

1. INTRODUCTION

The IoT envisions hundreds or thousands of end-devices
with sensing, actuating, processing and communicating.[1][2]
In the early 2000’s, Kevin Ashton was laying the groundwork
for what would become the Internet of Things (IoT) at MIT’s
AutoID lab. If all objects in daily life were equipped with
identifiers and wireless connectivity, these objects could be
communicate with each other and be managed by computers.
The Internet of Things will: [3]

(1) Connect both inanimate and living things: The types

of items range from gas turbines, automobiles to living

organisms such as plants, farm animals and people.

(2) Use sensors for data collection: In IoT, these sensors

will connect to each other and to systems that can

understand or present information from the sensor’s data

feeds.

(3) Change what types of item communicate over an IP

Network: This information can be shared in real-time or

collected and shared at defined intervals. [3]

2. THE MQTT PROTOCOL

MQTT or the Message Queuing Telemetry Transport
Protocol is a simple and lightweight messaging protocol. It’s
publish/subscribe mechanism is designed to be easy to
implement.[4] These characteristics make it ideal for use in
many situations, including constrained environments such as
for communication in Machine to Machine (M2M) and
Internet of Things (IoT) contexts where a small code footprint
is required and/or network bandwidth is at a premium [5]

The protocol runs over TCP/IP on the application layer in
the OSI layer along with other protocols like CoAP, HTTP
etc. in the 6LoWPAN stack.

Figure 1.
Its features include:

ENVIRONMENTAL AND EARTH SCIENCES

 RESEARCH JOURNAL

ISSN: 2369-5668 (Print), 2369-5676 (Online)
Vol. 4, No. 1, March 2017, pp. 23-28
DOI: 10.18280/eesrj.040105
Licensed under CC BY-NC 4.0

A publication of IIETA

http://www.iieta.org/Journals/EESRJ

Study and implementation of environment monitoring system based on MQTT

Sumit Pal1*, Sourav Ghosh2, Sarasij Bhattacharya3

*1Department of Information Technology, Indian Institute of Engineering Science and Technology, Howrah

2 Assistant Systems Engineer Trainee, Tata Consultancy Services, Kolkata
3 Programmer Analyst Trainee, Cognizant Technology Solutions, Kolkata

Email: sumitpal808@gmail.com

ABSTRACT

In the past few years, technology has developed a lot in making our lives simpler. With the evolution of
internet and mobile technology coupled with the parallel development of a variety of embedded systems,
the focus towards a smart world has gained momentum and has given us a new concept, the Internet of
Things. As a result, much of today’s technology is automated and the developers are developing systems
which gather data from various sensor systems which can be sent to any part of world through the Internet
and can be used for a vareity of purposes, including controlling of devices. In this paper, we have
attempted to study one such Internet protocol which makes such a communication possible, the MQTT
protocol. Using an Environmental monitoring system, we will determine the viability of such a protocol for
transmission of sensor data and then use the same data to control electronic devices. We also compare the
MQTT protocol with the traditional HTTP protocol and attempt to find out which protocol is the better
one.

Keywords: MQTT Protocol, Internet of Things, Mobile Technology, Embedded Systems, Communication.

23

• Use of the publish/subscribe message pattern which

provides one-to-many message distribution and

decoupling of applications.

• A messaging transport that is agnostic to the content of

the payload.

• Three qualities of service for message delivery:

(1) "At most once", where messages are delivered

according to the best efforts of the operating

environment. Message loss can occur.

(2) "At least once", where messages are assured to arrive

but duplicates can occur.

(3) "Exactly once", where message are assured to arrive

exactly once.

• A small transport overhead and protocol exchanges
minimized to reduce network traffic.

MQTT applications run on mobile devices, such as
smartphones and tablets. MQTT is also used for telemetry to
receive data from sensors, and to control them remotely. The
MQTT client library is small. The library acts like a mail box,
sending and receiving messages with other MQTT
applications that are connected to an MQTT server. Using
this mechanism, MQTT applications conserve battery life.

