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In this paper stagnation boundary layer flow of nanofluid with mixed convection heat and 

mass transfer with Electrical Magneto Hydrodynamic (EMHD) effects over a second-order 

momentum slip boundary condition have been mathematically analysed. The governing 

equations are transformed by similarity variable and the problem becomes coupled third-

order nonlinear coupled differential equations. We use fourth-order Runge Kuta method 

and shooting technique to find the solution. The effect of second-order momentum slip 

condition with linear thermal slip condition has determined. Variation of all nano energy 

conversion parameters depends on different factors has shown graphically. Some of the 

parameters possesses dual solution at different values of second-order velocity slip 

parameter (𝛽1&𝛽2).
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1. INTRODUCTION

The study of viscous incompressible fluid over a slip 

stretching sheet with stagnation fluid problem occurring in 

several engineering processes such as atomic reactor cooling, 

cooling of an enormous metallic plate, polymer expulsion, 

drawing of copper wires, paper creation, hot moving, wire 

drawing, glass-fiber, metal expulsion has increased 

significantly. These applications with second-order slip 

condition are very helpful in the solution of flow problems 

because using of continuum description as compared to 

molecular-based approaches. Ongoing progression in present-

day innovation has intrigued the consideration of specialists 

toward the investigation of warmth move marvels. Along these 

lines, the examination of heat transfer in different basic 

circumstances has increased because of their important utility 

in vitality creation, atomic reactor cooling, cooling of an 

enormous metallic plate in a shower, in polymer expulsion, 

drawing of copper wires, counterfeit strands, paper creation, 

hot moving, wire drawing, glass fiber, metal expulsion and 

metal turning applications, and so on. In this paper, our point 

is centered around the impact of second-order slip velocity 

boundary on stagnation flow over a stretching-sheet with 

mixed convection heat and mass transfer with electrical 

magneto hydrodynamics, which has not been examined before. 

We discuss that increasing the values of second-order 

momentum slip parameters 𝛽1&𝛽2 & electric parameter E with

linear thermal slip parameter we get dual solution for 

temperature profile. Also, we show that the impact of free 

convection parameters 𝐺𝑡 at the thermal flow procedure brings

out the inverse effect of temperature. 

Ahmed [1] worked on Walters Liquid B Model, boundary 

layer flow over a stretching plate. He solved heat transfer 

problem with variable thermal conductivity in two different 

parts, first one is the prescribed surface temperature and 

second one is the prescribed stretching plate heat flux. Ahmed 

[2] Discussed the boundary layer flow of viscous

incompressible fluid over a stretching plate. He explained the

effect of suction parameter with variable thermal conductivity

on temperature field in two different parts, first one is the

prescribed surface temperature and second one is the

prescribed stretching plate heat flux. Anderson [3] researched

the viscoelastic fluid on a stretching surface in the presence of

a transverse magnetic field and obtained the exact analytic

solution of the boundary layer very.

Bachok et al. [4] investigated the time independent 2D 

stagnation point flow of nanofluid on a stretching/shrinking 

sheet and the velocity he assumed is vary with distance from 

stagnation point. Bentwhich [5] investigate the semi-infinite 

assortment of viscous incompressible fluid problem. He 

considered a two-dimensional semi-infinite stream and 

acquired the solution of low Reynold number with stokes 

Oseen solution. Chen [6] discussed the laminar boundary layer 

flow on a linearly stretching sheet. He considered two cases 

first the sheet with prescribed wall temperature and the second 

is heat flux on a continuous surface. Chiam [7] explained the 

solution of the energy equation for the boundary layer flow of 

an electrically conducting fluid under the influence of a 

constant transverse magnetic field over a linearly stretching 

non-isothermal flat sheet.  

Choi et al. [8] was the person who uses nanofluids and 

demonstrated that the expansion of a modest quantity (under 

1% by volume) of nanoparticles to regular warmth move fluids 

expanded the thermal conductivity of the liquid up to around 

multiple times. Crane [9] was the first one who discovered the 

exact solution of heat transfer on the linear stretching sheet. 

Dash et al. [10] considered the magnetohydrodynamics stream, 

warmth, and mass dispersion of an electrically directing zero 
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velocity point stream over an extending/contracting sheet 

considering the synthetic response of diffusing species and 

inside warmth generation/absorption. The oddity of the current 

examination is two-overlap: (I) to dissect the warmth move 

angle (ii) to talk about the effect of resistive electromagnetic 

power on the stream wonders.  

