
An Analytical Performance Evaluation of MapReduce Model Using Transient Queuing 

Model 

Chandra Sekhar Darapaneni1*, Bobba Basaveswara Rao2, Boggavarapu Bhanu Venkata Satya Vara Prasad3, Suneetha 

Bulla3 

1 Department of CSE, Acharya Nagarjuna University, Guntur 522510, India 
2 University Computer Centre, Acharya Nagarjuna University, Guntur 522510, India 
3 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 

522502, Andhra Pradesh, India 

Corresponding Author Email: dsekhar1807@gmail.com 

https://doi.org/10.18280/ama_b.641-407 ABSTRACT 

Received: 25 June 2021 

Accepted: 12 September 2021 

Today the MapReduce frameworks become the standard distributed computing 

mechanisms to store, process, analyze, query and transform the Bigdata. While 

processing the Bigdata, evaluating the performance of the MapReduce framework is 

essential, to understand the process dependencies and to tune the hyper-parameters. 

Unfortunately, the scope of the MapReduce framework in-built functions is limited to 

evaluate the performance till some extent. A reliable analytical performance model is 

required in this area to evaluate the performance of the MapReduce frameworks. The 

main objective of this paper is to investigate the performance effect of the MapReduce 

computing models under various configurations. To accomplish this job, we proposed 

an analytical transient queuing model, which evaluates the MapReduce model 

performance for different job arrival rates at mappers and various job completion times 

of mappers as well as the reducers too. In our transient queuing model, we appointed 

an efficient multi-server queuing model M/M/C for optimal waiting queue 

management. To conduct the experiments on proposed analytics model, we selected 

the Bigdata applications with three mappers and two reducers, under various 

configurations. As part of the experiments, the transient differential equations, average 

queue lengths, mappers blocking probability, shuffle waiting probabilities and transient 

states are evaluated. MATLAB based numerical simulations presented the analytical 

results for various combinations of the input parameters like λ, µ1 and µ2 and their 

effect on queue length. 
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1. INTRODUCTION

Since two decades, the advancements in mobile and internet 

technologies caused to generate huge volumes of data, termed 

as Bigdata. Hadoop is developed and implemented by the 

organizations with MapReduce programming model for 

processing the huge amount of data in parallel in the areas like 

data mining application, image processing and online 

applications like e-commerce etc. In reality, the organizations 

like Newyork stock exchange, Facebook and Google generates 

the petabytes of data periodically and processes that high 

volumes of data with adoption of the Hadoop MapReduce 

model. In this way the Hadoop MapReduce framework 

became a backbone for Bigdata processing.  

Although MapReduce is efficient in Bigdata processing, 

while dealing the high dimensional data, MapReduce model 

has some limitations due to the network dependency and high 

bandwidth utilization. Some contemporary applications are 

running on the whole dataset instead of any sampled data set 

for preprocessing. This type of applications can be executed in 

parallel, on a number of machines in a Hadoop MapReduce 

paradigm. Today the popular search engines like Google, 

Amazon, and Baidu are daily running enormous number of 

MapReduce jobs on their data, with number of Hadoop 

clusters on their commodity computer clusters. As this 

MapReduce process is contains the high volumes of data and 

hardware clusters, it is a necessary to develop and analyze the 

performance models, in order to optimize and tuning the job 

parameters like mappers, reducers and buffer size, etc. 

Although the MapReduce frameworks have the inbuilt 

functionalities for performance evaluation, their scope is very 

limited in accessing the metrics required for us. Analytics are 

playing a significant role in metrics accessing, performance 

evaluation and even guides the process executor about the 

hyper parameters tuning to increase the performance. In this 

context several vendors and research have to pay attention to 

do research on designing and evolving the performance 

models for Hadoop Map-Reduce paradigm.  

Since a decade, several researchers concentrated on 

designing and analyzing the performance of Map-Reduce 

models on Hadoop in clod environment through analytical, 

simulation and experimental models. The analytical models 

provide accurate and reliable estimates for performance 

metrics, when compared to the other models at a significantly 

lower cost. Yang et al. [1] developed an analytical model with 

job execution time and the throughput of the system as 

performance metrics and are validated under an experimental 

evaluation. Vianna et al. [2], designed an analytical 
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performance model that combines the precedence graph and 

queuing network models for Hadoop workloads. Their 

research mainly focused on intra-job pipeline parallelism and 

validate with a simulation. Another Map-Reducing model on 

Hadoop is designed by Ke and Park [3], with analytical 

queuing model for optimizing the availability computing with 

derivation of the balancing equations. Apart from these, 

several other scholars also worked on analytics model design, 

but all of these works do not consider the time as one of the 

parameters in performance evaluation. These works also 

confirmed to deterministic service times. 

