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In this paper, Speed Sensorless Vector Control of Double star Induction machine 

DSIM using sliding mode observer is presented. The search for the gains of 

conventional Luenberger observer in the sense of stability Lyapunov, oriented to 

sliding mode observer form, but the sign function caused the chattering effect, the 

replace it by function smooth are adopted. As a result, application of DSIM speed 

sensorless vector control using sliding mode has shown that is robust to load 

disturbances and / or reference speed change. The proposed control scheme is verified 

by simulation. 
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1. INTRODUCTION

The majority of the controls rest completely on the 

assumption that all the state is known at every moment for 

technological reasons (material, industrialization, etc.) of 

stability (disrepair of the elements of measurement) or 

economic (cost of the sensors material) in many applications 

the measurement of all parameters is not possible. It is then 

necessary, using measurements available to reconstruct the not 

measured variables of state. It is major problem of the 

observation.  

We find these problems in a context more general than that 

of the controls, such as for example the diagnosis, the 

detection of disrepair, security where the knowledge of the 

state of the system can be necessary. In addition: For the laws 

of the control as sophisticated, a main problem which is the 

necessitate use a mechanical sensor (speed, flux, ...). This 

imposes an over cost and increases the complexity of the 

industrial assembly. In some industrial fields such as 

operational security, therefore operation without a mechanical 

sensor makes it possible, on the one hand, to reduce costs (no 

sensor to implanted) and maintenance, and secondly to 

proposed a solution degraded, but functional to applications 

when disrepair faults. 

From this point of vision, the primary objective of this 

article consists a determining the quantities (speed and flux) of 

the double star asynchronous machine DSIM by using only 

electric quantities measured.  

These techniques, used to replace the information given by 

mechanical sensors, are sometimes called software sensors. In 

the same context, several observation approaches without 

mechanical sensor of the asynchronous double star machine 

are developed, in the literature, we can cite those based on 

artificial intelligence like neural networks [1, 2] and 

Bakcteebing [3].  

Another approach from the automatic is based on a machine 

behavior model. We designed several categories: extended 

Kalman filters [4, 5] and nonlinear observers such as sliding 

modes [6, 7], and the observers with grand gain [8] and the 

extended Luenberger observer [9, 10] which difficult to 

guarantee the local convergence and stability [11, 12], whose 

main difficulties are stability, since we found that for these 

laws of controls without mechanical sensor, there was no 

demonstration of global convergence of the system ''Control + 

Observer" in closed loop.  

However, this work is oriented in direction based stability 

Lyapunov improving the simple Luenberger observer by 

sliding mode control and minimizing the chattering effect. 

Moreover, the control law proposed guarantees largely 

stability and asked robustness. The work will be tested and 

evaluated in normal and severe machine operating conditions 

DSIM. 

This paper is organized as following: the field oriented of 

dual star induction motor (DSIM) is described in section 2, 

section 3 reviews the estimation of the rotor speed and rotor 

flux by Luenberger observer, in section 4 sliding mode speed 

observer of DSIM developed is discussed (using only 

electrical measurements). Finally, simulations result and 

conclusion are given in sections 5. 

2. VECTOR CONTROL OF DSIM

2.1 Principle 

The principle of vector control is to operate the 

asynchronous machine like the DC machine with separate 

excitation, by decoupling the torque control and the flux 

control. In fact, we propose to study the vector control of 

DSIM. The adopted control strategy consists in keeping the 

quadrature flux equals to zero (𝛷𝑞𝑟 = 0) and the direct flux

equals to the reference (𝛷𝑑𝑟 = 𝛷𝑟
∗) [9].

2.2 Application 

The application of this control technique makes it possible 
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to obtain speed and torque control performance comparable to 

DC machine.  

Based on the main control strategy 

(𝛷𝑑𝑟 = 𝛷𝑟
∗, 𝛷𝑞𝑟 = 0) it is possible to finalize the expression 

of the electromagnetic torque by: 
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Therefore, the main objective according to Chaabane et al. 