3. MQTT MESSAGE FORMAT

Before going into the depth of our experiment and
demonstrating how MQTT functions, there are a few
components that we should be aware of. As said before,
MQTT is a publish/subscribe protocol. It means that a user
publishes something and another user must subscribe to it
before receiving it. Thus, MQTT works on the exchange of
messages from one user to the other. The messages of MQTT
have a format. The format is as follows:

Table 1. MQTT message format

Bits

Byte 0 1 2 3 4 5 6 7

1 Message Type DUP QOS Level Retain

2 Remaining Length (1 to 4 Bytes)

3to n Optional: Variable Header Length

n+1 to
m

Optional: Variable Length Message Payload

While the header might be little bit complicated to

understand at the moment, we will soon explain it with
respect to a sensor network scenario. We will show you how
advantageous is MQTT especially when considering the
mobile environment. In our experiments, we have used an
open source microcontroller known as Arduino Uno. Open
source hardware is a type of hardware whose design is made
publicly available so that anyone can study, modify, distribute,
make, and sell the design or hardware based on that design [6]
We will be coupling with it an Ethernet shield and attach it
with a DHT22 temperature and humidity sensor to record the
temperature data. We will then use this data and then publish
the data on the internet. Then, we will switch an electronics
device with respect to that data we have received.

4. MORE DETAILS ABOUT PAPER TITLE AND

AUTHOR INFORMATION

4.1 Paper title

Study and Implementation of Environment Monitoring
System using MQTT

4.2 Author information

4.2.1 Name
Sumit Pal 1*
Sourav Ghosh 2
Sarasij Bhattacharya 3

4.2.2 Affiliation
Master of Technology Student in Information Technology,
Indian Institute of Engineering Science and Technology,
Howrah

Assistant Systems Engineer Trainee, Tata Consultancy
Services, Kolkata
Programmer Analyst Trainee, Cognizant Technology
Solutions, Kolkata

5. THE EXPERIMENT

5.1 Devices Required

(1) Arduino Uno Microcontroller: The primary
component of our project is the Arduino Uno micro
controller. The Uno is a microcontroller board based on the
ATmega328P. [8]
(2) Ethernet Shield: The second component is an

Ethernet shield. The Arduino Ethernet Shield connects your

Arduino to the internet in mere minutes.

(3) DHT22 temperature and humidity sensor: The
DHT22 is a relative cheap sensor for measuring temperature
and humidity.
(4) A Router or a direct Internet Connectivity: It is
required to send our sensor data to the internet. For our
purpose, we have used a router.
(5) Relay Module: is used for switching an electronics
device based on the temperature data that we have received
from the DHT22 temperature and humidity sensor.

Figure 1. Arduino connected to the internet

5.2 The setup and working

The Relay module used has 4 pins, a ground or GND, 2

input pins or IN1 AND IN2 and a VCC pin. The 2 input pins
are connected with the analog pins of Arduino marked A1 to
A5. Similarly, the DHT22 has 3 pins, a GND, a data pin and a
VCC pin. The data pin is connected to the digital pins of

24

Arduino marked 1 to 13. The ground and the VCC pins for all
the 3 devices is the breadboard that we have used.

Figure 2. The setup of the experiment

5.3 Implementing MQTT

Figure 3. The use of a Broker

The publish/subscribe pattern (pub/sub) is an alternative to
the traditional client-server model, where a client
communicates directly with an endpoint. However, Pub/Sub
decouples a client, who is sending a particular message
(called publisher) from another client (or more clients), who
is receiving the message (called subscriber). This means that
the publisher and subscriber don’t know about the existence
of one another. This is done by a broker.

Another responsibility of the broker is the authentication
and authorization of clients [9] There are two popular brokers
that are present and they are the HIVE broker and the
Mosquitto broker. For our experimental purposes, we have
used both the HIVE and the Mosquitto broker. Using the
HIVE broker, we have developed an android application that
would help us to switch from our mobile phones and using
Mosquitto, we have implemented in the desktop.

So at first, we have to publish our sensor data that we
receive from the DHT22 server and it goes to the interested
party who has subscribed to it. Now the question arises, how
can it be possible that the broker sends the correct data to the
correct party? For that, the broker has an interesting
mechanism known as message filtering. It can be done in
three ways:

(1) Subject-based filtering: The filtering is based on a
subject or topic, which is part of each message. The
receiving client subscribes on the topics it is interested in.
[8]
(2) Content-based filtering: Content-based filtering is as
the name already implies, when the broker filters the
message based on a specific content filter-language. [8]
(3) Type-based filtering: When using object-oriented
languages it is a common practice to filter based on the
type/class of the message (event) [8]
The MQTT connection itself is always between one client

and the broker, no client is connected to another client
directly. The connection is initiated through a client sending a
CONNECT message to the broker.

Figure 5. Connecting to MQTT Broker

Now, let’s look at the MQTT CONNECT command
message. A good-natured client will send a connect message
with the following content among other things:

(1) Client ID: The client identifier (short ClientId) is an
identifier of each MQTT client connecting to a MQTT
broker.