In order to address the limitations in designing the efficient 

analytical model, in this paper we proposed an analytical 

transient queuing model, which evaluates the MapReduce 

model performance for different job arrival rates at mappers 

and various job completion times of mappers as well as the 

reducers too. In our transient queuing model, we appointed an 

efficient multi-server queuing model M/M/C [4] for optimal 

waiting queue management. This model will be help for 

implementing the optimal strategies to minimize the job 

execution time, efficient jobs scheduling, which leads to 

minimize the execution cost of the MapReduce.  
The proposed analytical queuing model considers the time 

as a one of the parameters and derives the transient equations 

for computing the performance metrics. The main 

contributions of this paper are as follows: 

1) Proposed an analytical transient queuing model for

Hadoop MapReduce computations with the

configuration of 3 mappers and 2 reducers.

2) Drawn the relevant transient state diagram for all

possible cases.

3) Derived differential equations for finding the

performance metrics like queue length and blocking

probabilities of mappers and resumable probability of

reducers in shuffle phase.

4) Numerical illustration is carried out with some

examples and outlined the conclusions.

The remaining part of this paper is organized as follows. 

The relevant literature is presented precisely in Section 2 and 

the basics of the Map-Reduce model and the mathematical 

model, which is covering the generalized equations with all 

possible cases and the transitional state diagram, are explained 

in Section 3 and the numerical evaluation results and 

discussions of the proposed model are presented in Section 4. 

Conclusions and future scope of this work are given in Section 

5. 

2. LITERATURE SURVEY

A lot of research has been carried out, in providing the 

solutions to the challenges [5] in handling the large volumes 

of data using the Map-Reduce framework. The parallel 

processing approach [6] is the core part of Big Data processing 

is implemented with the Map-Reduce technique. Former 

researchers [7-10] are focused on the research challenges and 

opportunities equipped with the Map-Reduce framework [11]. 

Map-Reduce framework supports all types of data integration 

including structured, semi-structured and unstructured also. 

The researchers analyzed the behavior of Map-Reduce model 

with On Demand Integration (ODI) capabilities while 

processing the Bigdata [12].  

Prasad et al. [13] concentrated on the performance and its 

related issues of Hadoop storage, processing and leverage 

capacity. According to Thanekar et al. [14], the performance 

improvement of Map-Reduce model can be possible with the 

enhancement of NameNode capabilities, which are used to 

reduce the work with bottlenecks management. Utilization of 

the dynamic schedulers [15] and job scheduling [16] helps in 

improving the performance of the MapReduce process. The 

performance can also be improved using the search space 

reduction process based on the patterns and user perspective 

[17]. The mining and analytical techniques also helpful in 

recognition of patterns for improving search space and 

processing jobs cost reduction. 

The performance metrics plays an important role in 

providing the assurance to the techniques for improving the 

performance of the Map-Reduce framework. Most of the 

former researchers [9, 10] focused on analyzing the system 

performance metrics by adopting different queuing models. 

Mak and Lundstrom [7], described an accurate and 

computationally efficient method for predicting the 

performance of a class of parallel computations, which are 

running on the concurrent systems. Yang et al. [1], described 

the performance model for better understanding of the impact 

of each component on overall program performance, and 

verified it using a small cluster. The results from these 

experiments indicated that their model can predict the 

performance of Map Reduce system and its relation with the 

configurations. Herodotou [18] presented the data flow and the 

cost information at the fine granularity of mapping and 

reducing phases of a job execution. These models can be used 

to estimate the performance of the MapReduce jobs and to find 

the optimal configuration settings to while running the jobs. 

