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The thermal fault diagnosis of automatic production machinery and equipment and the 

analysis of its reliability are of positive meanings for promoting the advancement of 

diagnosis technology and guaranteeing the safe and reliable operation of the equipment. 

For this reason, this paper attempts to research the thermal fault diagnosis of transmission 

system in automatic production machinery and equipment and analyze its reliability. At 

first, with a transmission device as an example, thermal fault diagnosis was performed on 

the device and its reliability was analyzed; then, the paper gave the overall structure of the 

thermal fault diagnosis system and elaborated on the diagnosis flow. After that, the 

distribution of water temperature in radiator water channels was described in detail, and a 

temperature model of the transmission device were constructed. At last, this paper fully 

considered the possible interference factors in actual production, and used 3 kinds of 

parameter models for systematic identification, and the experimental results proved the 

effectiveness of the proposed model. 
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1. INTRODUCTION

There is a wide variety of automatic production machinery 

and equipment, when the devices are running, some of the 

components could be used cooperatively with intelligent, 

automatic, digital, networked controllers and sensors to 

perform various mechanical motions and satisfy users’ 

personalized requirements to the greatest extent [1-7]. These 

automatic production machinery and equipment are generally 

consisted of different modules, including driver, speed change, 

transmission, work, braking, protection, lubrication, and 

cooling, etc., and they are widely used in industry, agriculture, 

commerce, service, and other fields [8-10]. 

In fault diagnosis of automatic production machinery and 

equipment, more than 60% of the faults are electrical 

malfunction [11-16]. Since the internal environment of such 

equipment usually has the characteristics of large current, high 

voltage, and slow heat dissipation, when operating 

continuously for a long time, the temperature rise will affect 

the operational stability of the equipment, and further resulting 

in thermal failure of the equipment [17-21]. Manual hand-held 

infrared thermometers can measure the temperature of the 

equipment easily at close range, and accurately locate the 

positions of the thermal faults, but this method requires large 

workload and it couldn’t monitor the working status of the 

equipment in real time [22-25]. Therefore, thermal fault 

diagnosis and reliability analysis play a positive role in 

promoting the advancement of fault diagnosis technologies 

and ensuring safe and reliable operation of automatic 

production machinery and equipment, and they are of certain 

practical value.  

Infrared thermal imaging can diagnose faults in electrical 

equipment without interrupting the operation. Li [26] 

introduced the principle of infrared imaging technology, and 

gave a detailed analysis and introduction of effective diagnosis 

methods; through actual application examples of infrared 

image segmentation algorithm in internal and external fault 

detection of electrical equipment, the effectiveness of the 

algorithm was verified in the paper. Aiming at the problem that 

the infrared image of a single band cannot fully reflect the real 

temperature information of the target, Lu et al. [27] explored a 

thermal fault diagnosis method for electrical equipment in 

substations based on image fusion, proposed an infrared image 

registration and fusion algorithm for the said matter, and 

constructed an image segmentation and recognition model 

based on mask area Convolutional Neural Networks (CNN); 

then, the paper elaborated on the specific steps of thermal fault 

diagnosis of electrical equipment in substations and 

demonstrated the effectiveness of the model through 

experiments. Wei et al. [28] proposed a thermal fault diagnosis 

model based on improved Bayesian optimization; in order to 

make use of the effective network structure of image 

classification, it created ResNet10 and ResNet14 with smaller 

parameter sizes based on CNN and residual blocks, selected 

hyper parameters using an improved Bayesian optimization 

method based on Gaussian process, and set constraints on 

validation accuracy and parameter sizes to improve the 

performance of the algorithm. Zheng et al. [29] established a 

balance equation between heat generation and heat dissipation, 

designed a thermal experiment, and deduced the relationship 

between the heating of busbar joint and operating environment 

according to the experimental results; the paper also proposed 

that, under different operating conditions and environments, 

the key to determining the specific quantitative relationship 

between temperature and various influencing factors is 

ascertaining some operating parameters of the operating 

environment. Yang et al. [30] proposed a new method for 

common fault diagnosis of large equipment in thermal power 
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plants; based on data collected from the SCADA system, the 

paper developed a hybrid intelligent data mining framework to 

extract hidden diagnostic information, and tested it with all 

data in the thermal power plant SCADA system database 

which is used for boiler fault diagnosis. 

