method was slightly higher than the PDS approach 

with standard deviations of 16.88 mm and 12.99 mm, 

respectively. Meanwhile, the average streamflow data selected 

by the AMS method is 15.96 m3 /s in the range of 5.88 m3 /s 

to 15.96 m3/s and a standard deviation of 5.88 m3/s. Detailed 

observations from the results of the data selection illustrate 

that the three types of data have almost the same variability 

with each coefficient of variation: 30.23% (Rainfall-AMS), 

29.81% (Rainfall-PDS) and 36.84 (Streamflow-AMS). The 

variability of the data shows that the level of uniformity of data 

is relatively high. Data uniformity is inversely proportional to 

data variability. However, the variability of the two data 

groups cannot be used as a reference to measure the correlation, 

except using covariance [45]. 

 

Table 1. Selected rainfall and flow data according to partial duration series and annual maximum series in the period 2002-2014 

 

Year 

Rainfall (mm) 
AMS Streamflow 

Peak (m3/s) 
AMS 

(mm) 

Partial Duration Series (PDS) with the Smallest Annual Maximum of 

Threshold 

Number of 

PDS Data 

2002 72.0 28.3 50.4 52.5 63.5 64.6 72.0      6 9.11 

2003 37.3 28.3 29.3 34.1 36.3 37.3       5 9.19 

2004 46.4 33.5 34.9 39.4 46.4        4 9.02 

2005 28.3 28.3           1 8.19 

2006 44.9 31.2 33.5 36.1 39.1 44.9       5 7.14 

2007 64.5 29.5 32.4 39.2 40.4 46.3 47.6 48.2 49.0 49.3 63.0 64.5 11 15.12 

2008 65.0 32.7 32.9 37.8 65.0        4 15.96 

2009 49.0 38.3 38.6 49.0         3 7.54 

2010 78.0 31.9 34.8 42.1 48.3 53.4 63.3 78.0     7 15.45 

2011 87.8 35.4 37.3 38.7 61.3 67.8 87.8      6 7.72 

2012 45.3 30.2 36.0 38.0 38.1 38.4 45.2 45.3     7 6.40 

2013 55.7 29.6 30.5 30.7 31.7 33.4 34.2 35.8 39.0 40.6 50.6 55.7 11 15.18 

2014 51.6 28.8 42.9 47.1 51.6        4 5.88 

 

3.3 Frequency analysis 

 

As previously conveyed, frequency analysis of selected 

rainfall and streamflow data was performed using four 

statistical distributions: Normal, Log Normal, Log Pearson 

Type III and Gumbel. The application of two types of variable 

significance tests on the four distribution methods shows that 

the only distribution rejected by both Chi-square and 

Kolmogorov-Smirnov tests is the Normal distribution. Some 

researchers such as Brotowiryatmo [5] and Estiningrum et al. 

[46] have proven that rainfall and streamflow events in 

Indonesia rarely follow the normal distribution. In general, 

extreme data covering all hydrological data are relatively very 

seldom suited to the normal distribution. However, some cases 

of rainfall and streamflow data may follow Normal 

distribution [5].  

Table 2 presents the results of testing the significance of 

variables on the four statistical distributions. Three 

distribution methods except Normal meet the statistical 

distribution test requirements with values of (2) and  less 

than the critical value. Log Pearson Type III was selected as 

the best distribution with the highest difference of (2) and . 

The significance of this distribution can also be illustrated by 

plotting position as shown in Figure 4 for the PDS rainfall data. 

The frequency of analysis of the three types of data results 

in a design magnitude with such recurrence intervals denoted 

as RDP, RDA and QDA as presented in Table 3. This 

recurrence interval is related to the event probability of the 

parameter representing the variable. In hydrology, this is 

directly associated with the costs and risks of an area 

Q = 0.0367R + 1.2907

R² = 0.69
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protection program from flood hazards [47]. The increase in 

recurrence interval is proportional to the risk reduction and the 

increase in the cost of the program [48]. These two factors 

become the basis for consideration in setting recurrence 

intervals so that a structure with higher reliability and lower 

cost will be obtained. 

