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 To figure out the operating features of Direct-Expansion Air-Conditioning (DX-AC) 

system, this paper employed the BP training algorithm and built a two-in/two-out steady-

state model based on artificial neural network (ANN) and connect the DX-AC system’s 

Totally output Cooling Capacity (TCC) and Sensible Heat Ratio (SHR) under different 

combinations of rotational velocities of compressor and blower; then, the paper verified 

the proposed model by comparing the prediction results of the proposed model with 

experimental data, and the numerical analysis of the steady-state model and bilinear 

interpolation indicated that the ANN-based model proposed in the paper showed a high 

prediction accuracy and can well exhibit its operating performance.  
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1. INTRODUCTION 

 

Air conditioners have been widely used in residential 

buildings as a necessary equipment that provides a 

comfortable living environment for people, and the Direct 

Expansion Air Conditioning (DX-AC) systems, namely the 

direct evaporation (refrigeration) systems, are one of the most 

commonly-used air conditioning system types. In a DX-AC 

system, the evaporator cools and dehumidifies the air directly 

as a cooling coil. Compared with cold-water central air-

conditioning systems [1], DX-AC systems have now been 

more extensively used in residential buildings due to its many 

advantages [2] such as simple structure, flexible installation, 

low maintenance cost, and high energy efficiency. A correct 

understanding of the steady-state operating features of the 

variable-velocity DX-AC system is a prerequisite for 

designing an effective indoor temperature-humidity 

synchronous control strategy [3], however, such research data 

is insufficient. The operating features of a DX-AC system 

include the system TCC and SHR under different compressor-

blower velocity combinations. 

Previous scholars have developed a few related 

mathematical models, for instance, Joe J developed a dynamic 

mathematical model for water-cooled DX-AC systems [4]; 

Chen constructed a steady-state model to study the operating 

characteristics of air cooling and coils, and conducted 

experiments to verify the model [5]. However, the modeling 

process of these physics-based models is quite complicated, so 

multiple attempts might be required to get accurate values. 

ANN is a popular data-driven modeling method that can model 

complex and nonlinear systems. 

To fill in the research gap mentioned above, this paper 

applied the neural network-based modeling method to the DX-

AC systems, and built a two-in/two-out steady-state model 

based on ANN for the said problem. Then, under the 

conditions of a fixed inlet air temperature of 24℃ and a fixed 

relative humidity of 50%, the TCC and SHR were connected 

under different compressor-blower velocity combinations [6], 

and the prediction results of the model were compared with 

test results.  

 

 

2. EXPERIMENTAL CONDITIONS 

 

During the experiment, with the help of a PID (Proportional 

Integral Derivative) controller, the indoor air dry-bulb 

temperature of the DX-AC system’s cooling coil was 

controlled at 24℃, and its relative humidity was controlled at 

50% [7]; the outdoor air baffle of the DX-AC system was 

completed closed during the experiment, so no outdoor air had 

been introduced into the system, and the cooling load of the 

space was solely provided by the LGUs (Load Generating 

Units) [8]. Moreover, at a fixed inlet temperature of 35℃, the 

cooling air flow rate of the condenser was kept at a constant 

velocity of 3100m3/h. Also, with the help of EEV (Electronic 

Expansion Valve), the degree of superheat of the refrigerant 

was kept at 6°C by the conventional built-in PID controller.  

Considering that the goal of constructing the ANN-based 

steady-state model [9] is to connect TCC with SHR under 

different compressor-blower velocity combinations [10], the 

two velocities were taken as two inputs of the model, and TCC 

and SHR were regarded as two outputs of the model. 