(2) Clean Session: The clean session flag indicates the
broker, whether the client wants to establish a persistent
session or not.

(3) Username/Password: MQTT allows to send a
username and password for authenticating the client and
also authorization.
Now we come to the part of publishing and subscribing the

data. The MQTT works on subscribe and publish mechanism
just like the HTTP works on the request and response
mechanism.

Publish: After a MQTT client is connected to a broker, it
can publish messages. MQTT has a topic-based filtering of
the messages on the broker, so each message must contain a
topic, which will be used by the broker to forward the
message to interested clients [8]

1. Topic Name: Is a UTF-8 string used by the broker to
filter messages for each connected client.

2. Quality of Service: The Quality of Service (QoS)
level is an agreement between sender and receiver of a
message regarding the guarantees of delivering a
message.

3. Payload: This is the actual content of the message.

4. Packet Identifier: The packet identifier is a unique
identifier between client and broker to identify a
message in a message flow.

5. DUP flag: The duplicate flag indicates, that this
message is a duplicate and is resent because the other
end didn’t acknowledge the original message.

Subscribe: Publishing messages doesn’t make sense if no
one ever receives the message, or, in other words, if there are
no clients subscribing to any topic.

Figure 6. The publish and subscribe mechanism

25

1. Packet Identifier: The packet identifier is a unique
identifier between client and broker to identify a
message in a message flow.

2. List of Subscriptions: A SUBSCRIBE message can
contain an arbitrary number of subscriptions for a
client. Each subscription is a pair of a topic topic and
QoS level. [7]

6. RESULTS

6.1 Using desktop and Mosquitto broker

Using the Mosquitto MQTT broker, we establish a server
in a Desktop computer. The install the broker will act as a
server using which we issue the Publish and Subscribe
commands. Just like in a web server, clients (Desktop MQTT
Client or Android MQTT app Client) will contact the server
with subscription requests and once the connection is
established, they will get the required data. One thing to be
noted is that, the communicating parties also need to have the
MQTT framework for the communication.

Publication can be done by the following command:
Mosquitto_pub –t ‘test/topic’ –m ‘helloWorld’

This is of course a very simple implementation of the
publish command. Inside the publish command, we can
specifically mention the hostname and also mention the QoS.
Let us consider the machine on which we have published the
data as PC1

Figure 7. The PUB command in Mosquitto Server in PC1

After the publication is done from PC1, we can subscribe
to the published data using the following command:

Mosquitto_sub –v –t ‘test/topic’

Let us consider the desktop from which we have subscribed
to be PC2. Just like with the publish command, we can tweak
it and include the host name and also the QoS

Figure 8. The SUB command in mosquitto server

After successfully writing down the publish and subscribe
commands, we should receive the sensor data that we have

obtained through the DHT22 sensor in PC2, the desktop from
which we subscribed to the information published from PC1

Figure 9. Receiving the temperature data

As we said before, we would like to switch the data. Using
the data that we have received, we will switch on a fan to
show that the MQTT protocol can help us in controlling
devices easily. For this purpose, we will use this command.

Mosquitto_pub -h (hostname) –t (topicname) –q (qos) –m
fanon

To turn the fan off, we use the following command:

Mosquitto_pub -h (hostname) –t (topicname) –q (qos) –m
fanoff

After using both this commands, we see that the fan
succesfully turned on and off with minimal delay.

6.2 Using mobile and HIVE broker

We developed and android application and in our
application, we have used the HIVE broker. The application
is coded in such a way that the temperature data will appear
as push notifications whenever we have subscribed. Similarly,
the options of switching is available in GUI inside the
application itself.

Figure 10. The GUI of our Android application

6.3 Result analysis

We now analyze the data that we have received to see how
accurate the readings taken from the sensor are with respect
to that of original reading.

We present a graphical representation of the temperature
values which shows us that there is not much difference in
between the temperatures and so the readings can be
considered accurate for experimental purposes. Like the
temperature data, we can measure the humidity as well. The
DHT22 sensor is well equipped to measure the humidity data
as well following the same procedures as we did for the
temperature data. However, for experimental purposes, we
represent only the temperature data.