 

 
 

Figure 4. A Log Pearson Type III probability plot of partial duration rainfall data for performing statistical distribution tests, 

generated using AProb_4.1 [40] 

 

Table 2. Statistical test on the four distribution methods of 74 selected rainfall data 

 

Statistical Distribution 

Statistical Test 

Chi-square Kolmogorov- Smirnov 

2
comp 2

crit Difference Remark max crit Difference Remark 

Normal 15.32 5.99 - Rejected 0.16 0.16 - Rejected 

Log Normal 5.87 5.99 0.13 Accepted 0.13 0.16 0.03 Accepted 

Log Pearson Type III 0.19 5.99 5.80 Accepted 0.08 0.16 0.07 Accepted 

Gumbel 3.16 3.84 0.68 Accepted 0.10 0.16 0.05 Accepted 

 

Table 3. Design rainfall and flow computed from PDS and AMS data using frequency analysis 

 

Parameters 
Recurrence Interval (year) 

1.1 2 5 10 20 50 100 1000 

RDP (mm) 30.12 40.37 51.58 59.72 68.07 79.78 89.29 126.23 

RDA (mm) 35.45 54.32 69.75 78.77 86.68 96.08 102.62 122.00 

QDA (m3/s) 7.05 9.82 12.97 15.31 17.76 21.27 24.17 35.81 

 

It can be observed in Table 3 that all RDP values are smaller 

than RDA values at the corresponding recurrence interval. 

This relates to the maximum amount of data selected. The 

rainfall data selected by the AMS and PDS methods indicate 

that the average PDS rainfall is almost equivalent to 75% of 

the average AMS rainfall. In other words, the average PDS 

rainfall is smaller than the average AMS rainfall. In Eq. (1), 

this mean value is the main factor in determining the RDP, 

RDA and QDA in addition to the standard deviations from the 

data. Accommodating a certain number of values below the 

maximum value will have an impact on the decrease in the 

average value. This has also been proven by many researchers 

that the determination of the peak over threshold in the PDS 

method affects the number of selected data and the average 

value and finally it produces an estimated RDP that is always 

lower than the RDA [20, 21, 23, 26, 49]. 

 

3.4 Peak flood formula 

 

The ultimate goal of this study is to formulate a streamflow 

equation based on selected PDS rainfall data. This equation is 

a representation of the flood peak equation with such a 

recurrence interval. Early indications of the relationship 

between these variables show different trends. The 

relationship between RDP and RDA is illustrated as a 

logarithmic function (Figure 5a), while the relationship 

between RDA−QDA and EDP−QDA are represented as 

exponential and power functions respectively (Figure 5b and 

Figure 5c). The three functions that represent the relationships 

between those variables are very high levels of strength with a 
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correlation coefficient close to 1. The trend of the relationship 

between these variables may change depending on the 

characteristics of the selected data. Another data is needed as 

a comparison to prove that various types of functions might be 

able to present the relation. 

 

 
 

Figure 5. Nonlinear relationships between selected data. (a). 

RDP vs. RDA (logarithmic function), (b). RDA vs. QDA 

(exponential function), and (c). RDP vs. QDA (power 

function) 

 

 
 

Figure 6. Logarithmic transformation of data to form linear 

relationships. (a). Logarithmic−Normal scales, (b). 

Normal−Logarithmic scale, and (c). 

Logarithmic−Logarithmic scales 

 

 
 

Figure 7. Performance representation of predicted design 

rainfall and flow. (a). Design rainfall computed using Eq. 11 

(RDA1) and frequency analysis (RDA2), and (b). Design 

flow computed using Eq. 16 (QDA1) and frequency analysis 

(QDA2) 

 

A very interesting thing to observe is that none of the 

relationships between variables shows a linear function. To 

make a statistical formulation based on linear regression, one 

or two of the variables must be converted into a logarithmic 

transformation. The results of the transformation are shown in 

Figure 6 in the form of Log−Normal scale, Normal−Log scale 

and Log−Log scale. 

Linear regression is performed to compile the formulas of 

each function using R software. The equation produced from 

this regression analysis is as follows: 

 

𝑅𝐷𝐴 = 60.5538 𝑙𝑛 𝑅𝐷𝑃  −  169.5743 (8) 

 

𝑙𝑛 𝑄𝐷𝐴 = 0.0087𝑅𝐷𝐴 +  1.2678 (9) 

 

0.8816 𝑙𝑛 𝑄𝐷𝐴 = 𝑙𝑛 𝑅𝐷𝑃 +  1.6839 (10) 

 

When using the add trendline tool in a spreadsheet program, 

the equation can be stated as: 

 

𝑅𝐷𝐴 = 60.5538 𝑙𝑛 𝑅𝐷𝑃 −  169.5743 (11) 

 

𝑄𝐷𝐴 = 3.5532 𝑒𝑥𝑝(0.0187𝑅𝐷𝐴) (12) 

 

𝑄𝐷𝐴 = 0.1481𝑅𝐷𝑃1.1343 (13) 

 

Now focus on Eq. (9) to formulate the final equation of 

QDA as a function of RDP. Simplification of Eq. (9) to Eq. 