For the purpose of effectively solving problems lying in 

automatic production machinery and equipment such as 

inability to perform real-time monitoring of thermal faults, low 

reliability of power supply, and delay in early warning of 

heating state, and finally realizing accurate diagnosis and 

timely early warning of thermal faults, this paper conducted 

related research and the main contents of this paper are 

arranged as follows: 1) research thermal fault diagnosis and its 

reliability with the transmission device of automatic 

production equipment as the example, and give a detailed 

introduction to the overall structure of the thermal fault 

diagnosis system and the corresponding diagnosis flow; 2) 

describe the distribution of water temperature in radiator water 

channels using coil resistance value, and build a temperature 

model for the transmission device of automatic production 

equipment; 3) fully consider the interference factors in actual 

production, and apply the three parameter models: the Least 

Square Method (LSN) parameter model, the Radial Basis 

Neural Network (RBNN) parameter model, and the 

Generalized Regression Neural Network (GBNN) parameter 

model, for systematic identification; then, compare the 

performance of the three parameter models and use 

experimental results to verify the effectiveness of the proposed 

temperature model.  

 

 

2. FLOW OF THERMAL FAULT DIAGNOSIS 

 

If a large-capacity automatic production equipment is 

running at full load or over load status, the equipment will 

have heat loss and generate a huge amount of heat in the 

enclosed environment inside the equipment, and the heat must 

be effectively dissipated through the cooling system, 

otherwise the high temperature generated by the accumulation 

of heat will cause huge damages to iron core, coil, lead wire, 

insulating material and other structural parts of the equipment, 

seriously endangering the safe and stable operation of the 

equipment. In a large-capacity automatic production 

equipment, the transmission device is the core component, and 

water-cooling heat dissipation device is usually adopted as its 

cooling system, therefore, this paper took the transmission 

device of automatic production equipment as the example to 

carry out thermal fault diagnosis and reliability analysis. 

Figure 1 shows the overall structure of the thermal fault 

diagnosis system. According to the general reasoning idea of 

thermal faults, the system can be divided into several modules, 

including: fault rule library, mathematical model library, 

operation database, artificially-aided diagnosis information 

preprocessing, logical reasoning engine, thermal fault 

determination and processing, equipment control, and human-

computer interaction interface, etc.  

Combining with the actual operational characteristics of 

automatic production equipment, this paper gave a preliminary 

design of the flow of equipment thermal fault diagnosis. 

Figure 2 shows the specific flow of thermal fault prediction. 

According to the operating parameters extracted from the 

equipment management information system, the diagnosis 

system regularly judges the current working conditions of the 

equipment, construct standard temperature model under the 

premise of stable equipment operation, and set the threshold 

based on the standard value of each temperature measuring 

point. When the measured temperature value is greater than 

the threshold value, the diagnosis system will immediately call 

other operating parameters to further judge whether there is a 

thermal fault. Therefore, establishing the standard temperature 

model is very important for the thermal fault diagnosis of 

automatic production equipment, and it is also the primary 

problem to be solved in this paper. 

 

 

 
 

Figure 1. Overall structure of thermal fault diagnosis system 
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Figure 2. Flow of thermal fault prediction 

 

 

3. CONSTRUCTION OF THE TEMPERATURE 

MODEL 

 

In an automatic production equipment, between the inlet 

and outlet of the water cooling radiator, there’re certain 

differences in the water temperature at different positions due 

to the different lengths of radiator water channels in the 

winding coils of the motor of the transmission device, but 

there’s a certain relationship between the coil resistance and 

the water temperature in water channels, so this paper used the 

resistance value of the coil to characterize the distribution of 

water temperature in radiator water channels. Assuming: 

β=1/(235+ψ0) represents the temperature coefficient, ψ0 takes 

the normal temperature 15℃, then the coil resistance is 

E=σ0CU[1+β(ψ-ψ0)]CUS. According to this equation, as the 

temperature of the cooling water rises, the resistance of the coil 

will increase gradually.  

