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During high-speed cutting, the tool quality is threatened by a high cutting temperature, and 

severe wear. Traditionally, these threats are handled by tool replacement, which pushes up 

the economic cost of production and manufacturing. This paper explores the frictional wear 

detection of hard alloy tool material during high-speed cutting. Based on the theory of wave 

motion, the wear process of hard alloy tool material during high-speed cutting was 

modelled mathematically, and the wear mechanism was analyzed. To reduce the 

interference of weakly important features, the authors presented a method to analyze the 

feature importance and an approach to identify the frictional wear of tools, under the high-

dimensional small dataset about the monitoring signals of tool material wear. Through 

experiments, the proposed algorithm was proved feasible in identifying the wear of hard 

alloy tool material during high-speed cutting. The research provides a theoretical guide for 

improving the production techniques for cutting of hard alloy material. 
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1. INTRODUCTION

In the age of Industry 4.0, the digital transformation of 

manufacturing is featured by the automation, intelligence, high 

precision, and integration of traditional manufacturing 

industry. The industrial products need to meet an increasingly 

high demand of performance and quality [1-5]. During high-

speed cutting, the tool quality is often threatened by a high 

cutting temperature, and severe wear. These threats severely 

restrain the improvement of production efficiency, processing 

precision, and surface quality of products [6-10]. To guarantee 

processing quality, the traditional solution is rather 

conservative: tool replacement. But this approach pushes up 

the economic cost of production and manufacturing [11-17]. 

For more efficient production and cost-effective processing, it 

is necessary to theoretically model the frictional wear of tools, 

carry out microscopic detection, and implement simulation 

analysis [18-21], aiming to provide a theoretical guide for 

improving the production techniques for cutting of hard alloy 

material. 

Industrial applications should consider the applicability, 

ease of implementation, and cost effectiveness of process 

optimization. Zhang and Xu [22] developed a Gaussian 

process regression (GPR) model to predict three cutting 

parameters, namely, cutting force, surface roughness, and tool 

life, during high-speed turning, based on cutting speed, feed 

rate, and cutting depth. Tool wear is the main reason for the 

failure of tool acceleration during the milling of aluminum 

alloys. The milling process is intermittent. The periodic 

cutting force directly affects cutting heat and tool wear. 

Focusing on the impact of cutting force on tool wear, Meng et 

al. [23] analyzed the change law of cutting force with cutting 

parameters, examined the influence of milling length over the 

width of the flank surface wear zone, and explored the tool 

wear mechanism during high-speed milling of aluminum alloy 

pressure castings, in the light of the effect of the cutting force. 

Chaus et al. [24] studied the wear resistance and cutting 

performance of non-coated and coated high-speed steel ball 

head millers, and observed some surface defects in the 

exposed carbides in steel substrate and uncoated tool. Javidikia 

et al. [25] discussed the impact of cutting environment and 

conditions on the tool wear and residual stress caused by 

AA6061-T6 orthogonal cutting, developed a two-dimensional 

(2D) finite element model (FEM) to predict tool wear and 

residual stress, and verified the 2D FEM with the 

experimentally measured data on processing force, tool wear, 

and residual stress. Laser-assisted high-speed milling is a 

subtractive technique, which thermally softens the material 

surface to improve the workability of the material under a high 

removal rate, improve surface finish, and extend tool life. 

Yasmin et al. [26] adopted the response surface method to 

investigate how ultrasonic induced droplet cutting fluid affects 

the surface roughness and side wear of 6082 aluminum alloy, 

and compared it with traditional droplet cutting fluids. The 

comparison confirms that the laser-assisted high-speed milling 

using ultrasonic induced droplet cutting fluid applies to high 

productivity manufacturing, and helps to shorten production 

time, reduce operating costs, better surface finish, and extend 

tool life. 

The frictional wear detection of hard alloy tool material is a 

classification task of high-dimensional small samples. 

