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 In the present study, sand behavior on the transformation of sandy beaches is simulated by 

a Lagrangian approach using a solver based on smooth particle hydrodynamics (SPH) 

method. There are interpolation points that are assumed as fluid particles with arbitrary 

distribution. These particles carry mass, velocity, density, and other material properties 

depending on the given problem. The multi-phase flows can be modeled by SPH and each 

particle is assigned to a different phase. The WCSPH method is used to solve Newtonian 

and non-Newtonian fluid flow which causes smaller computation power in comparison with 

the fluid dynamics. The present method is validated by solving a dam break, submerged 

hatch and sedimentation problems. In addition, the computational results are evaluated with 

the experimental and numerical data. The formation of bed ripples in sandy beaches is 

investigated in details and an intended model is accomplished. 
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1. INTRODUCTION 

 

Mesh generation in common numerical methods such as 

finite difference methods (FDM), finite element methods 

(FEM) and finite volume methods (FVM) creates challenges 

for computational fluid dynamics. As the size and complexity 

of the problems increase, the computational costs enhance. 

Meshfree or meshless schemes have been used to find 

approximate solutions of partial differential equations 

efficiently. For these methods, discretization of governing 

equations does not need mesh network, which allows the 

analysis of a large category of problems. Lagrangian meshless 

approaches have been applied to the problems with large 

deformation. This causes convective terms of Navier-Stokes 

equations to be calculated directly and numerical diffusion 

error to be eliminated. In addition, meshless methods have 

advantages in other category of problems due to lack of mesh 

network, for example, a typical dam failure problem. The free 

surface profile changes with the time. Hence, the most 

important point in this problem is to model free surface. Since 

the specification of the free surface is not readily possible in 

mesh-based methods, various techniques such as Volume-of-

Fluid (VOF) [1-2], front-tracking [3-8] and Level Set (LS) are 

employed for tracking the free surface. If the profile of the free 

surface significantly changes, the structure of mesh network is 

completely destroyed. Therefore, to be consistent with these 

conditions during the solution, the shape and mesh structure of 

computational domain must be modified dynamically leads to 

more computational power.  

Meshless methods can be classified into four main 

categories: Smooth Particle Hydrodynamics (SPH), Radial 

Basis Functions (RBF), Finite Point Methods (FPM), and 

Meshless Local Petrov-Galerkin (MLPG) [9]. The SPH 

method is introduced by Monaghan [10]. He employed the 

SPH method with artificial viscosity to predict the location of 

shock waves in a one-dimensional tube. According to his work, 

it can be concluded that this scheme leads to an appropriate 

solution for the problems of infinite domain. Hu and Adams 

[11] proposed an incompressible multi-phase SPH method 

using a new projection method. They compared his technique 

against theoretical solutions for different multi-phase 

problems such as Rayleigh-Taylor instability and reported that 

their numerical results are in a good agreement with the 

theoretical ones. The incompressible SPH method was 

developed by Khayyer et al. [12, 13] to improve the 

momentum conservation and to achieve more accurate 

pressure field. They used a higher order source term to damp 

a fluctuating in the flow field. Rogers et al. [14] utilized two-

dimensional SPH method to simulate the motion of a caisson 

breakwater under periodic wave force. They modeled the 

transient behavior of the friction factor between the caisson 

and the bed and demonstrated that finer resolution results in a 

better prediction of impact forces. Lind et al. [15] proposed a 

new SPH method for simulating water-air problems by 

combining compressible smoothed particle hydrodynamics 

and incompressible smoothed particle hydrodynamics. 

Despite of the discontinuity in density at the interface, 

acceptable results were obtained in comparison with semi-

analytical ones for different problems such as Kelvin-

Helmholtz instability and oscillating water drop.  

Study of non-Newtonian flows using the SPH methods is 

significantly increased in recent years. For example, Ellero et 

al. [16] developed a numerical scheme based on the SPH 

method to study the viscoelastic fluid flows using the non-

stationary Maxwell model. Also, Shao and Lo [17] proposed 

an incompressible SPH method to simulate Newtonian and 

non-Newtonian flows with free surfaces. Non-Newtonian 

fluid was modelled by Cross rheological model and the 

difference between Newtonian and non-Newtonian fluids was 

considered for two-dimensional dam-break problems. The 
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applications of the SPH method for free-surface flows have 

been reviewed by Violeau and Rogers [18].     