All temperature values during the experiment were 

measured by a platinum resistance thermometer [11], the 

report accuracy was ±0.1°C. The Mass Air Flow (MAF) was 

measured with a normative nozzle manufactured according to 

the ANSI/ASHRAE Standard 41.2 (American National 

Standards Institute/American Society of Heating, 

Refrigerating and Air-Conditioning Engineers), and the report 

accuracy was ±1.2%. When calculating TCC and SHR, the 

uncertainty of UTCC and USHR was assessed using the classic 

square root formula: 
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where, 𝑇𝑑𝑏,𝑖𝑛, 𝑇𝑤𝑛,𝑖𝑛, 𝑇𝑑𝑏,𝑜𝑢𝑡, 𝑇𝑤𝑏,𝑜𝑢𝑡 are respectively the dry-

bulb and wet-bulb temperatures of the air entering and leaving 

the DX-AC system; 𝑚𝑎  represents the MAF; 𝑈𝑇𝐶𝐶 , 𝑈𝑆𝐻𝑅 , 

𝑈𝑚𝑎
, 𝑈𝑇𝑑𝑏,𝑖𝑛

, 𝑈𝑇𝑤𝑏,𝑖𝑛
, 𝑈𝑇𝑑𝑏,𝑜𝑢𝑡

, 𝑈𝑇𝑤𝑏,𝑜𝑢𝑡
 respectively represent 

the uncertainty of TCC, SHR, 𝑚𝑎, 𝑇𝑑𝑏,𝑖𝑛, 𝑇𝑤𝑛,𝑖𝑛, 𝑇𝑑𝑏,𝑜𝑢𝑡, and 

𝑇𝑤𝑏,𝑜𝑢𝑡 . The calculation results showed that the degrees of 

uncertainty of TCC and SHR caused by measurement errors 

were 1.85%-3.89% and 1.64%-4.02%, respectively. 

The experimental works can be divided into two types: one 

type was to build steady-state model based on ANN [12]; the 

other type was to verify the developed model.  

 

2.1 Conditions of the first-type experiments 

 

The objective of first-type experiments is to attain test data 

and connect inputs and outputs of the DX-AC system running 

under steady-state conditions, and finally get the desired 

model [13]. To guarantee the maximum model applicability, 

the input changes should cover the entire operating range of 

the system during application, therefore, as shown in Table 1, 

the percentages of maximum compressor velocity (𝑃𝑐 ) and 

maximum blower velocity (𝑃𝐹) both changed from 30% to 90% 

of their respective maximum velocity in steps of 5%, so 

there’re 169 (13×13) velocity combinations in all. 

 

Table 1. Velocity combinations in first-type experiments 

 
PC (%) 

30 35 40 45 50 55 60 

65 70 75 80 85 90  

PF (%) 

30 35 40 45 50 55 60 

65 70 75 80 85 90  

 

The experiments were carried out under the velocity 

combinations listed in Table 1, and a total of 169 sets of input 

and output data were generated, which were then used for the 

training and testing of the proposed model. 

 

2.2 Conditions of the second-type experiments 

 

Table 2. Velocity combinations in second-type experiments 

 
Nos. 1 2 3 4 5 6 7 8 9 10 

PC (%) 38 43 52 53 62 67 73 78 83 87 

PF (%) 37 82 53 67 83 68 43 52 77 47 

 

The purpose of second-type experiments is to verify the 

proposed model [14]. The tests were carried out separately 

from the first-type experiments to independently verify the 

developed model. The experimental conditions were the same 

but the combinations of compressor and blower velocities 

were different, as shown in Table 2, additional tests were 

conducted under 10 randomly selected compressor-blower 

velocity combinations, and 10 sets of additional test data of 

SHR and TCC were obtained. As far as we know, the output 

TCC and SHR data of the 10 sets hadn’t been used to train or 

test the ANN. 

 

 

3. THE STEADY-STATE MODEL TRAINING 

ALGORITHM BASED ON NEURAL NETWORK 

 

The selected NN structure is a multi-layered and feed-

forward [15], which is the most commonly-used type in 

engineering applications. Multi-layer feed-forward neural 

networks are constructed by sorting neurons hierarchically 

[16], so that each neuron only takes the output of previous-

layer neurons or the external input as its input, in other words, 

the input signal propagates forward layer by layer in the 

network [17]. 