Although many researchers have studied different tool states, 

it remains interesting to discuss the wear mechanism of the 

tool cutting edge. Further analysis is wanted to recognize tool 

wear more accurately, using a few monitoring data features of 

tools under high-speed cutting. Therefore, this paper explores 

the frictional wear detection of hard alloy tool material during 

high-speed cutting. Section 2 draws on the theory of wave 
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motion to mathematically model the wear process of hard alloy 

tool material, and analyze the wear mechanism. Section 3 

discusses the feature importance and the frictional wear 

identification of tools, under the high-dimensional small 

dataset about the monitoring signals of tool material wear, and 

manages to eliminate weakly important features. Finally, 

experiments demonstrate that the proposed algorithm is 

feasible in identifying the wear of hard alloy tool material 

during high-speed cutting.  

 

 

2. WEAR MECHANISM ANALYSIS 

 

In theory, the life of a cutting tool can be divided into three 

stages: initial wear I, stable wear II, and severe wear III (Figure 

1). During initial wear, new tool wears faster because the 

cutting edge is not smooth. During stable wear, the tool wears 

stably and slowly, and the wear amount is approximately 

linear with time. During severe wear, the tool wear picks up 

speed until the tool fails. 

Figure 2 illustrates the high-speed cutting of a rolling shear 

cutter. During high-speed cutting, the frictional wear of hard 

alloy tool material largely depends on the target metal plate 

section. From a microscopic perspective, the action of the tiny 

particle of the metal plate section on tool material can be 

viewed as an impact extrusion, followed by relative scraping. 

From the angle of the forces on tool material, the action 

process can be simplified as a monistic impact process, with 

the tiny particle as a mass point and the tool as the receptor. 

There is a resistance during the interaction between the tiny 

particles and the tool, for the two parties are not completely 

detached. 

 

 
 

Figure 1. Tool wear curve during the cutting process 

 

 
 

Figure 2. High-speed cutting of a rolling shear cutter 

The tiny particle of the metal plate section in contact with 

the tool can be regarded as a rigid body. The mass and position 

of the particle are denoted by n and t, respectively. Let AC*, 

AC1 and AC2 be the counter force of the working medium, the 

force of the metal plate on the rigid body, and the stress wave 

force, respectively. According to Newton’s laws of motion, the 

motion equation without considering gravity can be 

constructed as: 

 
2

1 22
'

d t
n AC AC AC

d
= + −  (1) 

 

Since the tool material is a hard alloy, it is possible to build 

an elastic coefficient model. Let LS be the load stiffness of the 

tool. Without considering the plastic limit resistance of the tool, 

the counter force can be calculated by: 

 

AC LS t =   (2) 

 

At the moment of the high-speed cutting of the metal plate, 

the sheet section will cause the tool side surface to generate a 

pressure wave ε0(τ) that is gradually transmitted to the cutter 

end. After a period of ER/μ, the wave passed to the end will 

rebound and return to the initial position on the tool side 

surface. Therefore, within the period of [0, 2ER/μ], there is 

only one stress wave on the interface between the rigid body 

and tool material. Let ER be the length of the metal plate; μ be 

the speed of longitudinal wave; IS be the pressure surface area. 

Then, the stress wave can be represented by: 

 

( )2 0AC IS =  (3) 

 

Solving the above stress wave equation, it is possible to 

obtain the relative speed of the interface between the plate and 

tool material, i.e., the hourly speed of tool action on the metal 

plate. Let KN0 be the particle speed of the metal plate; μ be the 

wave speed; φ be the material density. Then, the speed of 

relative motion can be calculated by: 

 

( )0

0

dt
KN

d

 

 
=   (4) 

 

Before being detached from the target metal plate, the small 

particle on the metal plate section faces the pressure β1 of the 

tool material and the viscous resistance of the surrounding 

materials. Let λ be the coefficient of the viscous resistance of 

the surrounding materials. Then, we have: 

 

1 1 2AC  = +  (5) 

 
2

2 2

d t

d
 


=  (6) 

 

Combining formulas (1)-(5), the following kinetic equation 

can be obtained:  

 

( )
2

0 12

d t dt
n IS LS t IS KN

dd
   


− + +  = +  (7) 

 

To quantify the tool wear, the wear efficiency, which 

characterizes the instantaneous energy conversion efficiency, 
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is denoted as ϕ, based on the proposed analysis model. 