To this end, in this paper, an infinitesimal section with a 

length of da was taken from position τ of the winding coil of 

the transmission device, assuming: ψaτ(a) represents the 

average temperature of copper at τ, S represents the equivalent 

cross-sectional area, ξτ represents the skin effect coefficient, 

then Formula 1 gives the formula for calculating the equivalent 

resistance of the winding coil: 

 

( ) ( )0 01 a

da
E a a

S
     = + −    (1) 

 

Assuming: CUτ represents the current in the hollow winding 

coil, then the heat W1τ generated by the resistance of the 

winding coil in the da section can be calculated by Formula 2: 

 

( ) ( )2 2

1 0 01 a

da
W CU E a CU a

S
        = = + −    (2) 

Assuming: ψτ(a) represents the temperature of cooling 

water at τ, dψτ(a) represents the difference of cooling water 

temperature of da section, υ represents the flow rate of water, 

SH represents the specific heat of water, then the heat W2τ 

absorbed by water flow passing through the da section of the 

winding coil in unit time can be calculated by Formula 3: 

 

( )2W SHd a  =  (3) 

 

Assuming: all the heat generated by the resistance of the 

winding coil is taken away by the cooling water, then there is 

W1τ=W2τ, namely: 

 

( ) ( )2

0 01 a

da
CU a SHd a

S
        + − =    (4) 

 

According to Newton’s law of heat dissipation, at position 

τ, there is a temperature difference ψdτ(x)-ψτ(a) between the 

winding coil and the cooling water, the winding coil transfers 

heat to the cooling water, and the transferred heat amount W3τ 

can be calculated by Formula 5: 

 

( ) ( )3 1 dW a a GI da     = −    (5) 

 

Assuming: GIτ and rm respectively represent the perimeter 

and radius of the inner cavity of winding coil, 

β1=(0.023EgOeμ)/rm represents the surface heat dissipation 

coefficient, then, under the condition of reaching a relatively 

stable thermal equilibrium with a long heating time, there is 

W1τ=W2τ=W3τ. When a is 0, the inlet water temperature of the 

water cooling radiator is represented by ψτ(0), then the 

distribution of water channels along the length of the winding 

coil can be calculated by Formula 6: 

 

( ) 0 0

1 1 z

Ma g

    
 

    
= − + − −    
    

 (6) 

 

where, 

 

( )

2

1 0

2

1 1 0

CU GI

SH S SH CU

  

  

  


    
=

−
 (7) 

 

If the length of coil wire is represented by K, then when a=K, 

the water outlet temperature of the water cooling radiator can 

be represented by ψτ(ψ); after bringing in a=K, and expanding 

with Taylor series, we can get: 

 

( ) 0 0

2

1 0

2 41 0

2 2 2

0

2

1 1

1 1

1
1 ...

2 2

M

t

K

K

K SHS
CU CU

SHS K

SHS GI

 




 

   
 

  

   

   

 

    
= − + − −    
    

   
   

    + + +       +
    

 
(8) 

 

From above analysis, it is not difficult to find that, the 

temperature of winding coil is related to the temperature of the 

inlet and outlet cooling water of the water cooling radiator, the 

volume of cooling water, and the current flowing through the 

coil, and the relationship is non-linear. 
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Based on the established equivalent model, the following 

distribution function of winding coil temperature can be 

established: 

 

( )

( )

0

1

0 2

1 1 0

1

1

d

e

K

S GI
z

S GI CU





  

 



 

    

 
= − 
 

   
 + − −  

−     

 (9) 

 

where, 

 

( )

2

1 0

2

1 1 0

CU GI

SH S GI CU

  

  

  


    
=

−
 (10) 

 

Performing power series expansion on the above formula, 

it’s shown that, for the distribution function, except for some 

specific coefficients, the rest nonlinear relationships are 

similar to that of Formula 8. 

 

 

4. PARAMETER IDENTIFICATION OF THE 

TEMPERATURE MODEL 

 

Since some parameters of the standard temperature model 

of winding coil are difficult to determine, and the physical heat 

transfer mechanism can hardly be explored, this paper built a 

temperature model equivalent to the system of the automatic 

production equipment based on input and output data of the 

equipment information management system, and fully 

considered the possible interference factors in actual 

production. Further, a LSM model, a RBNN model, and a 

GRNN model were applied for systematic identification, and 

their performance was compared.  

In LSM, b is a known function about independent variable 

A and undetermined parameter Y, which is represented by 

b=g(A,Y). That is, Ai(a1l,a2l,...aol)(l=1,2,...m), Y=(y1,y2,...yn). 