The formation of sand ripples on the desert areas have been 

studied by many researchers. Abdikerem et al. [19] 

numerically studied the sand ripple formation process under 

uniform and nonuniform airflow and revealed that the 

nonuniform airflow creates the complex curved ripples. 

Aeolian sand ripples formation in desert highway was 

investigated by Ablimit et al. [20] by using the weak coupling 

method. They found that the break of sands into highway 

depends on the highway height. Finn et al. [21] studied the 

transport mechanism of natural sand particles using an Euler-

Lagrange model. They demonstrated that the particle sorting 

is significantly affected by the particle-size distribution. 

In the present study, the weakly compressible smooth 

particle hydrodynamics (WCSPH) method is employed to 

investigate the sand transport dynamics in a sandy beach. The 

paper is organized as follows: the numerical method is 

presented in section 1. In section 2 the governing equations are 

described. The verification of the present numerical method is 

reported in section 4. The results are presented in section 5 

where two types of sandy coast bed with different yield stress 

are compared. The concluding remarks are presented in 

section 6. 

 

 

2. NUMERICAL METHOD 
 

2.1 Interpolation 
 

Estimating physical quantities using the information of 

finite points is the key step in finding the values of these 

quantities in a computational fluid dynamics algorithm. In the 

finite difference methods, these points are the vertices of 

network nodes (meshes). While in the SPH method, the 

interpolation points are the particles moving along with the 

flow and bearing fluid properties. The SPH method is actually 

a weighted average method for estimating the quantity of a 

parameter. In the manner that for estimating the quantity of a 

parameter in a specific point, it is assumed that each of the 

neighbor points owns a share, which is determined by an 

interpolation function (Figure 1).  

 

 
 

Figure 1. A view of SPH particles distribution and the 

support of Kernel function (gray region), smoothing radius 

and neighbor particles (empty points) for a specific point 

 

The effective (non-zero) area of a specific point is an area 

around the point involves the interpolating value of quantities. 

 

2.2 Interpolation integral 

 

The integral expression of a quantity A as a function of 

spatial coordinates is given in the following form: 

( ) ( ) ( )A r = A r δ r-r dr                                                         (1) 

 

where 𝛿(r-r′)  is Dirac delta function and dr′ is differential 

volume element.  

In the SPH method, quantity A which is a function of spatial 

coordinates is specified according to the following integral 

interpolation [22]:  

 

( ) ( ) ( )A r A r w r-r ,h dr                                                (2) 

 

where w is Kernel interpolation function. The integration is 

performed over all spaces. Under the condition that the 

interpolation is applied to the fluid, fluid environment is 

divided into a set of small mass elements. Element "a" with 

mass of ma has density of 𝜌𝑎 and position of ra. The value of 

quantity A for particle a is shown as Aa .The interpolation 

integral can be written as: 

 

( )

( )
( )

A r
ρ r dr

ρ r


 


                                                                     (3) 

 

where 𝜌(𝑟′)dr′  is a mass element. This integral can be 

approximated by applying summation operator over mass 

elements:  

 

( ) ( )b
a b a b

b b

A
A r m w r -r ,h

ρ
                                         (4) 

 

The index of summation is over all particles. However, only 

the neighbor particles adjacent to the particle "a" are effective. 

It is because w decreases dramatically by increasing the 

distance (properties of Kernel function will be discussed in the 

next section). Parameter h (smoothing length) is determined 

regarding to the distance value between the particles. 

Therefore, in a specific distance from the particle, the value of 

Kernel will be zero. That is why it is usually tried to apply 

Kernels with compact support to consider the effect of 

neighbor particles through a specific distance from a particle. 

In this way, only a limited numbers of neighbor particles are 

involved in the calculation of a particle and computational 

power decreases in compared to applying Kernels without 

compact support. 

 

2.3 Kernel functions  

 

Interpolation functions have the key role in the SPH method. 