[13, 14] is to provide reference signals for the voltage inverter 

which supplies DSIM. Note X* for reference: the desired 

reference paths for (torque, flux, voltages and currents).  

The control based on the orientation of the rotor flux gives 

better results with respect to the orientation of the stator flux 

[15, 16]. Indeed, the application of this orientation the 

equations system of the machine becomes. 

With:  

𝜇1 =
𝑃

𝐽

𝐿𝑚

𝐿𝑚+𝐿𝑟
, 𝜇2 =

𝑅𝑟

𝐿𝑚+𝐿𝑟
 and 𝜔𝑠𝑟

∗  the slip angular 

frequency. 𝑇𝑟 =
𝐿𝑟

𝑅𝑟
 denotes the rotor time constant. 
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The sliding speed is given by: 
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From the direct vector control equations, we derive the 

following system of equations of states [5, 17, 18]. 
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𝑅𝑟: Rotor resistance; 

𝑅𝑠1,2: Stator 1,2 resistance; 

𝐿𝑚: Mutual inductances; 

𝐿𝑠1,2: Stator 1,2 self inductances; 

J: Moment of inertia; 

𝐾𝑓: Viscous friction coefficient; 

P: Pole pairs number; Rotor self inductance 𝐿𝑟. 

It should be noted that in the torque equation, the reference 

flux and the quadrature stator current are not yet perfectly 

independent. Therefore, it is necessary to separate torque 

control and flow control by introducing new variables. 
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Obviously, we see that the stator voltages 

( 𝑣𝑑𝑠1, 𝑣𝑞𝑠1, 𝑣𝑑𝑠2, 𝑣𝑞𝑠2 ) are significantly related to stator 

currents (𝑖𝑑𝑠1, 𝑖𝑞𝑠1, 𝑖𝑑𝑠2, 𝑖𝑞𝑠2). In order to compensate the error 

due to the decoupling, the reference voltages 

(𝑣𝑑𝑠1
∗ , 𝑣𝑞𝑠1

∗ , 𝑣𝑑𝑠2
∗ , 𝑣𝑞𝑠2

∗ ) with constant flux are given by: 
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With: 
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To obtain perfect decoupling, stator current regulation loops 

( 𝑖𝑑𝑠1, 𝑖𝑞𝑠1, 𝑖𝑑𝑠2, 𝑖𝑞𝑠2 ) in the output, which gives the stator 

voltages (𝑣𝑑𝑠1 , 𝑣𝑞𝑠1, 𝑣𝑑𝑠2 , 𝑣𝑞𝑠2).  

Consequently, the regulation ensures better robustness to 

internal or external disturbances. The Field Oriented Control 

FOC (Decoupling) block diagram is given in Figure 3. 

Assuming that: 𝐼𝑑𝑠1
∗ = 𝐼𝑑𝑠2

∗  and 𝐼𝑞𝑠1
∗ = 𝐼𝑞𝑠2

∗ . 

 

 

3. PROPOSED LUENBERGER OBSERVER 

 

The purpose of the observer is to provide at every moment 

the state vector value or an evaluation of it. In general, we 

consider that we always have system state equations. The 

trivial case consists of to perform an open loop structure see 

Figure 1. The latter is based on a model system, called 

estimator, operating in open loop. The observer includes a 

feedback loop to correct the error between system and model 

outputs. 

 

3.1 Equation of the observer 

 

By hypothesis, we suppose that the concerned system 

observed is completely observable and completely governable. 

It is defined by the equation of state:  

 

 

2



 





=

+=

kD

kDDk

xCy

uBxAx

 

(9) 

 

The equations of the observer then writing: 

 

 





=

−++=+

kDk

kkkDDk

xCy

yyKuBxAx

ˆˆ

ˆˆˆ 1

 

(10) 

 

And we want the output �̂�𝑘 to be equal to 𝑥𝑘 after a shortest 

transient possible, error of estimation of the system state 

defined by: 

 

kkk xxx ˆ~ −=
 (11) 

 

 
 

Figure 1. Block diagram of a Luenberger observer 

 

The prediction error defined by: 

 

kkk yyy ˆ~ −=
 (12) 