Referring to the scraping depth of the small particle on the 

metal plate surface into the side of the tool material, the 

maximum force of the particle on tool material can be 

calculated by: 

 

max

max

LSt

IS
 =  (8) 

 

Let εmax be the maximum stress of the tool; τ0 be the initial 

cut amount under cutting pressure; tmax be the maximum insert 

depth of the small particle; ϕ be the impact efficiency; nf be the 

mass of a single small particle. Then, the scraping depth of the 

small particle into the tool material can be calculated by: 

 

2

2

0 1 0

1

2
1

2

max

f

LS

n KN




 

=

+

 (9) 

 

Owing to the working features of the high-speed cutting tool, 

the small particle on the metal plate section directly acts on the 

tool, and the mass of the rigid particle is so small as to be 

negligible. Thus, the kinetic Eq. (7) can be rewritten as: 

 
2

0 12

d t dt
IS LSt IS KN

dd
   


− + + = +  (10) 

 

Let C=ISφμ be the wave drag of the metal plate. Within the 

period of [0, 2ER/μ], formula (10) can be solved as: 

 

( ) ( )1 20 0 1

1 2

s sKN C KN
t r r

s s LS

  


 +
= − +

−
 (11) 

 

where, s1 and s2 can be expressed as:  

 

2 2

1 2

4 4
,

2 2

c C LS c C LS
s s

 

 

− + + +
= =  (12) 

 

Within the period of [0, 2ER/μ], dt(τ)/dτ>0, i.e., t(τ) 

monotonically increases. Substituting the time τ=τf=2ER/μ it 

takes to reach the maximum displacement into formula (12), 

the maximum action depth tmax of the small particle can be 

calculated by:  

 

1 22 / 2 /

1

0

1 2

QUs QUs

max

r r C
t KN

s s LS LS

   −
= + + 

− 
 (13) 

 

On this basis, the maximum stress of the tool can be 

calculated by:  

 

( )
( )

1 22 / 2 /

0 1

0

1 2

Ir k Ir k

max

LS e eLS t
KN

IS IS s s IS


 

 −
 = = + +

− 
 

 (14) 

 

The high-speed cutting efficiency of the tool can be 

calculated by: 

 
2

2

0 1 0

1

2
1

2

max

f

LSt

n KN t





=

+

 
(15) 

Substituting tmax into formula (15):  
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1 2

2
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1
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1

2
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







   − −
+ + + +   

− −   
=

 −
+ + + 

− 

 
(16) 

 

According to the calculation process of tmax, εmax, and ϕ, the 

scraping depth of the small particle into cutter material, and 

the maximum depth of the tool must be minimized, in order to 

reduce the impact extrusion of the non-smooth small particle 

on the metal plate section on the tool material. 

 

 

3. FRICTIONAL WEAR RECOGNITION 

 

After examining the state and manifestation of tool material 

wear during high-speed cutting, this paper further classifies the 

hard alloy tool wear under high-speed cutting. From the angle 

of feature importance, Gini importance and Lasso feature 

importance were evaluated, and the extreme learning machine 

(ELM) algorithm was adopted to identify the frictional wear 

of tool material. 

This paper extracts the features of each monitoring signal of 

tool material wear. Since the monitoring signals are rich in 

features, the frictional wear detection method for tool material 

is prone to over-fitting, or the identification algorithm faces a 

high load. Thus, it is necessary to reduce the dimensionality of 

the high-dimensional monitoring signals. In real applications, 

the monitoring signals of tool material wear do not obey 

Gaussian distribution. This limits the performance of common 

dimensionality reduction approaches like principal component 

analysis (PCA) and linear discrimination. To eliminate weakly 

important features, this paper adopts two analysis tools, 

namely, Gini importance and Lasso feature importance. 