Fang and Aziz [11] acquired a diagnostic arrangement of 

the MHD stream along with a contracting sheet with the main 

request slipstream. Fang et al. [12] investigated the slipstream 

over a penetrable contracting surface with the recently 

proposed Wu's slip speed model. Fang et al. [13] discussed the 

magnetohydrodynamic (MHD) stream under slip condition 

over a porous extending surface is understood systematically. 

The arrangement is given in a closed structure condition and 

is a definite arrangement of the full overseeing Navier–Stokes 

conditions. The impacts of the slip, the magnetic, and the mass 

exchange boundaries are discussed.  

Hayat [14] discuss the aspects of buoyancy force on second-

order magnetic viscous nano-fluid and the effect of different 

parameters like Brownian-motion, viscous dissipation, and 

thermophoresis viewpoints are presented in the detailing of the 

issue. Hsiao [15] explained the transformation issues of 

conjugate conduction, convection, and radiation warmth, and 

mass exchange with thick scattering and attractive impacts 

have been explored. Hsiao [16] discussed the 

magnetohydrodynamic (MHD) stream under slip condition 

over a porous extending surface is understood systematically. 

The arrangement is given in a closed structure condition and 

is a definite arrangement of the full overseeing Navier Stokes 

conditions. The impacts of the slip, the magnetic, and the mass 

exchange boundaries are discussed.  

Hsiao [17] investigated the stagnation nano energy 

conversion problem with a mixed convection boundary value 

problem. Ishak [18] considered the warmth move over an 

extending surface with variable warmth motion in micropolar 

liquids. Ishak et al. [19] the heat transfer over a temperamental 

extending surface with recommended divider temperature has 

been discussed. Junoh et al. [20] research the consistent 

magnetohydrodynamics (MHD) limit layer zero speed point 

stream of an incompressible, thick, and electrically leading 

liquid past an expanding/contracting sheet with the effect of 

incited magnetic field.  

Kang et al. [21] numerically and exploratory investigated 

nanofluids cover heat conductivity. Khanafer et al. [22] 

analyzed the heat transfer execution of nanofluids inside a 

closed-in area taking into account the strong molecule 

scattering. After these creators, nanotechnology is considered 

by numerous individuals to be one of the critical powers that 

drive the following major mechanical transformation of this 

century. It speaks to the most important mechanical front line 

right now being investigated. It targets controlling the 

structure of the issue at the sub-atomic level with the objective 

for development in for all intents and purposes each industry 

and open undertaking including organic sciences, physical 

sciences, hardware cooling, transportation, the earth, and 

national security etc. Khan & Pop [23] numerically 

investigated the laminar fluid flow problem over a flat surface 

on a stretching sheet of nanofluid. 

Kumaran and Ramanaiah [24] worked on viscous 

incompressible flow over a stretching sheet. The velocity he 

considered in his paper is a quadratic polynomial of the 

distance from the slit and the sheet is subjected to a linear mass 

flux. Kuznetsov & Nield [25] examined the regular convective 

boundary layer flow of a nanofluid past a vertical plate 

analytically. Furthermore, clarify the impacts of Brownian 

movement and thermophoresis. Malavandi et al. [26] 

investigated nanoparticle of different type on 

stretching/shrinking sheet with stagnation point flow. Merkin 

and Pop [27] the impact that a stagnation-point stream on an 

extending/contracting surface can have on an exothermic 

surface response is considered. The velocity of the surface 

comparative with the external stream is estimated by the 

boundary parameter (λ) with there being a basic estimation.  

Mishra and Singh [28] examined the ‘Axisymmetric’ 

stream of a viscous incompressible liquid over a contracting 

vertical surface with the thermal flow is examined considered 

the second-order momentum slip and first-order heat slip 

boundary condition. Mishra and Singh [29] explained the 

boundary layer stream and heat transfer of an incompressible 

liquid along a vertical temperamental extending sheet in a 

peaceful liquid is introduced on the off chance that when 

temperature distinction among sheet and encompassing liquid. 

Myers et al. [30] has demonstrated the effect of the different 

parameters of heat & mass transfer on nanofluid 

experimentally. 

Nadeem et al. [31] numerically investigated the heat 

transfer of Maxwell fluid on stretching sheet. Ramesh et al. 

[32] consistent 2D boundary layer stream of a thick dusty fluid 

over a stretching sheet with the base surface of the sheet 

warmed by convection from a hot liquid. Reddy et al. [33] 

investigated thermal effect with radiation & magnetic field 

over an inclined vertical plate. Siddappa and Abel [34] 

investigated the crane’s flow problem to the visco-elastic fluid 

of Walter's liquid model and obtained the solution of the 

equation of motion for boundary layer flow past a stretching 

sheet. Subhas and Veena [35] discussed the visco-elastic fluid 

flow and heat transfer characteristics in a saturated porous 

medium over an impermeable stretching surface with 

frictional heating and heat generation or absorption. He 

considered PHF (Prescribed Heat Flux) & PST (Prescribed 

Surface Temperature) cases and obtained the solution for the 

velocity field and skin friction. Wang [36] researched the 

extension of crane’s paper. He worked on the three-

dimensional fluid motion on a flat boundary stretching sheet 

and find the exact solution of Navier Stokes's condition. 
 

