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Sr-substituted SmNiO3 perovskite-type oxides have been investigated for their 

electrocatalytic properties towards oxygen evolution reaction (OER) in alkaline 

medium. Materials were obtained by using low temperature malic acid sol-gel 

route. To know the redox behaviour, electrocatalytic activity and thermodynamic 

parameters of oxides, cyclic voltammetry (CV) and anodic polarization curve 

(Tafel plot) were recorded in 1 M KOH at 25 ºC. X-ray diffraction (XRD) study 

indicates the formation of almost pure perovskite phase of the material. A pair of 

redox peaks was observed (anodic; Epa = 494±12 mV and corresponding cathodic; 

Epc = 360±4 mV) in the potential region 0.0-0.7 V prior to onset of OER. As 

observed in the case of La-based perovskite oxides, Sr-substitutions in the SmNiO3 

also enhance the electrocatalytic properties of the material. However, Sm-based 

oxides showed least electrocatalytic activity as compared to La-based oxides. The 

estimated values of Tafel slope and reaction order indicate that each oxide 

electrode, except SmNiO3, follows similar mechanistic path towards OER. 

Standard entropy of activation (S˚#), standard enthalpy of activation (H˚#) and 

standard electrochemical energy of activation (Hel˚#) was determined by 

recording the anodic polarization curve in 1M KOH at different temperatures. 

Keywords:  Samarium nickelates, sol-gel 

method, XRD, oxygen evolution, thermodynamic 

parameters 

1. INTRODUCTION

Perovskite-type mixed oxides of lanthanum having 

composition La1-xMxMO3 (where, M = Sr, Pb, Cu, Cr;  M = 

Co, Mn, Ni and 0.0  x  0.8) are considered as very promising 

materials and have been extensively studied for oxygen 

evolution/reduction reaction [1-30]. These materials have 

several technological applications [1,31,32]. There are several 

methods employed to synthesize these oxides. These include, 

high temperature solid state reaction and thermal 

decomposition methods [33-38], which generally produced 

oxides with low specific surface area and reduced 

homogeneity and low temperature methods [39-43] in which 

amorphous organic acids, like malic acid (MA), citric acid 

(CA), polyacrylic acid (PAA), citric acid-ethylene diamine 

(CA-EDA), polyvinylpyrrolidone (PVP) etc are used as 

precursors. These low temperature methods facilitate to 

provide homogeneity in the metal ions and produced oxides 

with high specific surface area and therefore improved 

electrochemical properties.  

Recently, Azad et al. [44] reported oxygen evolution 

electrocatalytic properties of some perovskite mixed oxides as 

bifunctional electrocatalysts with current density 10 mA cm-2 

at E = 1.65 V vs RHE. Sczancoski et al. [45] developed Fe-

doped LaNiO3 electrocatalysts for OER studies at deposited 

pyrolytic graphite sheets and found highest activity with 

LaNi0.4Fe0.6O3 having Tafel slope value of 52 mV decade-1. 

Findings of these literatures revealed that the metal ios have 

vital role in the enhancement of  physical and electrocatalytic 

properties of materials. Further, it has been observed that most 

of the OER studies have been carried out with La-based 

perovskite oxides. Sm-based perovskites are very little 

investigated with regards to oxygen evolution/reduction 

reaction. 

Shao-Horn et al. [46] used elements of lanthanide series 

instead of lanthanum and prepared double perovskites 

(Ln0.5Ba0.5)CoO3- (Ln = Pr, Sm, Gd and Ho) by adopting 

thermal decomposition method. They observed better 

electrocatalytic activity towards oxygen evolution reaction in 

alkaline solution. Very recently [27], we found better results 

towards OER with partial substitution of Sm for Sr in 

La0.4Sr0.6CoO3.  

In view of the above, we extended our research and used 

Sm-element instead of La to obtain perovskite-type oxides and 

further studied their electrocatalytic properties for OER in 

alkaline medium. Results, so obtained, are described in this 

paper. 

2. EXPERIMENTAL

Strontium substituted SmNiO3 having compositions Sm1-

xSrxNiO3 (0 ≤ x ≤ 0.8) were prepared by adopting the method 

reported by Teraoka et al. [41]. In each preparation, all the 

reagents and chemicals were taken in purified form. The 

stoichiometric amount of metal nitrates and excess amount of 

malic acid were dissolved in 500 ml double distilled. 35% 
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ammonia solution was used to maintain the pH of mixture 3.5, 

which then concentrated over a water bath at 60-70C. A gel 

like mass was obtained which decomposed and sintered at 

600C for 5h to get the desired oxide material. Techniques 

like, X-ray diffractometer ( Philips and Panalytical Powder X-

Ray Diffractometer) provided with radiation source Cu-K ( 

= 1.54056 Å) and Scanning Electron Microscope (JEOL, JSM 

6490) were used to determine the phase and morphology of the 

materials. The crystallite size of the material was calculated by 

using Scherer’s formula.  