The Gini index objectively and intuitively reflects the gap 

between monitoring signals, and predict, prewarn, and prevent 

the polarization of attributes between signal samples. Let |K| 

be the total number of classes; ol(l=1, 2, …|K|) be the 

proportion of class l samples. The Gini index of the sample set 

P of the monitoring signals of tool material can be calculated 

by:  

 

( ) 2

1

1

K

l

l

GN P o
=

= −  (17) 

 

Let x be an attribute of set P; U be the number of classes of 

set P divided by attribute x. Then, the Gini index of x can be 

calculated by:  

 

( ) ( )
1

,

u
U

u

u

P
GN P x GN P

P=

=  (18) 

 

Lasso is a compression estimation approach that 

compresses variable coefficients. By this approach, the 

variables can be selected, while realizing subset contraction. 

For sample set P={ai,bi}, i=1,2,3,...,m, the following linear 

regression model can be established: 

 

1

o

i j ij i

j

b a 
=

= +  (19) 

 

Let τ be the adjustment coefficient; ζ=(ζ1,ζ2,...ζo)T be the 
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least squares method. Then, the Lasso estimation can be 

defined as:  

 
2

1 1 1

, . .
m o o

i j ij j

i j j

argmin b a s t   
= = =

   
 = −    

   
    (20) 

 

Let Ωm be the regularization coefficient. Adding the penalty 

function s.t. Σo
j=1|ζj|≤τ as the regularization term into the 

objective function, we have: 

 

( )
2

1 1 1

m o o

M m i j ij j

i j j

Ω argmin b a Ωm  
= = =

   
 = − +   

   
    (21) 

 

For the monitoring signals of tool material wear, the feature 

importance can be characterized by a weight ζj satisfying the 

objective function: 

 

( ) , 1,2,3,....,jLFI i j o= =  (22) 

 

After completing the analysis of feature importance, the 

ELM algorithm was adopted to recognize the frictional wear 

of tool material. Based on generalized inverse matrix theory, 

the ELM is a feedforward neural network with a single hidden 

layer. It is known for strong generalization ability, fast 

learning speed, and good nonlinear fitting ability.  

Suppose there are M nonrepetitive input samples of 

monitoring signals (ai, τi). Among them, the inputs are denoted 

as ai=[ai1, ai2, …, aim]T. The corresponding outputs are denoted 

as τi=[τi1, τi2, …, τim]T. Let xl and yl be the weight and bias of 

the input layer, respectively; θl be the weight matrix between 

the l hidden layer nodes and the output nodes; H(xl,yl,ai) be the 

activation function of the l-th hidden layer node. Then, the 

ELM model with K hidden layer nodes can output: 

 

( ) ( )
1

, , , 1,2,...,
K

i l l l i il
g a H x y a i M 

=
= = =  (23) 

 

The output can be written as a matrix:  

 
F =   (24) 

 

where,  

 

( ) ( )

( ) ( )

1 11 1 1 1

1 1

, , , ,

, ,

, , , ,

T T

K K

T T
M K K M K M

H x y a H x y a

F Π

H x y a H x y x

 



 

    
    

= = =    
    

     

 (25) 

 

Let a be the regularization parameter. Then, the weight of 

the ELM output layer can be obtained by the least squares 

method: 

 
1

1T TF FF Π


−

 
= + 

 
 (26) 

 

The ELM algorithm was adopted to classify the features of 

the monitoring signals of tool material wear. The prediction 

accuracy was calculated. On this basis, the mean prediction 

accuracy was obtained and outputted, making it possible to 

recognize the frictional wear of tool material.  