Given m(A,b):(Ai,bi)(l=1,2,...m), we can obtain a parameter Y 

that ensures W is the minimum: 

 

( )
2

1

,
m

i i

i

W b g A Y
=

= −    (11) 

 

Since b and y have a linear relationship, this paper used a 

linear combination φ1(A),φ2(A),...φn(A) of n(n<m) functions to 

replace the functional relationship of m pairs, that is: 

 

( ) ( ) ( )0 1 1 2 2 ... n nb y y A y A y A  = + + + +  (12) 

 

where, φi(A)(i=1,2,...,n) is a known function of A=(a1,a2,...,ai). 

That is, set a M×N-dimensional matrix, X=[P1,P2,...Pn], 

wherein the column vectors Pτ=[Pτ(A1),Pτ(A2),...Pτ(Am)]T and 

B=(b1,b2,…bm)T, then the equation XT XY=XTB is satisfied, and 

the following equations can be obtained: 

 

( )
1

TY X X XB
−

=  (13) 

 

( )TW B B XY= −  (14) 

 

According to above formulas, for nonlinear parameter 

systems, the Newton's method can be used to linearize them at 

first, and then the above analysis can be used for parameter 

identification. In the proposed temperature model, this paper 

selected the standard temperature value of the motor used in 

the transmission system when it leaves the factory and the 

actual operating data for parameter identification. 

 

 
 

Figure 3. Flow of thermal fault diagnosis based on neural network 
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Figure 4. Structure of the RBNN model 

 

To use RBNN and GRNN to analyze the fault 

characteristics of the transmission system of automatic 

production equipment under thermal fault state, this paper 

determined following feature parameters of the equipment 

under thermal fault state: sub-cooling degree of the winding 

coil, over-heating degree of the winding coil, inlet water 

temperature of water cooling radiator, outlet water 

temperature of water cooling radiator, temperature drop of 

water cooling radiator, temperature of water channels at 

different stages, and water channel length. At the same time, 

three parameters of outdoor dry bulb temperature, indoor dry 

bulb temperature and indoor dew point temperature were 

selected. Figure 3 shows the flow of thermal fault diagnosis 

based on neural network. 

Figure 4 shows the structure of the RBNN model. The 

RBNN constructed in this paper is consisted of three layers: 

input layer, hidden layer, and output layer. The parameters to 

be predicted determined the number of neuron nodes in the 

output layer of the network. Assuming: a represents the input 

sample, b represents the output, DL represents the center of the 

Gaussian function, ||a-DL|| represents the Euclidean norm, ρ 

represents the variance of the Gaussian function, θiL represents 

the weight of connection from hidden layer to output layer, M 

represents the number of hidden layer nodes, then the function 

of the output layer of the network is given by the following 

formula: 

 

( )
2

22

L

L

L

a D
a exp



 −
 = −
 
 

 (15) 

 

( ) ( )2

1

M

i iL L LL
b g a a D 

=
= = −  (16) 

 

The specific calculation steps of the RBNN model are 

described in detail as follows: 

Step 1: Select a set of initial center values DL from the input 

samples; 

Step 2: Calculate the variance value based on Formula 17: 

 

/maxr L =  (17) 

 

Step 3: Calculate b'i(m) based on the following formula: 

 

( ) ( )
1

, ,
N

i l l lL
b m a m D  

=
 =     (18) 

 

Step 4: Update the parameters of the constructed neural 

network as follows: 

 

( ) ( ) ( ) ( )1 qm m z m Φ m  + = +  (19) 

 

( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )

2
1

, ,

l

l l d

l

l l l

z m m
D m D m

m

Φ a m D m a m D m








+ = +

−      

 (20) 

 

( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )

2

2

1

, , | |

l

l l

l

l l l

z m m
m m

m

Φ a m D m a m D m




  





+ = +

−      

 (21) 

 

Assuming: bc(m) represents the expected output of the 

network, λM, λd, and λρ respectively represent the learning step 

size of the three parameters, then there is: 

 

( )

( ) ( )

( ) ( )

( ) ( )

1 1

2 2

, ,

, ,

... ,

T

m m

Φ a m D m

Φ m Φ a m D m

Φ a m D m







   
  

=    
 

    

 (22) 

 

( ) ( ) ( )i cz m b m b m= −  (23) 

 

Step 5: If the network converges or the termination 

condition is met, the iterative calculation stops, and the b'i(m) 

value is output, otherwise, returns to Step 4. 