These functions, which are actually weight function, specify 

how to estimate the value of a quantity and also the size of 

effective area for each particle. The interpolation function 

applied here is cubic spline function. This function is a third 

degree polynomial and written as follows [23]: 

 

( ) ( )

2 3

3

D

3 3
1- q + q q<1

2 4

1
W r,h =α × 2-q 1<q<2

4

0 q>2

 
 
 







                      (5) 

 

2.4 Solid boundary conditions 

 

Applying boundary conditions is one of the key problems in 
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Lagrangian and particle-based methods. Application of this 

method is usually more difficult in compared with the Eulerian 

and grid-based methods. This is due to the difference between 

the concept of position in two Eulerian and Lagrangian 

approaches. While in Eulerian approach the position is 

independent of time, it is a function of time in Lagrangian 

approach and defined with movement of material particles. In 

the present method, repulsive boundary conditions are used. 

The main purpose is preventing particles from crossing wall 

boundaries. Hence, a series of virtual solid particles are 

arranged around the fluid region. The virtual particles have a 

strong repulsive force which is proportional to inverse of 

distance between two particles. When a fluid particle enters 

the effective area of a virtual particle, dependent on the 

distance between them, this force is applied to the fluid particle 

along the line of centers of two particles. Repulsive force 

prevents fluid particle from closing to solid boundary and 

penetrating into the boundary. Fig 2 shows the arrangement of 

these particles for a wall and the force imposed by the particle 

is calculated as below [24]: 

 

1 2n n

ijo o o

2

ij ij ij ij

ij

o

ij

xr r r
D - 1

r r r r
F

r
0 1

r

       
                      = 
  

   
  

                                (6) 

where 𝑛1 , 𝑛2  and D are considered as 12, 6, and 0.01, 

respectively. 𝑟0  is the effect-distance of particle's force. 

Parameter 𝑟0should be specified so that entering particles to 

solid region is prevented and it is usually in the order of the 

initial distance between main particles.  

 

 
 

Figure 2. Arrangement of virtual particles for solid wall 

 

It should be mentioned that the velocity of these particles is 

zero and their position is not updated. Density and pressure of 

these particles are also constant with time. 

 

 

3. GOVERNING EQUATIONS 

   

3.1 Conservation equations  

 

The equations of mass and momentum govern the fluid flow 

and are expressed as follows:  

 

1 Dρ
+ .u=0

ρ Dt
                                                                     (7) 

 

Du 1 1
=- P+ . τ +g

Dt ρ ρ



                                                           (8) 

 

In the above equation, 𝜌, 𝑢 and 𝜏indicate density, velocity 

filed and stress tensor, respectively. Also, g is the acceleration 

due to gravity. 

 

3.2 Description of the equation of particles position 

 

The equation of motion for particles at each time step is 

written as follows: 

 
dr⃗𝑎

dt
=u⃗⃗𝑎                                                                                        (9) 

 

When SPH method is applied to simulate the fluid flow, 

more modifications should be made. For example, instead of 

moving particles based on Eq. (9), motion of particles should 

be obtained using the following relation: 

 
dr⃗𝑎

dt
=u⃗⃗𝑎+ε ∑ 𝑚𝑏

�⃗⃗⃗�ba

�̄�ab
𝑊ab𝑏                                                      (10) 

 

where �̄�ab = (𝜌𝑎+ρ
𝑏

)/2 and �⃗⃗�ba=u⃗⃗𝑏-u⃗⃗𝑎. 𝜀  is a constant 0 ≤

𝜀 ≤ 0.5. Eq. (10) is regarded as the XSPH parameter and it is 

introduced by Monahan for the first time [25]. When particle-

based methods are used for simulating fluid flows which are 

in contact with each other, XSPH parameter and modified 

expression for velocity are applied to prevent interference of 

particles. In addition, Eq. (10) guarantees that particles are 

moving with the velocity close to their nearby particles and for 

the relatively incompressible fluids like water, in the absence 

of viscosity, this keeps particles together in an ordered manner 

[26].   

 

3.3 Description of the pressure state equation 

 

A fluid like water is slightly compressible; but in most cases 

of fluid dynamics problems, it is approximated as an 

incompressible fluid. Another approach which is more 

consistent with SPH method is that fluid is treated as slightly 

compressible. This method, called weakly compressible 

smoothed particle hydrodynamics (WCSPH), is developed by 

applying weakly compressible condition using a state equation. 