The electrocatalytic property of the material was 

determined in the form of oxide film electrode on pre-treated 

Ni-support. The procedure adopted for the treatment of Ni-

support, preparation of oxide film and  electrical contact was 

same as described elsewhere [9,15]. During experiment, the 

oxide film electrode was used as working electrode. Hg/HgO 

/1M KOH and Pt-foil were used as reference and auxiliary 

electrode, respectively. A three-electrode single compartment 

glass cell, which is connected to the potentiostat/galvanostat 

(Gamry Reference 600 ZRA) and corrosion and physical 

electrochemical software compiled personal computer, was 

used for the electrochemical studies. In order to minimise the 

additional potential drop, the reference electrode was 

connected electrically to the electrolyte (1M KOH) via a 

Luggin capillary (KCl/Agar-Agar salt bridge). 

3. RESULTS AND DISCUSSION

3.1 X-Ray Diffraction (XRD)

X-ray diffraction (XRD) patterns of oxide powders,

Sm0.2Sr0.8NiO3 and Sm0.6Sr0.4NiO3, sintered at 600 ºC for 5h 

and recorded between 2θ = 20° to 100° are shown in Fig. 1. 

The observed patterns indicates the formation of almost 

perovskite phase of the material and found to be very similar 

to those with Sm-substituted La(Sr)CoO3 [27] obtained by 

PVP method, which  followed hexagonal crystal geometry of 

respective JCPDS ASTM file 25-1060. The crystallite size was 

calculated by using Scherer’s formula [47] and found to be ~30 

and ~40 nm for Sm0.2Sr0.8NiO3 and Sm0.6Sr0.4NiO3, 

repesctvely. 
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Figure 1: XRD powder patterns of oxides sintered at 600°C 

for 5 h 

3.2 Scanning Electron Micrograph (SEM) 

Figure 2 represents the SE-micrograph of sintered (600°C 

for 5 hrs) SmNiO3 and Sm0.2Sr0.8NiO3 oxide powder at the 

magnification ×200. Morphological appearance of both oxides 

are seemed to be similar and showed nebulous structure. Some 

small pores has also been observed in the oxide matrix.  

Figure 2: SE Micrographs of oxide powder sintered at 600°C 

for 5 hrs. 

3.3 Cyclic Voltammetry (CV) 

Figure 3 represents cyclic voltammogram of the oxide film 

electrode on Ni-substrate between potential region 0.0-0.7 V 

in 1M KOH at 25°C (scan rate = 20 mVsec-1). Each 

voltammogram revealed a pair of redox peak, an anodic (Epa 

= 494 ± 12 mV) and corresponding cathodic (Epc=360 ± 4 

mV), prior to the onset of oxygen evolution reaction. The peak 

potential values of each voltammetric curve (Table 1) 

corresponds to that obtained with the bare Ni [48]. Further, the 

CV of the oxide on Pt-substrates did not exhibit any redox 

peaks under similar experimental conditions. This specifies 

that the redox peaks might be due to the oxidation-reduction 

of Ni-substrate, which comes into contact with electrolyte 

during the cycle process through pores, cracks and grain 

boundaries. Aslo, it has been reported [49] that perovskite 

oxides prepared at low temperature are highly hygroscopic and 

may undergo hydration in electrolytic solution. 
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Figure 3:  Cyclic voltammograms of Ni/ Sm1-xSrxCoO3 (0 

≤ x ≤ 0.8) in 1M KOH at 25˚C; (scan rate = 20 mV sec-1); a: 

SmNiO3, b: Sm0.8Sr0.2NiO3, c: Sm0.6Sr0.4NiO3, d: 

Sm0.2Sr0.8NiO3  

Other voltammetric constituents, such as peak separation 

potential (∆Ep = EPa - EPc), formal redox potentail [E = (EPa - 

EPc)/2], anodic and cathodic peak current, volatmmetric charge 

(q), etc were estimated from the voltammetric curve and listed 

in Table 1. With exception to Sm0.2Sr0.8NiO3, the value of ∆Ep 

was almost same with each oxide electrode. A negligible 

change in the formal redox potential has been observed with 

the substitution of Sr for Sm in the base oxide (SmNiO3). 