Emanuel Vianna, Giovanni Comarela, Tatiana Pontes 

addressed the challenge of modeling Hadoop workloads, 

which can exhibit the intra-job precedence constraints and the 

synchronization delays. This approach extends the solutions 

based on a hierarchical model, where the execution flow of a 

parallel application is represented by a precedence tree and the 

contentions at the physical resources are captured by a closed 

queuing network [19]. Salah and Calero [20] are aimed to 

investigate the analytical model by adopting queuing theory in 

data centers of the big data. The new queuing model developed 

the Map Reduce programming model accurately and 

discovered the nature of the programming model. The 

utilizations and mean waiting times of Mapper and Reducer 

are obtained from this model. The effect of the workload 

(number of Mapper slots) on the system performance (i.e., 

utilization) is presented with relevant statistics. Ke and Park 

[3], proposed model presented the failures and repairs of the 

map-reduce servers in detail.  

From the analysis on the relevant literature, it is noted that 

the efforts of the researchers regarding to the analytical 

evaluation of MapReduce with queuing models, doesn’t 

considered the time factor in experimental evaluations. 

According to our knowledge, this transient queuing model 

approach does not adopted by any researcher in MapReduce 

analytics till date. Inspired from the former researches [4, 21] 

on transient queuing models, in this research to fulfill the 

research gaps, a transient finite server queuing model with 

infinite buffer assumption is adopted for investigating the 

performance of Hadoop MapReduce model. The following 

section describes the Hadoop MapReduce Transient Queuing 

model. 
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3. HADOOP MAPREDUCE TRANSIENT QUEUEING 

(HMRTQ) MODEL 

 

In this paper, an attempt has been made to frame a model 

for MapReduce computing system by considering the M/M/C 

Transient queuing model where C is sum of number of 

mappers and number of reducers available in the system. 

The proposed time dependent performance model is 

analyzed by the first order difference differential equations 

approach. To evaluate the dynamic behavior of the 

MapReduce model, a transient queuing analysis has been 

carried out for to find various performance metrics like 

average queue length, blocking probabilities of mappers and 

reducers. The basic architecture of the Hadoop MapReduce 

model is shown in the following Figure 1. 

 

 
 

Figure 1. Architecture of Hadoop MapReduce Model (REF) 

 

The Hadoop MapReduce distributed processing is modeled 

as multi server queuing which is shown in Figure 2. 

 

 
 

Figure 2. Hadoop mapreduce distributed process model with 

multi server queuing 

 

3.1 Assumptions 

 

The total number of mappers and reducers are treated as the 

number of servers in process. Our queuing model is the finite 

server queuing model with specific number of mappers and 

reducers. For smooth running of our proposed system we made 

some assumptions are: 

➢ The arrival rate of the job arrivals to the system follows 

the Poisson distribution.  

➢ The completion times of both mappers and reducers 

follows the exponential distribution.  

➢ The accepted jobs to the system are queued in FIFO 

manner. 

➢ When all mappers are busy, the new jobs are not be 

considered for processing. 

➢ The failures of mappers and reducers are not considered. 

➢ HMRTQ has infinite capacity. 

 

3.2 Model input parameters and performance metrics 

 

When a new job arrives at HDFS, the splitting process at 

mappers will starts and the arrived job are moves on to the 

outgoing HDFS after completing the process of mapping, 

shuffling and reducing. In this work an assumption is made 

that the jobs are assumed to arrive at the HMRTQ and the job 

will get computing service in two phases are mappers along 

with shuffling and reduce phases. In general, the job arrival 

time and its processing time in MapReduce are vary over time, 

because of the dynamic change that takes place in internet 

traffic, bandwidth consumption and users’ behavior etc. So, 

analyzing the HMRTQ behavior as a function of time is the 

major challenge faced by the former researchers [5, 11]. This 

paper aimed to study and analyze the performance issues from 

the perspective of a transient queuing model design. 

In our model, the intricacies associated with the complexity 

of the analytical model and the model considered here is 

confined to three mappers and two reducers. The relevant state 

transition diagram is presented in Figure 3 for M/M/5 transient 

queuing model of five servers (i.e. three mappers and two 

reducers). This diagram depicts the all possibilities of cases, 

that the state change from one to another, at the instance of a 

job arrival, engagement of servers (mappers and reducers) in 

handling of jobs and their respective completion. State 

diagram represents a state as (m.n) where m indicates the 

number of mappers engaged in executing the task given, and 

n indicates the number of reducers performing designated task 

after completion of tasks by mappers. 