This approach is an imitation of real fluid, but with small 

sound speed (to the extent that time steps are not very small) 

and, on the contrary, large enough to guarantee Much number 

M⁓0.1; therefore, density variations 𝛥𝜌  are smaller than 

0.01ρ .The most common state equation utilized in SPH 

simulation with standard of weakly compressible condition is 

in the following form [19]: 

 
γ

0

ρ
P=B -1

ρ

  
  
   

                                                                       (11) 

 

In the above equation, 
0ρ  is the reference density which for 

water is 𝜌0=1000kg/m3  and 𝛾 = 7. The only modification 

required by state equation is changing the value of constant B. 

Sound speed in reference density is [13]: 

 

2

0

γB
c =

ρ
                                                                                (12) 
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Therefore, if B=100ρ
0

𝑢2/γ  is selected, the considered 

density variation is less than 0.01. Here u is fluid velocity. 

Therefore, for obtaining B in each new problem, the maximum 

flow velocity should be estimated. A simple example is the 

problem of falling water column with the height of H. 2u =2gH  

is an appropriate approximation in which, g is the Earth 

gravitational acceleration. According to this relation, speed of 

sound is calculated as 2c =20gH .  

 

3.4 Description of non-Newtonian model 

 

For modeling problem, sand is regarded as a non-

Newtonian fluid, by Bingham plastic model. This kind of 

fluids can sustain a specific amount of stress (yield stress) 

without flowing. Obviously, in higher values than yield stress, 

the fluid continuously introduces strain. The stress relation in 

this model is as follows [20]: 

 

𝜇eff=μ
𝐵

+
𝜏𝐵

�̇�
                                                                          (13) 

 

In which 𝜇𝐵  is viscosity coefficient, 𝜏𝐵  is Bingham yield 

stress. �̇� also demonstrates shear strain rate and it is defined as:  

 

�̇� = √2 (
∂𝑢

∂𝑥
)

2

+ 2 (
∂𝑣

∂𝑦
)

2

+ (
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
)

2

                               (14) 

 

where parameters u and v are velocity vectors. 

 

 

4. VALIDATION   

 

For validation and being sure about the applied algorithm, 

the current solution method is used for three different 

problems.  

 

4.1 Validating flow through submerged hatch 

 

As the first simulation, using the current numerical method, 

the outlet flow through submerged hatch is modeled and VOF 

method according to reference [21] is considered for 

validation. As the initial geometry of problem, the reservoir 

length and the initial water height are both considered to be 

0.15 m and hatch height to be 0.035 m. In the first moment, it 

is assumed that the hatch is opened abruptly. Regarding the 

convergence criteria, time step is considered to be 0.001 s and 

locative interval to be 0.005. Computational properties in the 

current method are shown in Table 1. The conditions of 

reservoir free surface and the outlet flow through hatch at 

different times are shown in Figure 3 based on the mentioned 

methods.  

 

Table 1. The computational properties in the problem of 

passing flow through submerged hatch 

 
Water particles 900 

Wall particles 1036 

Total particles 1236 

Initial particle distance 0.005 m 

Time step 0.001 s 

 

Considering Figure 3, very good agreement for specifying 

conditions of water surface in reservoir and in outlet of hatch 

is observed between two methods.  

As the last problem of this chapter, the outlet flow from 

orifice was modeled and validated. According to reference 

[13], the orifice opening in the height of 0.055 m is 0.045 m 

from the ground. In Figure 4, the variation of fluid free surface 

at 0.14 s after opening hatch is shown. 

As it is seen in this figure, there is a very appropriate 

agreement among the results of numerical method of VOF and 

WCSPH method. 

 

4.2 Simulation of classic dam failure problem 

 

Another simulation performed for validating the 

computational algorithm is the classical model of dam failure    

problem during which the results of current simulation are 

compared with experimental ones obtained by Ozmen and 

Kocaman [14]. In this process, validation is performed by an 

experimental model. In numerical calculations, the upper 

boundary is wall reminding that no flow enters the reservoirs 

and the reservoir length is constant. The lower boundary for 

dry-bed experiment is treated as outlet flow; but in wet-bed 

experiment this is applied as wall because of closing with 

vertical metal plate (end of reservoir). Below boundary 

(bottom) is also considered as closed and above boundary 

(water surface) as symmetric for atmospheric pressure values 

on surface. 