26

Serial
No

Temperature
in F (sensor)

Temperature
in F (Original)

1 27.5 28

2 27.5 28

3 27.5 28

4 28.2 28

5 28.3 28

6 28 28

7 29.7 30

8 29.7 30

9 29.7 30

10 29.7 30

11 30 30

12 30.2 30

Figure 11. Graph to compare the accuracy of our data

7. COMPARISONS

So far, we have utilized a variety of tools to serve our
purpose. We have used a different protocol known as MQTT
instead of the traditional HTTP to serve our purpose. We also
have used two different brokers in two different situations.
Our purpose for this is to find out which broker is best suited
for our purpose and also to learn if the MQTT protocol is
indeed advantageous over the HTTP protocol

7.1 MQTT vs HTTP

 MQTT HTTP

1) MQTT is a lightweight
publish/subscribe messaging
protocol.

1) HTTP is designed as a
request-response protocol for
client-server computing.

2) It is very useful in Mobile

Application Development.

2) It is not necessarily optimized

for mobile and push capabilities

3) It is much more reliable,
three Qos and patterns to
avoid packet loss on client
disconnection.

3) No quality of service in case
of HTTP.

4) MQTT features faster
response and throughput, and
lower battery and bandwidth
usage

4) HTTP is not optimized for low
power usage and bandwidth
usage is usually more.

5) MQTT is a very secure
protocol and uses Username
and Password in the
CONNECT message.

5) Secure is a very big concern is
case of HTTP and is not able to
provide that level of security as
much as MQTT.

6) If you know that you'll
always be using a cellular
mobile connection, then you
should be good with MQTT.

6) There is some set of edge use
cases of public Wifi where HTTP
will be more robust.

7) MQTT uses less power to
maintain an open connection,
to receive messages and to

send them.

7) In case of HTTP power usage
is more.

After usage of both the protocols in our project we came to

a conclusion that MQTT is a better option to choose

7.2 Mosquitto vs. HIVE in Brokers

HIVE MQTT Broker Mosquitto MQTT Broker

1) HIVE is not Open
Source and it has
commercials involved

1) Mosquitto is Open Source
and extremely light weight
broker

2) Unreliability is an issue
we have faced with
HIVE

2) Mosquitto has so far proved
useful for its stability and
community support

3) HIVE and it ’ s
components are a bit
heavier when compared
to Mosquitto

3) The fact that Mosquitto is
very light makes it efficient
for transporting huge
amounts of sensor data.

Even though both HIVE and Mosquitto find their uses, we

feel that Mosquitto has some advantages and mostly due to
the fact that it is lighter and open source

8. CONCLUSIONS

Using the MQTT protocol, we see that it is indeed possible
to transmit sensor data from one device to the other which can
also be used to control electronic devices. The data obtained
from the sensor can also be considered accurate

enough as the error does not exceed more than +0.5 or below
-0.5. Thus, we can conclude that the MQTT protocol is an
effective protocol for transmission of sensor data and systems
can be built based on this protocol. We also see that the
MQTT protocol has distinct advantages over the traditional
HTTP protocol especially in the mobile environment and
considering that mobile platforms are on the rise, MQTT
protocol will be more popular in the years to come.

ACKNOWLEDGEMENT

I would like to thank Professor Nilay Kumar Nag for the
guidance and the Department of MCA of MCKV Institute of

Engineering for providing us with the support and
infrastructure required for such a task. I would also like to
thank International Conference on Advances in Science and
Technology 2017 (ICAST 2017) for providing us with the
platform for sharing our knowledge and findings.

REFERENCES

[1] Vasileios K., Periklis C., Francisco V.G., Jesus A.Z.

(2015). A survey on application layer protocols for the
internet of things, transaction on IoT and cloud
computing.

[2] Kaukalias T., Chatzimisios P. (2014). Internet of
Things (IoT) C Enabling technologies, applications

27

and open issues, Encyclopedia of Information Science
and Technology (3rd Ed.), IGI Global Press.

[3] Lopez Research LLC (2013). An Introduction to the
Internet of Things (IoT).

[4] Valerie L., Weng T.L., Leonardo O., Sweta R.,
Nagesh S., Rong X., Gerald K., Neeraj K., Stefan F.,
Martin K., Dave L.. IBM redbooks building smarter
planet solutions with MQTT and IBM WebSphere
MQ telemetry.

[5] HiveMQ. (2015). MQTT Essentials: Part 1 –
Introducing MQTT, the HiveMQ Team.

[6] IBM Knowledge Center (2017). Introduction to
MQTT.

[7] HiveMQ. (2015). MQTT Essentials Part 3: Client,
Broker and Connection Establishment, the HiveMQ
Team.

[8] HiveMQ. (2015). MQTT Essentials Part 4: Subscribe
& UnSubscribe, the HiveMQ Team.

28