Anodic peak current, cathodic peak current and voltametric 

charge (q) are increased with increase in concentration of Sr in 

the oxide. The value of q is estimated by integrating the CV 

curve from zero to  the potential just prior the OER. The ratio 

of anodic and cathodic peak current is more than unity, 

indicating the irreversibility [50-52] of the redox process.  

Table 1: Values of the cyclic voltammetric parameters of Ni/ 

Sm1-xSrxNiO3 (0 ≤ x ≤ 0.8) in 1 M KOH at 25 °C (scan rate = 

20 mV sec-1) 

Electrode EPa

/mV 

EPc

/mV 

∆Ep

/mV 
E/

mV 
|jpa| 

/mA 

cm-2

|jpc|

/mA 

cm-2

|jpa|

|jpc|

q 

/mC 

cm-2

SmNiO3 483 360 123 422 0.78 0.35 2.2 1.7 

Sm0.8Sr0.2NiO3 482 362 120 422 1.14 0.52 2.2 2.6 

Sm0.6Sr0.4NiO3 486 364 122 425 1.94 0.84 2.3 3.7 

Sm0.2Sr0.8NiO3 506 356 150 431 4.69 2.77 1.7 16.0 

The effect of scan rate on the redox process has also been 

studied in 1M KOH at 25C and shown in Fig. 4 for the 

Ni/Sm0.2Sr0.8NiO3. The nature of CV curve as shown figure 4 

is almost similar to that observed at scan rate of 20 mV sec -1. 

But, a shift in anodic and cathodic peak potential was observed 

with the increase of scan rates from 20 to 120 mV sec-1. 

Figure 4: Cyclic voltammogram of Ni/Sm0.2Sr0.8NiO3 film 

electrode at different scan rates in 1M KOH (25˚C) 

 It is found that both anodic and cathodic peak currents 

increased linearly with increase in the scan rates. The variation 

is represented in the plot of │jP│vs square root of scan rate 

(Fig. 5) for Sm0.2Sr 0.8NiO3 oxide electrode. The voltammetric 

charge (q) was also plotted against (scan rate)-1/2 and shown in 

Fig. 6. The straight line obtained indicates that the surface 

redox behaviour is diffusion controlled [15]. 
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Figure 5: Plot of |jP| vs (scan rate)1/2 for the oxide film 

electrode on Ni in 1M KOH (25 °C) 
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Figure 6: Plot of voltammetric charge (q) vs (scan rate)-1/2 for 

the oxide film electrode on Ni in 1M KOH (25 °C) 

3.4 Electrocatalytic Activity 

To know the electrocatalytic activity of the oxide 

electrocatalyst, iR-compensated anodic polarization curves (E 

vs.log j) was recorded in 1M KOH at 25 °C. The polarization 

curve, so obtained is shown in Fig. 7. The Tafel slope values 

as well as the electrocatalytic activity in terms of potential and 

current density were estimated from the polarization curve and 

listed in Table 2.. The Tafel slope value were ranged between 

111-118 mVdecade-1. On the comparison of electrocatalytic

activity in terms of current density at fixed potential of 800

mV, it is observed that a slight increase in the electrocatalytic

activity has been found with Sr-substitution. The activity being

maximum with 0.8 mol Sr-substitution.
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Figure 7: Tafel plots for oxygen evolution on Ni/Sm1-

xSrxNiO3 (0 ≤ x ≤ 0.8) in 1M KOH at 25 ˚C (scan rate: 0.2 

mVsec-1).  

A: SmNiO3, B: Sm0.8Sr0.2NiO3, C: Sm0.6Sr0.4NiO3, 

D: Sm0.2Sr0.8NiO3 

Table 2: Electrode kinetic parameters for oxygen evolution 

reaction on Ni/Sm1-xSrxNiO3 (0 ≤ x ≤ 0.8) electrodes in 1 M 

KOH at 25°C 

Electrode Tafel 

slope 

(b) 

Orde

r 

(p) 

E/ mV 

at 

j/ mA cm-2 

j/ mA cm-2 

at 

E/ mV 

10 100 700 800 

SmNiO3 118 1.9 921 1134 0.5 1.1 

Sm0.8Sr0.2NiO3 113 1.2 849 1068 0.9 1.5 

Sm0.6Sr0.4NiO3 114 0.9 888 1116 0.9 1.3 

Sm0.2Sr0.8NiO3 111 1.0 815 1045 1.2 4.1 

As per Table 2, oxide electrodes show the following order 

of electrocatalytic activity at constant potential (E = 800 mV); 

Sm0.2Sr0.8NiO3 (j = 4.1 mA cm-2) > Sm0.8Sr0.2NiO3 (j = 1.5 

mA cm-2) > Sm0.6Sr0.4NiO3 (j = 1.3 mA cm-2) > SmNiO3 (j = 

1.1 mA cm-2) 