A feed-forward NN with multiple layers generally has three 

significant features: 1) The model of each neuron in it contains 

a nonlinear activation function whose nonlinearity is smooth 

(namely the curve is differentiable everywhere); 2) The 

network has one or multiple layers of hidden neurons, but are 

neither part of the inputs nor part of the outputs of the ANN; 

3) The network shows high connectivity [18], which is decided 

by the weight of the ANN. For a feed-forward neural network 

with multiple layers, it can gain its computing power by 

integrating these features with its capability to learn from 

training experience. Figure 1 shows an ordinary multi-layer 

feed-forward neural network, where i (1≤i≤I) represents the 

number of layers, j represents the number of neurons in each 

layer, x represents inputting into the neuron, y represents 

outputting from the neuron, W represents the weight of the 

neural network. Therefore, (i, j) represents the j-th neuron in 

the i-th network layer, and 𝑗𝑖  represents the total number of 

neurons in the i-th layer. 

 

 
 

Figure 1. Structure of a multi-layer feed-forward neural 

network 

 

The training algorithm used in the study is the feed-forward 

back-propagation (BP) algorithm [19]. Each time a set of 

training data is used to adjust the weights and biases is called 

a run. A training cycle consists of plentiful enough data to 

continuously obtain weights and biases from all training data 
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[20]. Then, the calculation is carried out repeatedly for several 

cycles, and the relative error (RE) of the j-th neuron in the 

output layer of the n-th dataset in the last cycle can be 

determined by the following formula: 

 

𝑅𝐸𝑗
𝑛 =

|𝑂𝐼,𝑗
𝑛 − 𝑦𝐼,𝑗

𝑛 |

𝑂𝐼,𝑗
𝑛  (3) 

 

During the test, two indicators R and σ were adopted to 

assess the performance of different ANN configurations and 

the sensitivity of the REs and standard deviations of all test 

data [21], as shown in the following formulas: 
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where, N is the total number of datasets adopted in training or 

testing, 𝑂𝐼,𝑗
𝑛  is the target output, 𝑦𝐼,𝑗

𝑛  is the output of ANN 

corresponding to 𝑂𝐼  during the test, R represents the average 

prediction accuracy, and σ represents the prediction dispersion 

of the ANN [22]. 

 

 

4. DEVELOPMENT OF THE STEADY-STATE MODEL 

BASED ON ANN 

 

During the research, 144 datasets (85% of the total 169 

datasets) were randomly chosen for training, and the rest 25 

datasets (15% of the total 169 datasets) were chosen for testing. 

In order to choose ANN with appropriate configurations when 

modeling the DX-AC system, 4 evaluation indicators listed in 

Table 3 were adopted to evaluate many different ANN 

configurations. One thing needs to be pointed out is that, the 

first 2 indicators were attained from the training process, and 

the other 2 were attained from the testing process. The first 2 

indicators, average relative error (ARE) and maximum relative 

error (MRE), were evaluated in the following ways: 
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𝑀𝑅𝐸 = 𝑀𝑎𝑥(𝑅𝐸𝑗
𝑛) (7) 

 

Table 3. Accuracy evaluation indicators of different ANN 

configurations 

 

Indicator Definition 

ARE 
The average relative error of the last cycle during 

the test 

MRE 
The maximum relative error of the last cycle during 

the test 

R 
The average ratio of test data to corresponding ANN 

output  

σ 
The standard deviation between test data and 

corresponding ANN output 

 

The setting of ANN configurations would determine the 

precision of ANN in training and testing. Finally, the 2-6-6-2 

structure given in Figure 2 was chosen as the configuration, 

since the values of ARE and MRE were at their respective 

lowest of 0.026 and 0.0046, indicating that the data accuracy 

during model training was relatively high; the σ value was at 

its lowest 0.0052 and the R value was close to the ideal 

expectation of 0.9985, indicating that the developed ANN 

model had a high average accuracy and a low dispersion.  