 

 
 

Figure 3. State transition diagram for 3 Mappers and 2 

reducers model 

 

On the basis of the above state transition diagram, the 

following transitional differential equations are given for all 

possible cases at the time interval ‘t’. 

Let Pm,n be the probability of ‘m’ mappers, which are busy 

in providing the service to the tasks at the rate of µ1 and ‘n’ 

represents the number of reducers involved in providing the 

service at the rate of µ2. 

Case 1: When all mappers and all reducers are idle, 

 

P1
0,0(t) = -(λ)P0,0(t)+μ2P0,1(t) (1) 

 

Case 2: When only one mapper is busy and the reaming 

mappers and reducers are free, 

 

P1
1,0(t) = -(λ+ μ1) P1,0(t)+μ2P1,1(t)+ λ P0,0(t) (2) 
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Case 3: When one mapper and one reducer is busy, 

 

P1
1,1(t) = -(λ+ μ1+ μ2) P1,1(t) + μ1P1,0(t) + μ2 P1,2(t) +λ 

P0,1(t) 
(3) 

 

Case 4: When one reducer is busy and the remaining are idle, 

 

P1
0,1(t) = -(λ+ μ2) P0,1(t) + μ1P1,0(t) + μ2 P0,2(t) (4) 

 

Case 5: When two mappers are busy, 

 

P1
2,0(t) = -(λ+ μ1) P2,0(t) + μ2 P2,1(t) + λ P1,0(t) (5) 

 

Case 6: When two mappers and one reducer are busy, 

 

P1
2,1(t) = -(λ+ μ1+ μ2) P2,1(t) + μ1P3,0(t) + μ2 P2,2(t) + λ 

P1,1(t) 
(6) 

 

Case 7: When two mappers and two reducers are busy, 

 

P1
2,2(t) = -(λ+μ1+ μ2) P2,2(t)+μ1P3,1(t)+λP1,2(t) (7) 

 

Case 8: When one mapper and two reducers are busy, 

 

P1
1,2(t) = -(λ+ μ1+ μ2) P1,2(t) +μ1P2,1(t) +λP0,2(t) (8) 

 

Case 9: When all reducers are busy and all mappers are idle, 

 

P1
0,2(t) = -(λ+ μ2) P0,2(t) + μ1P1,2(t) (9) 

 

Case 10: When all mappers are busy and all reducers are idle, 

 

P1
3,0(t) = -(μ1) P3,0(t) + μ2 P3,1(t) + λ P2,0(t) (10) 

 

Case 11: When all mappers are busy and only one reducer is 

busy, 

 

P1
3,1(t) = -(μ1+ μ2)P3,1(t)+μ2 P3,2(t)+λP2,1(t) (11) 

 

Case 12: When all mappers and all reducers are busy, 

 

P1
3,2(t)=-(μ1+μ2) P3,2(t)+λ P2,2(t) (12) 

 

The Average Queue Length, Blocking Probability of the 

mappers and Waiting Probability of shuffle Phase are 

presented based on the above derived transitional differential 

equations. These metrics are calculated for T time intervals, 

after that the averages are computed. The Probability generator 

function is defined as follows: 
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3.2.1 Average queue length of the system (L) 

Depending on the inter-arrival times between the jobs and 

the completion time, the number of jobs in the system is 

varying from time to time. At any given time interval, the 

number of jobs under processing can be a random number.  

The Average Queue Length is defined for the 3x2 

MapReducer at the specific time ‘t’ is calculated as: 
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i.e. L(t)=0*p(0,0)+1*p(0,1)+2*p(0,2)+1*p(1,0)+2*p(1,1)+ 

3*p(1,2)+2*p(2,0)+3*p(2,1)+4*p(2,2)+3*p(3,0)+4*p(3,1)+ 

5*p(3,2) 
 


=

=
T

t

tLL
1

)(  

 

3.2.2 Blocking probability of mappers or blocking probability 

of the system (BPm) 

When all the mappers are busy in processing the jobs, the 

new arrival of the jobs are rejected by the system, due to the 

mapper does not allow the new jobs under overloading. The 

probability of number of jobs are rejected or blocked are 

treated as the Blocking Probability of Mappers. The Blocking 

Probability of Mappers will be: 

 

)2,3()1,3()0,3()( ppptBPm ++=  


=

=
T

t

mm tBPBP
1

)(  

 

3.2.3 Waiting probability of shuffle phase (WPs) 

When all the reducers are busy in processing jobs completed 

by the mappers, the new or recent jobs completed by the 

mappers should wait in shuffle phase till the reducer become 

free. In this case, the probability of number of jobs is waiting 

in shuffle phase treated as the “Waiting Probability” of Shuffle 

Phase. It is calculated with the following formula. 