4. EXPERIMENTS AND RESULTS ANALYSIS  

 

The ELM was trained on MATLAB. The training process is 

illustrated in Figure 3. During the iterative training, the ELM 

reached the precision requirement in the 9th cycle, when the 

ELM network error was 0.000392. 

The experimental data come from the processing data 

produced by numerically controlled machines during high-

speed cutting. The experimental dataset contains a total of 312 

high-dimensional features. The accuracy of tool wear 

recognition hinges on the relatively important features. The 

results of Gini importance analysis are reported in Figure 4. 

Gini importance analysis eliminates the relatively important 

features of monitoring signals of tool material wear, retains the 

highly important features, and thereby reduces the 

dimensionality of the data on the monitoring signals of tool 

material wear. 

A comparative experiment was designed to verify the 

effectiveness of our tool wear identification model. The 

contrastive methods include decision tree (DT), 

backpropagation (BP) neural network, random forest (RF), 

support vector machine (SVM), and ELM. Two types of 

monitoring signals of tool material are covered in the training 

set: signals of 18 worn tools, and signals of 30 intact tools. 

 

 
 

Figure 3. Training process of the proposed classification 

network 
Note: RMSE is short for root mean square error. 

 

 
 

Figure 4. Results of Gini importance analysis 
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Table 1 presents the results of the orthogonal experiments 

on high-speed cutting in real applications. Based on the results, 

it is possible to recognize tool wear, and optimize the high-

speed cutting parameters. 

Table 2 displays the results of tool wear recognition. It can 

be observed that our model achieved the best recognition 

accuracy (95.3%); DT (73.22%) and RF (88.83%) performed 

generally, but did not fail; BP neural network, and SVM failed 

in tool wear identification. 

Among the various features of the dataset, the relatively 

unimportant data features will undermine the recognition 

effect of tool wear. Figure 5 gives the results of Lasso feature 

importance analysis. According to Figures 4 and 5, after the 

monitoring signals of tool material wear were dimensionally 

reduced by Gini importance method, all five algorithms 

performed the best, when the top 7 important features were 

retained; after the signals were dimensionally reduced by 

Lasso feature importance method, most methods achieved the 

best recognition effect, when the top 7 important features were 

retained, but DT needed to retain the top 10 features, and SVM 

needed to retain the top 9 features. 

 

Table 1. Results of orthogonal experiments 

 
Serial number 1 2 3 4 5 

Cutting speed 42 41 43 51 53 

Feed per tooth 0.04 0.21 0.14 0.18 0.13 

Cutting depth 0.61 1.14 1.45 1.48 0.47 

Cutting width 5 3 6 5 2 

Tool wear amount 41.295 42.195 67.495 56.289 63.185 

Processing time 1h21m48s 33m5s 18m55s 25m48s 43m37s 

Serial number 6 7 8 9  

Cutting speed 49 58 61 63  

Feed per tooth 0.13 0.07 0.11 0.16  

Cutting depth 1.15 1.13 1.49 0.47  

Cutting width 4 6 3 5  

Tool wear amount 88.495 75.162 92.185 91.462  

Processing time 25m35s 33m58s 24m42s 39m57s  

 

Table 2. Results of tool wear recognition 

 

Algorithm DT 
BP neural 

network 
RF SVM 

Our 

model 

Recognition accuracy 

on worn tools 
72.59% 1.2% 85.29% 1.4% 91.41% 

Recognition accuracy 

on intact tools 
73.85% 92.28% 92.37% 98.48% 99.19% 

Total accuracy 73.22% 46.74% 88.83% 49.94% 95.3% 

 

 
 

Figure 5. Results of Lasso feature importance analysis 

Residual analysis was carried out on tool wear recognition 

based on MATLAB. Table 3 lists the ELM’s residuals and 

confidence intervals. Figure 6 illustrates the residual 

distribution. 