 

 
 

Figure 3. The water surface profile in reservoir and outlet of 

hatch obtained by WCSPH and VOF methods [21] at a) t=0 

s, b) t=0.04 s, c) t=0.1, and d) t=0.14 s 

 

 
Figure 4. Variations of water surface at 0.14 s after opening 

orifice. Comparison between present results and the one of 

Ref. [21] 

 

In Table 2, the properties corresponding to initial 

dimensions and computational parameters for simulating dam 

failure problem and comparing with experimental model can 
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be observed. Based on this model, initial geometry of dam 

failure is drawn in Figure 5, which the initial depth of upstream 

water is h0=25 cm and that of downstream water is variable. In 

this model, length of reservoir d=9cm and height of reservoir 

is H=26cm. Lengths of upstream and downstream are 4.65 cm 

and 4.35 cm respectively to be consistent with experimental 

model.  

 

Table 2. Computational parameters in dam failure problem 

 
Water particle 7740 

Wall particle 2088 

Total particle 9528 

Smoothing length (h) 1.5L0 

XSPH factor 0.1 

Upstream height 0.25m 

Initial particle distance 0.0125m 

Time step 0.0001s 

 

 
 

Figure 5. Dimensions and properties of dam failure model 

 

In Figures 6-11, flow depth (h) and horizontal length (x) are 

non-dimensionalized by initial depth of upstream (h0). Time (t) 

is also applied in the form of the dimensionless parameter 

T=t(g/h0)0.5. Parameter α introduces the ratio of height of 

downstream to that of upstream whose values for three 

different simulations are 0, 0.1 and 0.4 respectively. In these 

figures qualitative changes of water surface level and the 

created wave by dam failure are compared and validated by 

results of experimental model of Ref. [22].  

 

 
 

Figure 6. Comparison between results of simulation by 

WCSPH model and experimental model [22]. Free surface 

profile along initial states of dam failure at non-dimensional 

time of T=1.13 for dry bed with α=0 

 

 
 

Figure 7. Comparison between results of simulation by 

WCSPH model and experimental model [22]. Free surface 

profile along initial states of dam failure at non-dimensional 

time of T=2.76 for dry bed with α=0 

 
 

Figure 8. Comparison between results of simulation by 

WCSPH model and experimental model. Free surface profile 

along initial states of dam failure at non-dimensional time of 

T=1.57 for dry bed with α=0.1 

 

 
 

Figure 9. Comparison between results of simulation by 

WCSPH model and experimental model [22]. Free surface 

profile along initial states of dam failure at non-dimensional 

time of T=2.38 for dry bed with α=0.1 

 

 
 

Figure 10. Comparison between results of simulation by 

WCSPH model and experimental model [22]. Free surface 

profile along initial states of dam failure at non-dimensional 

time of T=1.50 for dry bed with α=0.4 

 

 
 

Figure 11. Comparison between results of simulation by 

WCSPH model and experimental model [22]. Free surface 

profile along initial states of dam failure at non-dimensional 

time of T=2.38 for dry bed with α=0.4 

 

Considering the obtained results, variations of free surface 

profile and the front of created wave by dam failure can be 

observed during time. The results show a good qualitative 
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agreement among the results of numerical and experimental 

model. In the manner that for the model corresponding to dry 

upstream, the results of WCSPH and experimental models are 

so close to each other which can be hardly distinguished. The 

dynamic nature of particles in SPH method can be regarded as 

the reason of this behavior which regarding to this nature, 

particles harbor turbulence in themselves. 

 
4.3 Validation of water-sediment two-phase flow caused by 

dam failure on erodible bed 

 

Dam failure on erodible bed causes transportation of 

sediments behind the dam reservoir and abrupt changes of bed. 