 

2. MATHEMATICAL FORMULATION 
 

The Boundary-Layer with slip condition on stretching 

surface is now an important part of research and the stagnation 

point flow problem pulling the attention of numerous 

specialists for over a century in view of its wide applications. 

In this paper we considered the time independent 2D boundary 

layer flow of an incompressible nano fluid stretching surface 

under a second order velocity slip boundary condition with 

variable thermal conductivity. The stream is thought to be in 

the x-direction, which is brought the slightly upward way 

furthermore, y-direction is in normal direction. The considered 

fluid equations are taken from Hasio [16] are as follows, 
 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑢∞

𝜕𝑢∞
𝜕𝑥

+ 𝜈𝑓
𝜕2𝑢

𝜕𝑦2
+ 𝜎

𝐵0
2

𝜌𝑓
(𝑈 − 𝑢)

+ 𝑔𝑥𝛽𝑡(𝑇 − 𝑇∞) + 𝑔𝑥𝛽𝑐(𝐶 − 𝐶∞)

+ 𝜎
𝐸0𝐵0
𝜌𝑓

 

(2) 
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𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝐾𝑓

(𝜌𝑐𝑝)𝑓

𝜕2𝑇

𝜕𝑦2
+

𝑄0
(𝜌𝑐𝑝)𝑓

(𝑇 − 𝑇∞)

+
(𝜌𝑐𝑝)𝑝

(𝜌𝑐𝑝)𝑓
[𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+
𝐷𝑇
𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

] 

(3) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+
𝐷𝑇
𝑇∞

𝜕2𝑇

𝜕𝑦2
  (4) 

 

In Eq. (2) the term 𝑢∞
𝜕𝑢∞

𝜕𝑥
 is stagnation point flow with 𝜃 =

90°  in 𝑢∞
𝜕𝑢∞

𝜕𝑥
𝑠𝑖𝑛 𝜃 . 𝐵0  is defining the variable magnetic 

factor, while 𝐸0  electric field parameter, 𝑔𝑥  is gravity-

magnitude and ‘T’ is fluid-temperature. 𝐺𝑡 & 𝐺𝑐  are thermal 

free and mass free convection parameter and explaining the 

mixed convection effect. 𝜈𝑓  is kinematic-viscosity, 𝛽𝑡  & 𝛽𝑐 

are thermal expansion and mass diffusion. Similarly other 

terms of Eqns. (3) & (4) are define in nomenclature. The 

following equations are described on electrical magnetics flow 

field. Here ‘u’ is the velocity-component heading to x-axis i.e., 

along the surface and v is in y direction i.e., normal to it. Here 

assumed thermal conductivity 𝑘𝑓  is variable thermal 

conductivity and defined as 𝑘𝑓 = 𝑘∞(1 + 𝜀𝜃) (by Ahmed [1]), 

where 𝜀 =
𝑘𝑓−𝑘∞

𝑘∞
. 

Subject to the boundary conditions are, 

 

u =  Cx + 𝐿1𝜈
𝜕𝑢

𝜕𝑦
+ 𝐿2𝜈

𝜕2𝑢

𝜕𝑦2
, 𝑣 = 0

T = 𝑇𝑊 + 𝑘1
𝜕𝑇

𝜕𝑦

𝐶 = 𝐶𝑊 + 𝑘2
𝜕𝐶

𝜕𝑦 }
 
 

 
 

 at 𝑦 = 0 (5) 

 
𝑢 → 0
𝑇 → 𝑇∞
𝐶 → 𝐶∞

} as 𝑦 → ∞ 
2

1,2

4

2

b b ac
x

a

−  −
=  (6) 

 

Here 𝐿1 and 𝐿2 are slip parameter in reference of velocity 

and 𝜈 is the kinematic-viscosity and ‘C’ is the proportionality 

constant. Here 𝑘1 is slip parameter in reference of temperature. 

Here 𝑘2 is slip parameter in reference of concentration. 