In Figure 6, the light blue circles are residuals, and the dark 

blue vertical lines are confidence intervals of residuals. It can 

be seen that our model holds. The confidence intervals of the 

residuals for all monitoring signals of tool material wear 

contain zero points, indicating that the experimental data after 

feature selection are normal, and need no further screening. 

Figures 7 and 8 report the tool wear variation with cutting 

speeds and feed rates. As shown in Figure 7, under the mean 

tool stress, the tool wear amount gradually increased with the 

growing cutting speed. One of the possible reasons is that, with 

the increase of the cutting speed, the linear speed increases at 

each point on the main cutting edge; the machine tool suffers 

greater chatter and impact, making the tool more vulnerable to 

wear. As shown in Figure 8, under the mean tool stress, the 

tool wear amount did not decrease with the cutting time, but 

surged up with the growing feed rate. Hence, cutting area has 

a greater impact on tool wear amount than cutting length. 

As shown in Figure 9, the torque and axial force had not 

much difference in trend. Both of them first increased and then 

tended to be stable. The main reason is that, in the initial wear 

stage, the cutting edge is sharp, the cutting speed is fast, and 

the cutting force is large. In the stable wear stage, the variation 

of the tool’s cutting force becomes gentle, owing to the impact 

of the metal plate, and the dynamic changes in cutting 

thickness and cutting angle. Through the analysis, it is learned 

that, during high-speed cutting, the tool wear amount directly 

affects the magnitude of the axial force; this amount could be 

indirectly characterized by the axial force. Therefore, the wear 

degree of the tool can be quantified based on the tool’s cutting 

force. 

 

Table 3. ELM’s residuals and confidence intervals 

 
 Residual Confidence interval 

1 0.03185 [-0.6584, 0.7495] 

2 -0.0285 [-0.3748, 0.3529] 

3 -0.0528 [-0.2741, 0.0748] 

4 0.0527 [-0.1856, 0.4157] 

5 -0.0374 [0.6284, 0.5294] 

6 0.0748 [-0.3295, 0.7418] 

7 -0.0518 [-0.2514, 0.0854] 

 

 
 

Figure 6. Residual distribution 
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Figure 7. Tool wear variation with cutting speeds 

 

 
 

Figure 8. Tool wear variation with feed rates 

 

 
 

Figure 9. Trends of torque and axial force under different 

tool stresses 

 

After the identification of tool wear features, 10 sets of data 

were randomly extracted as the test sets for verifying the 

accuracy of our model in predicting tool wear and residual life. 

The prediction performance of our model was compared with 

five models through comparative experiments. Figures 10 and 

11 show the prediction results of all six models. The 

experimental results show that our model converged fast and 

had a small error in model training, and reduced the prediction 

error of tool wear and residual life to 7.1% and 8.5%, 

respectively. The series of improvement to the ELM 

effectively enhances the prediction precision of tool wear and 

residual life, making it possible to apply the prediction model 

to actual job processing. 

 
 

Figure 10. Prediction results on tool wear 

 

 
 

Figure 11. Prediction results on residual life 

  

 

5. CONCLUSIONS 

 

To provide a theoretical guide for improving the production 

techniques of hard alloy material cutting, this paper explores 

the detection of frictional wear for hard alloy tool material 

during high-speed cutting. Firstly, the theories on wave motion 

were cited to build a mathematical model for the frictional 

wear process of hard alloy tool material during high-speed 

cutting, and to analyze the wear mechanism. To weaken the 

interference of weakly important features, new strategies were 

developed to evaluate the feature importance, and recognize 

tool frictional wear, facing the high-dimensional small dataset 

on the monitoring signals of tool material wear. Through 

experiments, the results of Gini importance method and Lasso 

feature importance method were obtained, and residual 

analysis was carried out, confirming that the experimental data 

after feature selection are normal, and need no further 

screening. In addition, the trend of tool wear amount was 

tested at different cutting speeds and feed rates. The results 

demonstrate the feasibility of our algorithm in recognizing the 

hard alloy tool wear under high-speed cutting. 
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