 

)2,3()2,2()2,1()2,0()( pppptWPs +++=  


=

=
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ss tBPWP
1

)(  

 

 

4. NUMERICAL EVALUATION 

 

Numerical evaluation has been carried out, to assess the 

effect on MapReduce performance, for various combinations 

of the input parameters λ, µ1and µ2, where m=3 and n=2. For 

various transient values of ‘t’ from 0.2 to 1, with an interval of 

0.2 (number of intervals T=5), the performance metrics and 

the averages are calculated with the help of the MATLAB 

numeric computing platform. The computational process can 

be divided in to three scenarios based on values of λ, µ1, and 

µ2, where one is varied and the other two are fixed. They are 

called as λ increasing, µ1 increasing and µ2 increasing 

scenarios. For all these scenarios, the performance metrics and 

their averages are calculated for different values of ‘t’ in range 

from 0.2 to 0, where m=3 and n=2.  

 

4.1 λ increasing scenario 

 

Oftenly the arrival rate of the jobs to the system are varied 

because of the user behavior, density of network traffic and 

availability of bandwidth etc. In this scenario, the metrics that 

are calculated for increasing values of λ and a fixed values of 

µ1 = 0.9 and µ2=0.8 for t in range from 0.2 to 1 with the 

incrimination of 0.2. The metrics are calculated for different 

values of λ ranging from 0.4 to 0.7 are presented in Table 1. 

 

4.2 µ1 increasing scenario 

 

Frequently the job completion rate at the mappers phase 

may be varied, because of the time taken for job computational 
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time, i.e. the time will be low for short jobs and will be high 

for long jobs. In this scenario the metrics are calculated for 

increasing values of µ1 and the fixed values of λ=0.5 and 

µ2=0.8 for t in range from 0.2 to 1 with increment of 0.2. The 

metrics are calculated for different values of µ1, which is in 

range from 0.6 to 0.9, are presented in Table 2. 
 

Table 1. Effect of various performance metrics for λ 

Increasing Scenario 
 

 t  

 0.2 0.4 0.6 0.8 1  
λ Queue Length L(t) L 

0.4 0.0797 0.1575 0.2323 0.3033 0.3701 0.19048 

0.5 0.0996 0.1969 0.2904 0.3792 0.4628 0.23815 

0.6 0.1195 0.2362 0.3484 0.4549 0.5551 0.28568 

0.7 0.1394 0.2756 0.4064 0.5304 0.6469 0.33312 

 Blocking Probability of Mappers BPm(t) BPm 

0.4 0.0001 0.0005 0.0013 0.0026 0.0043 0.00147 

0.5 0.0001 0.0009 0.0025 0.0048 0.0079 0.0027 

0.6 0.0002 0.0015 0.0041 0.008 0.0128 0.00443 

0.7 0.0004 0.0023 0.0062 0.012 0.0191 0.00667 

 Waiting Probability of Shuffle Phase WPs(t) WPs 

0.4 0 0.0002 0.0007 0.0019 0.0038 0.0011 

0.5 0 0.0003 0.0011 0.0029 0.0056 0.00165 

0.6 0 0.0004 0.0016 0.0039 0.0076 0.00225 

0.7 0 0.0005 0.0021 0.0051 0.0099 0.002933 
 

Table 2. Effect of various performance metrics for µ1 

Increasing Scenario 

 