Similarity variables are: 

 

𝜂 = 𝑦√
𝑎

𝜈𝑓
 

𝑢 = 𝑎𝑥𝑓′(𝜂) and 𝑣 = −√𝑎𝜈𝑓𝑓(𝜂) 

(7) 

 

Defining the non-dimensional temperature and 

concentration variable are: 

 

𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑊−𝑇∞
, 𝜙(𝜂) =

𝐶−𝐶∞

𝐶𝑊−𝐶∞
 

T=𝑇∞ + 𝐴𝑥 𝜃(𝜂) and C=𝐶∞ + 𝐵𝑥 𝜙(𝜂) 
(8) 

 

Using Eqns. (8) and (9) in Eqns. (2), (3) & (4). The 

transformed DE. are, 

 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′
2
+𝑀(1 − 𝑓′) + 𝐺𝑡𝜃 + 𝐺𝑐𝜙 −𝑀𝐸
= 0 

(9) 

 

𝜃′′ + 𝑃𝑟[𝑓𝜃′ + 𝜆𝜃 + 𝑁𝑏𝜃′𝜙′+𝑁𝑡𝜃′
2] + 𝜀(𝜃𝜃′′ +

𝜃′2) = 0 
(10) 

 

𝜙′′ + 𝑆𝑐𝑓𝜙′ +
𝑁𝑡
𝑁𝑏
𝜃′′ = 0 (11) 

 

The boundary conditions are: 

 

𝑓 = 0, 𝑓′ = 1 + 𝛽1𝑓
′′ + 𝛽2𝑓

′′′

𝜃(0) = 1 + 𝛿1𝜃′(0)

𝜙(0) = 1 + 𝛿2𝜙′(0)

} 𝑎𝑡 𝜂 = 0 (12) 

 
𝑓′ → 0
𝜃 → 0
𝜙 → 0

}  𝑎𝑠 𝜂 → ∞ (13) 

 

where, 𝛽1 = 𝐿1√𝑎𝜈 and 𝛽2 = 𝑎𝐿2, are called second and third 

order coefficient of slip parameter.𝛿1 = 𝐾1√
𝑎

𝜈
 and 𝛿2 = 𝐾2√

𝑎

𝜈
 

are called thermal slip coefficient and mass diffusion slip 

coefficient. According to Ahmed [1] the transfer of heat done 

by two parts, one is due to temperature difference and the other 

one is due to variable thermal conductivity. In Eq. (10), the 

term independent of 𝜀, 𝑖. 𝑒 𝜃′′ + 𝑃𝑟[𝑓𝜃′ + 𝜆𝜃 +
𝑁𝑏𝜃′𝜙′+𝑁𝑡𝜃′

2] = 0 is due to temperature difference and the 

second part i.e.,(𝜃𝜃′′ + 𝜃′2)=0 is due to variable thermal 

conductivity. 

SKIN FRICTION: Skin friction is resistance to flow of fluid 

over the surface, influenced by surface roughness and velocity 

of the fluid and defined as, 

 

𝐶𝑓 = 
𝜏

1
2
𝜌𝑢2

|

𝑦=0

 

 

where, 𝜏 is shear stress and defined as, 𝜏 = 𝜇
𝜕𝑢

𝜕𝑦
. 

Hence, 

 

𝐶𝑓 =  
𝜇
𝜕𝑢

𝜕𝑦
1

2
𝜌𝑢2
|
𝑦=0

=
2𝑓′′(0)

√𝑅𝑒
 

 

Therefore, the skin friction coefficient: 

 

𝑓′′(0) =
1

2
√𝑅𝑒 𝐶𝑓 

 

2.1 Nusselt number 

 

If there should arise an occurrence of conduction, the heat 

transfer can be determined utilizing Fourier's law of 

conduction. If there should arise an occurrence of convection, 

the heat transfer can be determined by Newton's law of cooling. 

The Nusselt number explain the difference of heat transfer 

through a liquid layer because of convection comparative with 

conduction over a similar fluid layer. The Nusselt number can 

be defined as, 

 

𝑁𝑢 =
𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤 − 𝑇∞)
 

 

2.2 Sherwood number 

 

Sherwood number is used in mass transfer activity. 

Additionally, it is called as Nusselt number in mass transfer. It 
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speaks to the proportion of the convective mass exchange to 

the rate of diffusive mass transport. The Sherwood number can 

be defined as, 

 

𝑆ℎ =
𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤 − 𝐶∞)
 

 

Here, 

𝑞𝑤 = heat flux. 

𝑞𝑚 = mass flux. 

𝑘 = coefficient of thermal conductivity. 

𝑥 = characteristic length. 

By using Eq. (9) we get, 

 
𝑁𝑢

𝑅𝑒𝑥
1/2 = − [1 +

𝜀𝜃(0)

1+𝜀𝜃(0)
] 𝜃′(0),

𝑆ℎ

𝑅𝑒𝑥
1/2 = −𝜙′(0). 