 

From (9, 10 and 11), the prediction error equation of the 

observer is written:  

 

kDk xCy ˆ~ =
 (13) 

 

On the other hand, the equation for the observer state 

differences is expressed in the following form: 
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We impose: �̃�𝐷 = 𝐴𝐷 − 𝐾𝐶𝐷. 

where, �̃�𝐷 is called the estimation error matrix, indeed from 

equations (11), the estimation error can be written by: 
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We then obtain the state equation of the error �̃�𝑘+1 which 

does not depend on the input 𝑢𝑘. So that the error tends to 0, it 

is enough that �̃�𝐷 is stable, the matrix �̃�𝐷 can be chosen any 

but must have stable modes faster than those of the steady state 

(the pole placement technique has been used).  

Generally, the adjustment of the observer follows the 

following methodology: the speed of decrease of the 

estimation error depending on the poles of �̃�𝐷 , we choose 

faster compared to the system. The poles of the observer can 

be chosen, we calculate the matrix K, (the eigen value of �̃�𝐷 

with strictly negative real part). 

 

3.2 Luenberger speed observer of DSIM 

 

In sensorless control, the angular speed measurement is 

delivered by an estimator. A large number of estimation 

methods have been proposed [9, 18]. In this work, we first 

propose a linear Luenberger observer in order to estimate the 

angular speed of the rotor.  

In addition, the angular velocity needs an estimation of the 

rotor flux. 

From the system of Eq. (4) it will be: 
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With: 

 Trrqsqs IIX = 21 ; 
 0011=C
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And: 𝑖�̃�𝑠 = (𝑖𝑞𝑠1 + 𝑖𝑞𝑠2) − (𝑖̂𝑞𝑠1 + 𝑖̂𝑞𝑠2). 

And from the system of Eq. (16), we can construct our 

Luenberger observer as follows based Eq. (10): 
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𝐾1 , 𝐾2 , 𝐾3 , are the gains of the observer. However, the 

stability of the system is ensured by making a specific choice 

of 𝐾1, 𝐾2 and 𝐾3 depending on the eigen value of system as: 
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So the estimation error matrix defined by:  
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Once again. The poles of the observer can be chosen, we 

should calculate the gains K, (the eigen value of �̃�𝐷  with 

strictly negative real part). But this calculation is difficult for 

large dimension matrix �̃�𝐷, It forces us to find a method to 

facility the condition of its choose/ This one is given in 

following part. 

 

 

4. SLIDING MODE SPEED OBSERVER OF DSIM 

 

The sliding mode control is robust with respect to the 

parametric uncertainties, which gives good performance. This 

command makes it possible to select the desired operating 

point and reduce the state trajectory of a given system to the 

sliding surface [6, 19]. 

The sliding surface to ensure [𝑺 = 𝒚 − �̂� = 𝟎], if Lyapunov 
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Thus, to guarantee the practical stability Lyapunov of 

observer closed loop system, the law is adopted as satisfy the 

following conditions: 
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On the premise that we do not know the sliding observer 

and based as general equations (18) and the condition (19, 20) 

we can rewrite the Eq. (21): 
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Note that the observer obtained is a copy of the system 

model of Luenberger observer. This one requires more 

correction of term K which is proportional to the sign function 

applied to the output error which guarantees the convergence 

of �̂� to x.k. 

The choice of this type of observer is explained by the good 

properties which can be satisfied and which are manifested by 

the possibility of reducing the size of the observation system 

to (n-p) [16]. The equivalence of the sign function to a large 

gain in the environs of the origin ensures robustness against 

model errors and external disturbances. In order to eliminate 

the chattering phenomenon, the smooth function have been 

used Figure 2. Indeed, replacing the sign function in (20) by 

[20]: 
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Figure 2. The smooth function 
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5. SIMULATION RESULTS 

 

A program based on the proposed algorithm has been 

developed to check the efficiency of the observer.  

The both three level voltage inverters are identical and 

Figure 3 shows the global system. 