 t  

 0.2 0.4 0.6 0.8 1  
µ1 Queue Length of the system L(t) L 

0.6 0.0997 0.1978 0.2932 0.3851 0.4731 0.24148 

0.7 0.0997 0.1975 0.2922 0.3831 0.4695 0.24033 

0.8 0.0996 0.1972 0.2913 0.3811 0.4661 0.23922 

0.9 0.0996 0.1969 0.2904 0.3792 0.4628 0.23815 

 Blocking Probability of Mappers BPm(t) BPm 

0.6 0.0001 0.001 0.0028 0.0057 0.0096 0.0032 

0.7 0.0001 0.0009 0.0027 0.0054 0.009 0.00302 

0.8 0.0001 0.0009 0.0026 0.0051 0.0084 0.00285 

0.9 0.0001 0.0009 0.0025 0.0048 0.0079 0.0027 

 Waiting Probability of Shuffle Phase WPs(t) WPs 

0.6 0 0.0001 0.0005 0.0014 0.0029 0.000817 

0.7 0 0.0002 0.0007 0.0019 0.0037 0.001083 

0.8 0 0.0002 0.0009 0.0023 0.0047 0.00135 

0.9 0 0.0003 0.0011 0.0029 0.0056 0.00165 

 

Table 3. Effect of various performance metrics for µ2 

Increasing Scenario 

 

 t  
Time 0.2 0.4 0.6 0.8 1  

µ2 Queue Length of the System L(t) L 

0.6 0.0997 0.1978 0.2932 0.3851 0.473 0.241466 

0.7 0.0997 0.1975 0.2922 0.3831 0.4694 0.240316 

0.8 0.0996 0.1972 0.2913 0.3811 0.4661 0.239216 

0.9 0.0996 0.1969 0.2904 0.3792 0.4629 0.238166 

 Blocking Probability of Mappers BPm (t) BPm 

0.6 0.0001 0.0009 0.0026 0.0051 0.0084 0.00285 

0.7 0.0001 0.0009 0.0026 0.0051 0.0084 0.00285 

0.8 0.0001 0.0009 0.0026 0.0051 0.0084 0.00285 

0.9 0.0001 0.0009 0.0026 0.0051 0.0084 0.00285 

 Waiting Probability of Shuffle Phase WPs(t) WPs 

0.6 0 0.0002 0.001 0.0025 0.0051 0.001466 

0.7 0 0.0002 0.0009 0.0024 0.0049 0.0014 

0.8 0 0.0002 0.0009 0.0023 0.0047 0.00135 

0.9 0 0.0002 0.0009 0.0023 0.0044 0.0013 

4.3 µ2 increasing scenario 

 

Timely, the job completion rate at the reducers phase also 

be varied due to irregularities in job computational time i.e. the 

time is less for the shorter jobs and is high for longer jobs. In 

this scenario, the metrics are calculated for increasing values 

of µ2, which is in range from 0.6 to 0.9 and the fixed values 

for λ=0.5 and µ1=0.8 and for ‘t’ the range is in 0.2 to 1 is 

presented in Table 3. 

 

4.4 Time increasing scenario 

 

Commonly, the job completion rate at the reducers phase 

can be varied, because of the variations in time taken for job 

execution. The computational time will be low for shorter jobs 

and it will be high for longer jobs. In this scenario the metrics 

are calculated for increasing values of t ranging from 0.2 to 1 

and a fixed values of λ=0.5 and µ1=0.8 is. 

Based on the aforementioned simulation results the 

following graphs are plotted for visual presentation of the 

results. 

From Figure 4, It is observed that the queue lengths are 

increasing with the increase in values of parameter λ at fixed 

service rates of mappers and reducers. With the increase in 

task arrival rates, the system becomes busy in providing 

services, due to which the queue length increases. The growth 

rate of queue length shows a marginal decrease as arrival rate 

increases at a constant rate. 

 

 
 

Figure 4. State transition diagram for 3 Mappers and 2 

Reducers Model 

 
 

Figure 5. Impact of Blocking probability of mappers and 

waiting probability of shuffle phase for λ Increasing Scenario 

 

From Figure 5, we observed that the blocking probability of 

mappers is low initially and with the increase in job arrival rate, 
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the blocking probability of mapper is high compared to 

reducer. This happend because the task should be completed 

by mapper first and subsequently to be done by reducers. It 

shows clearly that the blocking probabilities of mappers 

should be optimized more than reducer phase. 

From Figure 6, the decrease in queue length is observed 

with the increase in service rate of mappers at fixed arrival rate 

of the tasks. It suits the practical issue of enhancing the service 

capacity of mappers, which completes tasks quickly and 

causes to decrease in queue length. 