 

where, 𝑅𝑒𝑥 =
𝑢𝑤𝑥

𝜐
 is known as local Reynolds number.  

 

 

3. NUMERICAL SOLUTION 

 

In this paper the system we have considered is heat 

conduction-convection system and the system of equations we 

have considered are highly non-linear PDE. So, to find exact 

solution is highly complexed. We use similarity variable to 

convert non-linear PDE into non-linear ODE. Fourth order 

Runge–Kutta technique along with shooting strategy has been 

utilized to examine the model. The impact of second order slip 

parameter is discussed in Eqns. (9)-(11) in the presence of 

various parameters like Prandtl number Pr, Magnetic-

parameter ‘M’, Electric-parameter ‘E’, a Brownian movement 

parameter ‘𝑁𝑏 ’, a thermophoresis parameter ‘𝑁𝑏 ’, Schmidt 

number ‘Sc’. We used RK4 to solve the system of equations 

with shooting strategy. We introduced the following new 

variable to convert the system of nonlinear differential 

equation into first order ODE. 

 

𝑓1 = 𝑓, 𝑓2 = 𝑓′, 𝑓3 = 𝑓′′, 𝑓4 = 𝜃, 𝑓5 = 𝜃′, 𝑓6 = 𝜙, 𝑓7 = 𝜙′ 
 

And the Eqns. (9)-(11) becomes, 

 

𝑓1′ = 𝑓2, 𝑓2′ = 𝑓3 (14) 

 

𝑓3
′ = −𝑓1 ∗ 𝑓3 + 𝑓2

2 −𝑀(1 − 𝑓2) − 𝐺𝑡𝑓4 − 𝐺𝑐𝑓6+ME (15) 

 

𝑓4′ = 𝑓5 (16) 

 

𝑓5
′ = −𝜀(𝑓4 ∗ 𝑓5

′ + 𝑓5
2) − 𝑃𝑟 ∗ [𝑓1 ∗ 𝑓5 + 𝜆 ∗ 𝑓4 +

𝑁𝑏𝑓5 ∗ 𝑓7 +𝑁𝑡 ∗ 𝑓5
2] 

(17) 

 

𝑓6′ = 𝑓7 (18) 

 

𝑓7
′ = −𝑆𝑐𝑓1𝑓7 +

𝑁𝑡
𝑁𝑏
𝑓5′ (19) 

 

With boundary conditions, 

 

𝑓 = 0, 𝑓2 = 1 + 𝛽1𝑓3 + 𝛽2𝑓3
′      𝑎𝑡 𝜂 = 0 (20) 

 

𝑓2 → 0 𝑎𝑠 𝜂 → ∞ 

𝑓4(0) = 1 + 𝛿1𝑓5(0), 𝜙(0) = 1 + 𝛿2𝑓7(0) 
𝑓4 → 0 𝑎𝑠 𝜂 → ∞,  𝑓6 → 0 𝑎𝑠 𝜂 → ∞ 

(21) 

After that we applied Runge Kutta method along with 

shooting method to find numerical solution. 

 

 

4. RESULT & DISCUSSION 

 

In Table 1 we have shown the comparison of present result 

of −𝜃′(0) and −𝜙′(0) with the result of khan & Pop [22] for 

various physical parameters 𝑁𝑡  & 𝑁𝑏 and the other constant 

parameters 𝐺𝑡= 𝐺𝑐 = λ =M= E = δ = 𝛿1= 𝛿2 = S = 0 and Sc = 

Pr = 10. 

 

Table 1. Comparison of the result with Khan and Pop [23] 

 

𝑵𝒕 𝑵𝒃 

−𝜽′(𝟎) 
Khan 

&Pop 

−𝜽′(𝟎) 
Present 

Result 

−𝝓′(𝟎) 
Khan 

&Pop 

−𝝓′(𝟎) 
Present 

Result 

0.1 0.1 0.9524 0.952375 2.1294 2.129384 

0.2 0.2 0.3654 0.365362 2.5152 2.515210 

0.3 0.3 0.1355 0.135489 2.6088 2.608799 

0.4 0.4 0.0495 0.049543 2.6038 2.603786 

0.5 0.5 0.0179 0.017921 2.5731 2.573121 

 

The changed momentum, temperature and concentration 

Eqns. (9)-(11) with boundary conditions Eqns. (12) & (13) 

were numerically solved by utilizing Runge–Kutta fourth 

order strategy alongside shooting method. We acquired 

velocity, temperature profile graph for various benefits of 

overseeing parameters. The mixed convection issue related 

with time independent, non-linear, two-dimensional 

stagnation point nanofluid flow over a stretching surface is 

altogether examined & numerical outcomes are obtained. The 

BLP defined is changed into an IVP by shooting strategy. As 

the analytic strategies flop to understand the arrangement of 

different conditions together. The outcomes acquired are 

shown through Figures 1-7 for temperature, velocity & 

concentration profile respectively.  