 

 
 

Figure 3. Diagram of the speed control of the DSIM motors 

combined with an observer 

 

For the estimation of the orientation of the rotor flux and its 

amplitude the equation system (20) has been used. PI 

(proportional and an integral controller), current and speed 

regulators are used: So for currents (𝐾𝑝𝑐 = 3; 𝐾𝑖𝑐 = 230), for 

speed (𝐾𝑝𝑤 = 3; 𝐾𝑖𝑤 = 230), and for flux (𝐾𝑝𝑓 = 5; 𝐾𝑖𝑓 =

350), the gains with the eigen value of �̃�𝐷 is strictly negative 

real part, and condition Eq. (19) verified, chosen by 𝐾1 =
250; 𝐾2 = 0.5; 𝐾3 = 0.5. 

In fact, Angular speed is estimated from a sliding observer. 

Whereas, the measured stator voltage and currents are 

necessary for development the sensorless control algorithm. A 

reference speed of 300 rad / s was chosen for the simulation of 

the different operating regimes. In full operation, a load 

disturbance (𝑇𝐿 = 14𝑁. 𝑚) is applied in 1.5s and 2.5s.  

Then at t=3.5s an inversion of the rotational speed is made. 

Figure 4, 5 and 6, show the simulation results of the sliding 

observer for the sensorless vector control of DSIM. 

 

 
 

Figure 4. Real and estimated speed 

 

 
 

Figure 5. Rotor flux Flux in d-q axis 

 
 

Figure 6. Electromagnetic torque 

 

 
 

Figure 7. Currents in axis 1 (𝑖𝑎𝑠1) 

 

The results of the simulation show that the rotational speed 

can be estimated during the different operating regimes. The 

flux does not change in the presence of disturbances and 

perfectly follows the reference as well as for the speed. The 

observer used failed to obtain a low dynamic error and an 

almost zero static error. 

The sensitivity of the observer of the slip mode is tested 

against the parametric variations. Indeed, for the variation of 

rotor resistance was taken for a step of +100%𝑅𝑟, from t=0.5s 

to 3s for a speed of 100 rad / s.  

Figures 8, 9, 10 and 11 clearly show that the sliding mode 

speed observer is performing and its behavior is not affected. 

 

 
 

Figure 8. Rotor speed 

 

 
 

Figure 9. Rotor flux in -d- axis (𝛷𝑟𝑑) 

 

Finally, we can say that the carried sensorless can obtain 

high performances of robustness, stability and precision, in 

particular during the inversion of the speed and the variation 

of the parameters. 
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Figure 10. Electromagnetic torque 

 

 
 

Figure 11. Estimation error (𝑖̃𝑞𝑠) 

 

 

6. CONCLUSIONS 

 

In this work, we have applied the Lyapunov stability 

method in the sensorless control of the DSIM by field oriented 

control (FOC) in sliding mode. Moreover, the estimation of 

the speed and flux is based on the "smooth" function which 

replaced the "sign" function, because the majority of 

researchers have observed that the "sign" function generates 

disturbances in torque and speed. The adopted control law has 

proven operating performance in terms of stability, robustness 

and rapidity of response. 

Finally, the results encouraged us to estimate other 

parameters variations of the system like rotor resistance, the 

load torque..., and to more of noise sensitivity and complexity 

matrix error. We can also evaluate the performance of the two 

observers by series experimental in future work. 
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APPENDIX 

 

DSIM parameters  

 

• DSIM use full power: 𝑃𝑛 = 4.5𝐾𝑊 

• Rated voltage: Vn=220V 

• Rated Current: In=5.6A 

• Rated speed: N=2970 rpm 

• Stator resistances: Rs1=Rs2=Rs=3.72Ω 

• Rotor resistance: Rr=3.72Ω 

• Stator self inductances: Ls1=Ls2=Ls=0.22H 

• Rotor self inductance: Lr=0.006H 

• Mutual inductance: Lm=0.3672H 

• Inertiea moment: J= 0.0662Kg.m2 

• Viscous friction coefficient: Bω=0.001Nm/rad 

• Motor frequency: f=50Hz 

• Poles pairs number: P=1 
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