The GRNN established based on the theory of nonlinear 

regression is consisted of four layers: input layer, pattern layer, 

summation layer, and output layer. The specific calculation 

steps of the model are: 

Step 1: Directly pass the feature parameter input samples of 

the input layer to the pattern layer. 

Step 2: Assume A represents the test data; Ai represents the 

training data corresponding to the i-th neuron, and χ represents 

the smoothing factor, then Formula 24 gives the expression of 

the neuron transfer function of the pattern layer: 

 

( ) ( ) 2/ 2 , 1,2,...,
T

i i iRU exp A A A A i m = − − − =
 

 (24) 

 

Step 3: Assume υτ represents the weight factor of the 

observed value of samples, then Formulas 25 and 26 give the 

neuron summation formulas: 

 

( ) ( ) 2

1
/ 2

m T

QH i ii
V exp A A A A 

=
 = − − −
   (25) 

 

( ) ( ) 2

1
/ 2

m T

Mj i i ii
V exp A A A A 

=
 = − − −
   (26) 

 

Step 4: Divide VMj by VQH to get the network output bi, that 

is: 

 

/   1,2,...,i Mj QHb V V j n= =  (27) 
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

 
 

Figure 5. Temperature measured by thermometer at different 

positions of the transmission device 

 

Subject in this paper is a transmission unit of an automatic 

coal mining device used by a coal mine in 2018. Figure 5 

shows the curve of temperature measured by a thermometer at 

different positions of the transmission unit. According to the 

figure, when the coal mining load of the unit increases, in the 

thermal fault diagnosis system of traditional device motor, the 

color of the coil of 4 winding slots will turn red, and alarm 

content of thermal fault will be prompted. By comparing with 

the temperature of other winding slots, it’s found that the 

temperature difference was relatively large, wherein the 

temperature difference between the slot at position 1 and the 

highest temperature of other normal temperature slots was 

15℃, therefore, the thermal fault alarm of the target 

transmission device motor is not optimistic, it needs to stop 

loading, and restart the unit and apply the load after the reason 

of thermal fault has been identified.  

In this paper, 8 groups of sample data of the transmission 

unit of the automatic mining devices of identical model 

running at normal state were collected and taken as the training 

data of the constructed neural network models. The input of 

the models was 8 sets of parameter sample data, namely the 

outdoor dry bulb temperature, indoor dry bulb temperature, 

and indoor dew point temperature. And the output of the 

models was 7 feature parameters, namely winding coil sub-

cooling degree, winding coil over-heating degree, inlet water 

temperature of water cooling radiator, outlet water 

temperature of water cooling radiator, temperature drop of 

water cooling radiator, temperature of water channels at 

different stages, water channel length. 

Since this paper requires neural network model with output 

results to be as close as possible to the actually measured 

values, the difference between preliminarily predicted values 

and the experimental values was calculated, and the residual 

was obtained and taken as the convergence condition of the 

models, that is, if the residual is less than 0.001, then it’s 

judged that the network model converges; if the preset 

condition is not met, the parameters of the constructed network 

are updated until the residual is less than the pre-set value. At 

this time, the output of the network model is the predicted 

values of feature parameters under the condition that the 

transmission unit is in normal operating state.  

Table 1 lists the residual values of 7 feature parameters one 

by one. As can be seen from the table, the residual values were 

all less than 0.001℃, while the instrument error of actual 

temperature measurement systems is usually around 0.1℃. 

The maximum residual variance of the model was 0.0007, the 

value was relatively small. Judging from the above data values, 

the RBNN model constructed in this paper is of high reliability. 

Table 2 lists the calculation results of residual of different 

parameter models. Through comparison, it can be seen that, 

the residual values of RBNN were all less than 0.001, the 

residual values of GRNN were all less than 0.0074, and the 

maximum residual of the LSM model was 4.2614. The results 

showed that, the RBNN model can meet the prediction 

requirements, while the other two models failed, so this paper 

chose the RBNN model for the parameter identification of the 

temperature model. 