From Figure 7, It is observed that the decrease in blocking 

probability takes place when mappers service rate progresses 

and it also causes to the increase in blocking probability of 

reducers as the tasks finishes early with mappers. 

 

 
 

Figure 6. Impact of average queue length for µ1 

increasing scenario 

 

 
 

Figure 7. Blocking probabilities of mappers and reducers at 

µ1Increasing Scenario 
 

 
 

Figure 8. Impact of average queue length for µ2 increasing 

scenario 

From Figure 8, we noticed a slight decrease in queue lengths 

with the increase in service rate (µ2), as the reducers server 

capacity used to finish the tasks, which are handed over from 

mappers.When a graph is plotted by considering mappers 

service rate on X-axis at fixed task arrival rate as 0.5 and fixed 

reducers service rate, µ2 as 0.8 can be shown as in Figure 9. 

 

 
 

Figure 9. Impact Blocking probability of mappers and 

Resuming probability of reducers at shuffle phase for µ2 

Increasing Scenario 

 

 
 

Figure 10. Impact Blocking probability of mappers and 

Waiting probability at shuffle phase for µ2 Increasing 

Scenario 

 

From Figure 10, we find that the time progresses blocking 

probability of mappers is constant as it doesn’t affected by the 

service rate changes of reducers. With the increase in service 

rates of reducers, the blocking probability of reducers 

decreases. 

 

4.5 Influence of the time under progress  

 

In this subsection, to investigate the behavior of the various 

metrics when time is in progress (from 0.2 to 1), where the 

other parameters λ, µ1 and µ2 has fixed values.  

For this purpose the following graphs are plotted as per the 

metrics obtained in the Table I for various values of λ and the 

fixed values of µ1=µ2=0.8. Figure 11 is presenting that, the L 

will be increases when time is progress in straight line manner, 

which is true for all values of λ, when the mappers and 

reducers have the constant processing times. For the initial 
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values of t i.e. when the beginning of the system the variation 

of L is too low, whereas the large values of t, i.e. the system is 

in running phase the significant of variation of L is identified. 

For high values of λ the L is also gets highest values. 

Figure 12 is presenting that, the BPm will be increased when 

the time is in progress, which is true for all values of the λ, is 

happened when the mappers and reducers have the constant 

processing times. For the initial values of t i.e. when the 

beginning of the system the variation of BPm is low whereas 

the large values of ‘t’, i.e. the system is in running phase the 

significant of variation in BPm is identified. For high values of 

λ the BPm is also gets highest values. 
 

 
 

Figure 11. Impact of the average queue length for different 

values of λ and fixed values of µ1 and µ2 

 

 
 

Figure 12. Impact on average queue length for different 

values of the λ and the fixed values of µ1 and µ2 
 

 
 

Figure 13. Impact of the average queue length for different 

values of λ and fixed values of µ1 and µ2 

From Figure 13, it is identified that, the WPs will be 

increases when time is in progress, which is true for all values 

λ, when the mappers and reducers have the constant processing 

times. For the initial values of ‘t’, i.e. when the beginning of 

the system the variation of WPs is low, whereas the large 

values of ‘t’ i.e. the system is in running phase the significant 

of variation in WPs is identified. For high values of λ the WPs 

is also gets highest values. 

 

 

5. CONCLUSIONS 

 

In this work, we proposed the transient analytical queuing 

model to address the limitations in performance modeling of 

the Hadoop MapReduce frameworks. This study investigated 

the impact of various performance metrics, for different values 

of job arrival rate and job completion times for both mappers 

and reducers based on time. The performance metrics Average 

Queue Length, Blocking Probability of Mappers and Waiting 

Probability of Shuffle Phase are calculated with time for the 

given input values of the job arrival rate, job completion times 

of the mappers and the reducers. The numerical experiments 

conducted using MATLAB on MapReduce, helped in 

calculating various metrics under different configurations of λ, 

µ1 and µ2 with time ‘t’. From the obtained results, it is noted 

that the queue length will do increases, when for fixed values 

of computational times. 

In future, we are planning to expand the proposed analytical 

model to evaluate the dependencies among various metrics of 

map reduce framework. Apart from this we would like to 

customize resource utilization and job scheduling algorithms 

to achieve the high performance in queuing and processing the 

jobs. 
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