 

 
 

Figure 1. The physical model for stagnation mixed 

convection flows with EMHD and heat effects of 

incompressible nanofluid over a stretching sheet 

 

We can analyse that velocity profile showing dual solution 

on different values of second order slip parameters 𝛽1&𝛽2, in 

Figure 2(a) and for magnetic parameter in Figure 2(b). Figure 

3(a) and 3(b) representing dual solution of temperature profile 

on different values of second order slip parameters 𝛽1&𝛽2. In 

Figure 5(a), 5(b), 6(b) & 7(a) we found that on increasing the 

value of 𝛽1&𝛽2, stream function, momentum, skin friction & 

mass transfer all reduced. 
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Figure (4(b), 6(a) &7(b) are graph of temperature, velocity 

& mass transfer on different values magnetic parameter and 

we can see that as ‘m’ increases, temperature, velocity & mass 

transfer decreases. In Figure 4(a) we can analyse that as ‘𝐺𝑡’ 
increases temperature decreases.  

Figure 8(a) & 8(b) are graph of Nusselt Number & 

Sherwood Number at different values of second order slip 

parameters 𝛽
2
. In both graph we are getting node and both are 

decreasing. In Figure 9 it is identified that increasing the value 

of 𝜀, temperature profile decreases. Figures 10(a) & 10(b) are 

temperature profiles & Figures 10 (c) & 10(d) are velocity & 

mass diffusion profile for different values of 𝑁𝑡, 𝑁𝑏 . It is 

identified that increasing the values of 𝑁𝑡, 𝑁𝑏 temperature and 

velocity profile are increasing while mass transfer is 

decreasing. 

 

  
(a)                                                                                   (b) 

 

Figure 2. (a) is representation of dual solution of velocity profiles for different values of 𝛽1& 𝛽2 versus 𝜂 & (b) is representation 

of dual solution of velocity profiles for different values of 𝑀 versus 𝜂 with 𝐸 = 0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 𝜆 = 0.1, 𝐺𝑡 = 0.1, 𝐺𝑐 =
0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝜀 = 0 

 

  
(a)                                                                                    (b) 

 

Figure 3. (a & b) are temperature profiles for different values of 𝛽1& 𝛽2 versus 𝜂 with 𝑀 = 0.1, 𝐸 = 0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 =
0.1, 𝜆 = 0.1, 𝐺𝑡 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝜀 = 0 

 

  
(a)                                                                                    (b) 

 

Figure 4. (a) & (b) are temperature profiles for different values of m versus 𝜂 & 𝐺𝑡 versus 𝜂 for 𝛽1 = 𝛽2 = 0.1. when 𝐸 =
0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 𝜆 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝜀 = 0 
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(a)                                                             (b) 

 

Figure 5. (a) & (b) is stream function profiles & velocity profiles for different values of β1, β2 versus 𝜂 when 𝐸 = 0.1, 𝑁𝑡 =
 0.1, 𝑁𝑏 = 0.1, 𝜆 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝜀 = 0 

 

   
(a)                                                              (b) 

 

Figure 6. (a) & (b) are velocity profiles & skin friction profiles for different values of m versus 𝜂 & β1, β2 versus 𝜂 when 𝐸 =
0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 𝜆 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝜀 = 0 

 

   
(a)                                                              (b) 

 

Figure 7. (a) & (b) are mass diffusion profiles for different values of 𝛽1, 𝛽2versus 𝜂 & M versus 𝜂 when 𝐸 = 0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 =
0.1, 𝜆 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝜀 = 0 

 

  
(a)                                                              (b) 

Figure 8. (a) & (b) are Nusselt Number & Sherwood Number profiles for different values of 𝛽1 = 0.1, 𝛽2 versus 𝑁𝑡 when 𝑀 =
0.1, 𝐸 = 0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 𝜆 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝜀 = 0 
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Figure 9. Temperature profiles for different values of versus 

𝜀 when 𝑀 = 0.1, 𝐸 = 0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 𝜆 = 0.1, 𝐺𝑐 =
0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 10. (a & b) are temperature profiles & (c & d) are 

velocity & mass diffusion profile for different values of 

𝑁𝑡 , 𝑁𝑏 versus 𝜂 when 𝑀 = 0.1, 𝐸 = 0.1, 𝑁𝑡 = 0.1, 𝑁𝑏 =
0.1, 𝜆 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝜀 = 0.1 

 

 

5. STABILITY ANALYSIS 

 

To test the stability of the dual solutions. We consider the 

unsteady form of Eq. [(2-4) in paper)] with boundary 

conditions (5) & (6) as,  

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦

= 𝑢∞
𝜕𝑢∞
𝜕𝑥

+ 𝜈𝑓
𝜕2𝑢

𝜕𝑦2

+ 𝜎
𝐵0
2

𝜌𝑓
(𝑈 − 𝑢) + 𝑔𝑥𝛽𝑡(𝑇 − 𝑇∞)

+ 𝑔𝑥𝛽𝑐(𝐶 − 𝐶∞) + 𝜎
𝐸0𝐵0
𝜌𝑓

 

(22) 

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦

=
𝐾𝑓

(𝜌𝑐𝑝)𝑓

𝜕2𝑇

𝜕𝑦2
+

𝑄0
(𝜌𝑐𝑝)𝑓

(𝑇 − 𝑇∞)

+
(𝜌𝑐𝑝)𝑝

(𝜌𝑐𝑝)𝑓
[𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+
𝐷𝑇
𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

] 

(23) 

 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+
𝐷𝑇
𝑇∞

𝜕2𝑇

𝜕𝑦2
 (24) 

 

Subject to the boundary conditions are, 

 

u =  Cx + 𝐿1𝜈
𝜕𝑢

𝜕𝑦
+ 𝐿2𝜈

𝜕2𝑢

𝜕𝑦2
, 𝑣 = 0

T = 𝑇𝑊 + 𝑘1
𝜕𝑇

𝜕𝑦

𝐶 = 𝐶𝑊 + 𝑘2
𝜕𝐶

𝜕𝑦 }
 
 

 
 

 at 𝑦 = 0 (25) 

 
𝑢 → 0
𝑇 → 𝑇∞
𝐶 → 𝐶∞

} as 𝑦 → ∞ (26) 

 

Using similarity transformations equations become, 

 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′
2
+𝑀(1 − 𝑓′) + 𝐺𝑡𝜃 + 𝐺𝑐𝜙-

ME+𝑓𝑡
′=0 

(27) 
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1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ + 𝜆𝜃 + 𝑁𝑏𝜃′𝜙′+𝑁𝑡𝜃′

2 + 𝜃𝑡
′ =  0 (28) 

 

𝜙′′ + 𝑆𝑐𝑓𝜙′ +
𝑁𝑡
𝑁𝑏
𝜃′′ + 𝜙𝑡

′ = 0 (29) 

 

The boundary conditions are, 

 

𝑓 = 0, 𝑓′ = 1 + 𝛽1𝑓
′′ + 𝛽2𝑓

′′′

𝜃(0) = 1 + 𝛿1𝜃′(0)

𝜙(0) = 1 + 𝛿2𝜙′(0)

} 𝑎𝑡 𝜂 = 0 (30) 

 

Here 𝑓, 𝜃, 𝜙 are of function of (𝜂, 𝑡). 
Stability of the dual solutions are determined by adopting 

the stability analysis of Merkin [37] we put, 

 

𝑓(𝜂, 𝑡) = 𝑓0(𝜂) + 𝑒
−𝛾𝑡𝐹(𝜂, 𝑡)

𝜃(𝜂, 𝑡) = 𝜃0(𝜂) + 𝑒
−𝛾𝑡𝑇(𝜂, 𝑡)

𝜙(𝜂, 𝑡) = 𝜙0(𝜂) + 𝑒
−𝛾𝑡𝐶(𝜂, 𝑡)

} (31) 

 

where, 𝛾 is unknown eigen values and 𝑓0, 𝜃0, 𝜙0 satisfy steady 

boundary condition. Here 𝐹(𝜂, 𝑡), 𝑇(𝜂, 𝑡), 𝐶(𝜂, 𝑡) and all its 

derivatives are assumed small compared with the steady 

solution 𝐹(𝜂) and its derivatives. Because we are studying the 

linear stability analysis. 