The anodic polarization curve was recorded to determine 

the reaction order of OE with each oxide electrode in different 

KOH concentraation at 25°C.  During the process, the 

electrical intensity of the each electrolytic solution was kept 

uniform. An inert electrolyte KNO3 was used to maintain the 

ionic strength ( = 1.5) of each solution constant. A 

representative polarization curve for Ni/Sm0.2Sr0.8NiO3 is 

shown in the Fig. 8.  From figure, values of current density 

(log j/ A cm-2) were estimated at a certain potential and plotted 

against log [OH−] , which is shown in the Fig. 9 at a constant 

potential of E=700 mV.  The order of reaction was calculated 

by measuring the slope of straight line and values are listed in 

Table 2. The observed values of Tafel slope and reaction order 

as given in Table 2 suggest that the OER taking place at the 

electrocatalysts follows similar mechanistic path except 

SmNiO3, which has reaction order 1.9 with Tafel slope 118 

mV decade-1. 

Figure 8: Tafel plots for oxygen evolution on 

Ni/Sm0.2Sr0.8NiO3 at varying KOH concentrations ( = 1.5) at 

25 ˚C 
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Figure 9: Plot of log j vs log [OH-] for Ni/Sm1-xSrxNiO3 (0 ≤ 

x ≤ 0.8) electrodes. 

3.5 Thermodynamic Parameters 

Thermodynamic parameters of two oxide electrocatalysts 

towards OER have also been determined by recording the 

anodic polarization curve in 1 M KOH at 20, 30, 40, and 50°C. 

A set of polarization curve for SmNiO3 is shown in Figure 10. 

During the experiment, the temperature of the reference 

electrode was kept constant. From figure, values of log j (in 

mA cm-2) were estimated at a constant applied potential and 

plotted against 1/T. The standard apparent enthalpy of 

activation (Hel˚#) was calculated at a certain potential (E = 

650 mV) by measuring the slope of Arrhenius plot, log j vs 1/T 

(Fig. 11). 

Further, following two relations (1) and (2) [53] are used 

to determine the values of standard enthalpy of activation 

(∆H°≠) and  standard entropy of activation (∆S°≠), 

respectively.  

ΔHel
o≠

 = ΔHo≠- αFη ….. (1) 

ΔSo≠ = 2.3R [ log j +
ΔHel

o≠

  2.3RT  
- log (nFωCOH-)]     ..…(2)

In equation (1), α (= 2.303RT/bF) is the transfer 

coefficient.  is the overpotential equal to E - EO2/OH
−, where 

E is the potential applied and EO2/OH⁻ (= 0.303 V vs. Hg/HgO) 

[54] is the theoretical equilibrium Nernst potential in 1 M

KOH at 25 ˚C. The Tafel slope (b) is determined from the

polarization curves obtained at different temperatures. R, F are

the universal constants and T is the absolute temperature.
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In equation (2), the value of frequency term (ω) is equal to 

kBT/h.  kB and h are the Boltzmann constant and Planck’s 

constant, respectively. Here, the value of ‘n’ was taken 2 in 

every calculation. The calculated values of thermodynamic 

parameters are listed in the Table 3. Values of electrochemical 

activation energy were found to be 47.5 and 54.9 kJ mol-1 for 

SmNiO3 and Sm0.8Sr0.2NiO3, respectively.  

Figure 10: Anodic polarization curve for the SmNiO3 film 

electrode on Ni at different temperatures in 1 M KOH 
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Figure 11: The Arrhenius plot at a constant applied potential 

(650 mV) for La1-xSrxCoO3 (x = 0 and 0.2) in 1 M KOH 

Table 3: Thermodynamic parameters for O2 evolution on 

Ni/Sm1-xSrxNiO3 (x = 0 and 0.2) in 1 M KOH 

Electrode Hel˚# (kJ 

mol-1)  

- ∆S˚#

(Jdeg-1

mol-1)

α ∆H˚#

(kJ mol-

1) 

SmNiO3 47.5 195.1 0.5 64.4 

Sm0.8Sr0.2NiO3 54.9 171.9 0.5 71.5 

CONCLUSION 

The present work has been undertaken to study the 

electrocatalytic properties of Sm-based perovskite over La-

based.  Sr-substitution in the base oxide increased the 

electrocatalytic properties of the material. But, this increase is 

not so significant as observed in the case of La-based 

perovkites. As per present study, Sm-based perovskites are not 

prolific electrocatalysts for the electrolysis point of view. 
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