Figure 6 shows the diagnosis correct rates of different-type 

thermal faults of transmission device under different 

temperature thresholds. Specifically, the fault types include: 

overload thermal faults, winding coil short-circuit thermal 

faults, frequent startup thermal faults, moisture or water-

caused thermal faults, insulation and aging thermal faults, 

thermal fault caused by bearing lubricant shortage, and 

radiator failure thermal faults. According to the figure, with 

the increase of threshold, the correct rates of different-type 

thermal faults decrease gradually, and this is more obvious 

with overload thermal faults, frequent startup thermal faults, 

and radiator failure thermal faults. Judging from the corrects 

rate of thermal fault diagnosis of transmission device, taking 

1℃ as the temperature threshold is more appropriate. 

 

 

Table 1. Residual values of RBNN model 

 
Wording condition No. 1 2 3 4 5 6 7 8 

Feature parameter 1 1×10-4 1×10-5 2×10-4 2×10-4 1×10-4 4×10-4 1×10-4 5×10-4 

Feature parameter 2 1×10-5 1×10-4 2×10-4 2×10-4 1×10-4 6×10-4 1×10-4 3×10-4 

Feature parameter 3 4×10-4 5×10-5 2×10-4 3×10-4 5×10-4 4×10-4 4×10-4 5×10-5 

Feature parameter 4 4×10-4 1×10-4 2×10-4 2×10-4 1×10-4 4×10-4 1×10-4 2×10-4 

Feature parameter 5 1×10-4 1×10-5 2×10-4 2×10-4 1×10-4 2×10-4 5×10-4 4×10-4 

Feature parameter 6 2×10-4 4×10-5 3×10-4 2×10-4 5×10-4 5×10-4 1×10-4 5×10-4 

Feature parameter 7 3×10-4 2×10-5 2×10-4 4×10-4 1×10-4 4×10-4 7×10-4 3×10-4 

 

Table 2. Residual values of different parameter models 

 
No. of feature parameter 1 2 3 4 5 6 7 

RBNN 8.1×10-4 8.7×10-4 5.8×10-4 5.4×10-4 1.6×10-4 1.4×10-4 1.1×10-4 

GRNN 1.3×10-4 4.3×10-3 7.2×10-3 7.4×10-3 4.5×10-3 2.3×10-4 2.2×10-3 

LSM 0.0148 0.0259 0.0347 0.0195 1.0274 0.1364 4.2614 
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Figure 6. Correct rate of thermal fault diagnosis under 

different thresholds 

 

 
 

Figure 7. Correct rate of thermal fault diagnosis of different 

models 

 

This paper compared and analyzed the correct rate of 

thermal fault diagnosis of three models: the RBNN model 

constructed in this paper, and two references models, the LSM 

model, and the GRNN model. For LSM model, the thermal 

fault judgment method of dividing into no fault, minor fault, 

and major fault was adopted; while for the RBNN model and 

the GRNN model, the thermal fault judgment method of taking 

a temperature threshold of 1℃ was adopted.  

Figure 7 is a summary of the correct rates under different 

thermal fault judgment methods. RBNN had the highest 

correct rate and the best diagnosis effect, followed by GRNN, 

and the correct rate of the LSM model was the lowest.  

 

 

6. CONCLUSION 

 

This paper studied the thermal fault diagnosis of 

transmission device of automatic production equipment and 

analyzed the reliability. Taking the transmission device of 

automatic production equipment as the example, this paper 

carried out thermal fault diagnosis and reliability analysis, and 

gave the overall structure of the thermal fault diagnosis system 

and the corresponding diagnosis flow. This paper used coil 

resistance to describe the distribution of water temperature in 

radiator water channels, and constructed the temperature 

model for transmission device of automatic production 

equipment. The interference factors in actual production were 

fully considered, and the system identification was carried out 

based on three parameter models. 

In later parts, the paper plotted temperature curves of 

different measuring points on the transmission device of an 

automatic coal mining device, and found out that the thermal 

fault alarm state of the target transmission device motor was 

not optimistic. Then, for the target subject, the temperature 

identification model was tested, and the residual values of 

different parameter models were obtained. After that, the 

RBNN model was selected for the parameter identification of 

the temperature model, and the correct rates of different 

models under different thresholds were compared; finally, it’s 

verified that the RBNN model had the highest correct rate.  
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