Figures 3 and 4 show the experimental data used to develop 

the proposed model.  The 144 datasets adopted for training are 

shown as grid points on two spatial surfaces, and the rest 25 

datasets are shown as crosses. Using the established neural 

network model, the calculation results and experimental 

results of TCC and SHR of different 𝑃𝐶  and 𝑃𝐹  combinations 

were compared. For the model developed based on 2-6-6-2 

ANN, Figure 5 gives all data in the test. As shown in the figure, 

most relative errors of the calculation were lower than 0.015, 

only four values were greater than 0.015, indicating that the 

proposed model showed high prediction accuracy during the 

operation in the experiments.  

 

 
 

Figure 2. The selected 2-6-6-2 neural network structure 

 

 
 

Figure 3. The TCC data used for training and testing 

 

 
 

Figure 4. The SHR data used for training and testing 
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Figure 5. Distribution of RE of the proposed 2-6-6-2 ANN 

model 

 

 

5. VERIFICATION OF THE PROPOSED MODEL  

 

With the help of the constructed ANN model, the SHR and 

TCC values can be forecast. In order to verify the prediction 

accuracy of the model, 10 sets of additional test data were 

attained, as shown in Table 4. Under the 10 velocity 

combinations, the prediction results of the model and the 

corresponding experimental results were compared to verify 

the prediction performance of the model, as shown in Table 4, 

all relative errors of the calculations were lower than 4%, and 

most of them were less than 1%. 

 

Table 4. The relative errors between prediction results and 

experimental results 

 

Nos. PC (%) PF (%) RETCC (%) RESHR (%) 

1 38 37 0.3141 0.7913 

2 43 82 0.3686 1.6348 

3 52 53 0.6863 0.2218 

4 53 67 1.0145 0.0821 

5 62 83 1.6506 1.0782 

6 67 68 0.4714 0.3063 

7 73 43 0.6205 0.9825 

8 78 52 0.7146 0.1237 

9 83 77 3.6206 1.6342 

10 87 47 0.4266 0.6757 

 

Using this physics-based steady-state model [23], the 

prediction accuracy of the relative errors of SHR was around 

6%, much higher than errors listed in Table 4, showing that the 

developed model had a high prediction accuracy. In addition, 

another advantage of the model is that it is simpler than the 

physics-based model which focuses on basic physical 

processes, the latter often involves many calculation equations 

[24], and it has to make many assumptions during the 

development process.  

Moreover, bilinear interpolation can extend linear 

interpolation to two dimensions [25]. By applying it, we can 

use experimental data to evaluate TCC and SHR values of the 

10 prediction points specified in Table 4, and calculate the 

relative errors between the prediction results and the 

experimental results [26]. Figure 6 gives a comparison of the 

relative errors of TCC, and Figure 7 gives a comparison of the 

relative errors of SHR between the ANN-based model and the 

bilinear interpolation. The comparison results showed that, 

compared with other prediction methods, the accuracy of the 

model developed based on ANN was acceptable, therefore the 

developed model could be used as a good alternative for 

simulating DX-AC systems [27]. 

 

 
 

Figure 6. RE of TCC between proposed model and bilinear 

interpolation 

 

 
 

Figure 7. RE of SHR between proposed model and bilinear 

interpolation 

 

 

6. CONCLUSION 

 

Applying BP training algorithm, this paper connected 

steady-state TCC and SHR of the DX-AC system under 

different compressor and blower velocity combinations, and 

developed a two-in two-out steady-state neural network model. 

A total of 144 datasets were used for training and 25 datasets 

were used for testing. By comparing the measurement results 

of TCC and SHR of 10 additional combinations of compressor 

and blower velocities with the prediction results of the steady-

state model developed based on ANN, the proposed model 

was verified by experimental results. When the proposed 

model was applied in prediction, all relative errors were less 

than 4%, and most of them were less than 1%, indicating that 

the proposed model had a high prediction accuracy.  

The experiments on the steady-state model of DX-AC 

system with multiple input and output variables based on 

neural network indicated that the applied neural network can 

well represent its operating performance. The ANN-based 

steady-state model is helpful for researchers to figure out the 

operating performance of DX-AC systems, so that appropriate 

controllers could be developed for DX-AC systems to realize 

the control of indoor air temperature and humidity at the same 

time. 
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