(12) can be done analytically. Applying e to left and right side 

of Eq. (9) produces: 

 

𝑄𝐷𝐴 = 3.5532 exp(0.0187𝑅𝐷𝐴) (14) 

 

𝑄𝐷𝐴 = exp(0.0187𝑅𝐷𝐴) exp(1.2678) (15) 

 

𝑄𝐷𝐴 = 3.5532 exp(0.0187𝑅𝐷𝐴) (16) 

 

Eq. (16) is the same as Eq. (12). Similar analytic methods 

can also be applied to formulate the Eq. (11) and Eq. (13) from 

Eq. (8) and Eq. (10). To obtain the final formula between RDA 

and QDA, RDA in Eq. (16) is substituted by the RDA in Eq. 

(11) as follows: 

 

𝑄𝐷𝐴 = 3.5532 exp{0.0187(60.554 ln𝑅𝐷𝑃
− 169.5743)} 

(17) 

 

𝑄𝐷𝐴 = 3.5532 {
exp{1.1332 ln𝑅𝐷𝑃}

exp(3.1735)
} (18) 

 

𝑄𝐷𝐴 = 3.5532 {
exp(ln𝑅𝐷𝑃1.1332)

23.8905
} (19) 

 

𝑄𝐷𝐴 = 0.1487𝑅𝐷𝑃1.1332 (20) 

 

Table 4. Absolute error of predicted flow based on RDP data 

 

QDA1 (m3/s) QDA2 (m3/s) Absolute Error 

7.05 7.05 0.00064 

9.82 9.82 0.00419 

12.97 12.97 0.00135 

15.31 15.31 0.00122 

17.76 17.76 0.00109 

21.27 21.26 0.01127 

24.17 24.15 0.01758 

35.81 35.76 0.05404 

Mean Absolute Error (MAE) 0.01142 

Correlation coefficient (r) 0.9988 
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Eq. (20) is the final equation of the targeted formula. This 

formula shows very good performance with a very low 

average Mean Absolute Error (MAE) [50] and a very high 

correlation coefficient (Figure 7 and Table 4). Therefore, this 

equation can be applied to sub-catchments throughout the 

study area and beyond. 

 

 

4. CONCLUSION 

 

The limitations of hydrologic data especially rainfall and 

streamflow data have become a serious issue for researchers 

to perform an analysis in the field of water resource 

management. This data limitation relates to the unavailability 

of measuring instruments installed in an area or the inability 

of measurement instruments to present data of sufficient 

quantity and quality. A partial duration series (PDS) approach 

has been developed to overcome this problem to increase the 

number of data from short data series. This PDS approach has 

been adopted in this study for flood estimation in an 

agricultural catchment. 

This work successfully developed an equation expressing 

the relationship between design flood (QDA) generated from 

the annual maximum series (AMS) of daily streamflow data 

and design rainfall (RDP) predicted from PDS of daily rainfall 

data. QDA and RDA are the two main variables of the equation 

that are formulated using frequency analysis based on selected 

statistical distribution of Log Pearson Type III. The formula 

declared with the power equation shows very high 

performance with a very low Mean Absolute Error (MAE) and 

a very strong correlation coefficient (r). This equation is 

recommended for application in all outlets of the sub-

catchments in the entire catchment of the study area 
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NOMENCLATURE 

 

AMS annual maximum series 

Cv coefficient of variance 

PDS partial duration series 

RDA annual maximum series of rainfall 

RDP partial duration series of rainfall  

QDA annual maximum series of discharge 

Kt frequency factor 

p probability exceedance which is equal to 1/T 

xt the magnitude of the T-year 

rainfall/streamflow event of such specified 

probability, mm, m3. s-1 

Z the variate of standard normal distribution with 

unit standard deviation and a mean of zero 

 

Greek symbols 

 

 Kolmogorov–Smirnov tests parameter 

𝜎 standard deviation of 𝑥, 
�̅� the average of 𝑥, 
2 Chi-squared tests parameter 

 

Subscripts 

 

t Time, h 
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