Hence our Unsteady equations become, 

 

𝐹0
′′′ + 𝐹0𝑓0

′′ + 𝑓0𝐹0
′′ − 𝐹0

2 − 2𝐹0𝑓0 −𝑀𝐹0
′ + 𝑇0𝐺𝑡

+ 𝐶0𝐺𝐶 − 𝛾𝐹0 = 0 
(32) 

 
𝑇0
′′

𝑃𝑟
+ 𝑓0𝑇0

′ + 𝐹0𝜃0
′ + 𝐹0𝑇0

′ + 𝜆𝑇0

+ 𝑁𝑏(𝑇0𝜙0
′ + 𝐶0

′𝜃0
′ + 𝑇0

′𝐶0
′)

+ 𝑁𝑡𝑇0′
2 + 2𝑁𝑡𝑇0

′𝜃0′ − 𝛾𝑇0 = 0 

(33) 

 

𝐶0
′′ + 𝑆𝑐(𝐹0𝜙0

′ + 𝑓0𝐶0 + 𝐹0𝐶0) +
𝑁𝑡
𝑁𝑏
𝐺0 − 𝛾𝐶0 = 0 (34) 

 

Subject to reduced Boundary Condition, 

 

𝐹0(0) = 0 

𝐹′(0) = 𝛽1𝐹
′′(0) + 𝛽2𝐹

′′′(0), 
𝑇0(0) = 𝛿1𝐺′(0), 
𝐶0(0) = 𝛿2𝐶′(0) 

(35) 

 

𝐹′(𝜂) → 0,𝑇(𝜂) → 0, 𝐶(𝜂) → 0 as 𝜂 → ∞ (36) 

 

Solutions of give an infinite set of eigen-values 𝛾1 < 𝛾2 <
𝛾3 < ⋯, if the smallest eigen-value 𝛾1  is positive, then the 

flow is stable and when 𝛾1 is negative the flow is unstable.  

 

 

6. CONCLUSION 

 

In this paper, we examined boundary layer flow with second 

order slip velocity boundary condition over a stretching plate 

with effect of Brownian motion & thermophoresis parameter 

included. Result of other parameters on velocity, temperature 

& concentration profile also incorporate and shown 

graphically. Some parameter gives dual solution on velocity 

and temperature profile. The significant result are as follows: 

1. It created the impression that expanding the 

estimation of second order momentum slip 

parameters 𝛽
1
&𝛽

2
, velocity profile representing dual 

solution. In the same way, the temperature profiles 

also given the dual solutions. 

2. The impact of free convection parameters 𝐺𝑡 brings 

out the inverse effect of temperature because of 

reducing the thermal boundary layer thickness with 

the expanding estimations of 𝐺𝑡. 
3. It appeared that increasing the value of magnetic 

parameter M brings the inverse effect of temperature 

and concentration profile while on momentum profile 

it showing the dual solution. 

4. It appeared that the increasing second order 

momentum slip parameters 𝛽1&𝛽2 , stream function 

increases while skin friction decreases. 

5. The thermal boundary layer increases as increases the 

value of 𝜀. 

6. It appeared that the increasing second order 

momentum slip parameters  𝛽2 , −𝜃′(0)  & −𝜙′(0) 
decreases. 

On increment of Brownian motion & thermophoresis 

parameter, temperature profile increases. 
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NOMENCLATURE 

 

a, c arbitrary constants 

1895



 

𝐵0 Magnetic parameter applied along y axis on 

the flat heated surface 

𝜎 Electric conductivity which is consider to be 

constant 

𝑈 Fluid velocity of free stream 

𝑔𝑥 Magnitude of the Gravity 

𝛽𝑡 Thermal Expansion Coefficient 

𝛽𝑐 Mass-Diffusion Coefficient 

T Fluid-Temperature 

C Concentration of fluid 

𝐷𝐵 Brownian diffusion coefficient 

u, v Velocity in x, y direction 

𝑁𝑏 Brownian motion parameter 

𝑁𝑡 Thermophoresis parameter 

Pr Prandtl number 

Re Reynold’s number 

𝑇𝑤 Temperature at the stretching surface 

𝑓(𝜂) Dimensionless Stream Function 

𝑢𝑤 Velocity of the stretching sheet 

𝛼 Thermal diffusivity 

𝜈𝑓 Kinematic viscosity of the fluid 

𝜌𝑓 Fluid density 

𝜌𝑝 Nanoparticle mass density 

(𝜌𝑐)𝑓 Heat capacity of the fluid 

(𝜌𝑐)𝑝 Effective heat capacity of the nanoparticle 

material 

𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
 

Shear stress 

𝑄0 Heat generation/absorption coefficient 

𝑀 =
𝜎𝐵0

2

𝜌𝑓𝑎
 

Non-dimensional Magnetic-Parameter 

𝐸 =
𝐸0
𝛽0𝑈

 
Non-dimensional Electric-Parameter 

𝐺𝑡 =
𝐴𝑔𝑥𝛽𝑡
𝑎2

 
Non-dimensional Thermal Free 

𝐺𝑐 =
𝐵𝑔𝑥𝛽𝑐
𝑎2

 
Non-dimensional Mass Free 
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