Nature and behavior of solid-liquid two-phase flows are 

different with those of single-phase flows. Investigation of 

velocity and behavior of these flows is complicated due to 

existence of suspending and depositable particles and they 

always attract the attention of researchers because of their 

wide applications in industry. One of the most complicated 

problems in simulation of two-phase flows is existing huge 

density difference among available phases. In this section, the 

suggested model for simulating the flow caused by dam failure 

on erodible bed and investigating the morphological processes 

mechanism is described. For this purpose, the physical model 

of Ref. [23] is regarded for simulation and analysis. Accurate 

specification of different effective parameters on the 

properties of two-phase flows has considerable importance. 

For simulating sediments, non-Newtonian Bingham plastic 

model is utilized which the reason of its application has been 

already assessed. Yield stress and effective Bingham viscosity 

are among the effective parameters for simulation. In this 

simulation, according to experimental relations, the value of 

yield Bingham stress 𝜏𝑦 is considered 𝜏𝐵 = 0.447Pa [24]. In 

addition, Bingham plastic viscosity is equal to 𝜇 = 0.04Pa.s. 

The geometrical and rheological values used for simulation of 

the current problem are reported in Tables 3 and 4.  

 

Table 3. The geometrical properties of the water-sediment 

simulation model 

 
Water column width 1m 

Sediment column width 2.5m 

Water column height 0.05m 

Sediment column height 0.1m 

XSPH factor 0.07m 

Initial particle distance 0.05m 

Time step 0.00003m 

 

Table 4. The rheological properties of the water-sediment 

simulation model 

 
Yield stress 0.447Pa 

Water viscosity 0.001Pa.s 

Sediment viscosity 0.04Pa.s 

Water density 1000kg/m3 

Sediment density 1940kg/m3 

 

 
 

Figure 12. The initial geometry of water-sediment in 

simulation model 

 
 

Figure 13. The initial geometry of water-sediment in 

experimental model 

 

In Figure 12 the initial simulation geometry and in Figure 

13 the experimental model of the water-sediment two-phase 

flow created by dam failure on erodible bed are demonstrated 

in which the upper flow introduces water and the below one 

introduces sediment. 

 

 

 
 

Figure 14. Investigating the progress of wave front, sediment 

transport, and free surface at t=0.25s between experimental 

model (above figure) and the current work (below figure) 

 

 

 
 

Figure 15. Investigating the progress of wave front, sediment 

transport, and free surface at t=0. 5s between experimental 

model (above figure) and the current work (below figure) 

 

In Figures 14-16, using the current method, the results of 

modeling free surface profile are investigated at different 

times. In these figures, the experimental results and the ones 

obtained by the current method are shown. Regarding the lack 

of accurate dimensions and sizes in experimental results and 

also available different interpretations, qualitative comparison 

is regarded in this section. By observing the results, the trend 

of progressing flood created by dam failure demonstrates that 

in the beginning of this process an intensely dense wave 

develops through the downstream causing dramatic increase 

in water depth. The initial wave energy causes considerable 

erosion at the beginning of bed. During the time, the initial 

wave transports the leached particles of bed to a distance in 

downstream. Therefore, by decreasing the wave energy and 

also increasing the difference in bed profile, sediments are 

deposited. As this wave spreads through downstream, it wanes 

gradually. Progress of the initially created wave also decreases 
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water level in upstream. 

 

 

 
 

Figure 16. Investigating the progress of wave front, sediment 

transport, and free surface at t=0.75s between experimental 

model (above figure) and the current work (below figure) 

 

 

5. RESULTS 

 
After validation of algorithm for different models, it has 

applied to simulate Sand beach. The computational parameters 

utilized for simulating this flow, including water properties 

(Newtonian viscous fluid) and those of sand (non-Newtonian 

Bingham model fluid) are brought in Table 5. 

  

Table 5. The computational parameters for beach flow 

simulation 

 
Sand density 1950 kg/m3 

Water density 1000 kg/m3 

Total particles 6471 

Initial particle distances 0.04m 

Time steps 0.00002s 

 

After introducing computational parameters, properties of 

water and sand are the only properties required for modeling. 

A rheological model is used for describing the behavior of 

sand. In other words, sand is regarded as a Bingham plastic 

fluid [25, 26]. As it is mentioned before, in stresses less than 

yield stress, Bingham fluid does not introduce any strain but 

in values higher than yield stress, its internal structure distorts 

and shear movement becomes possible. On condition that 

shear stress is less than yield stress, internal structure 

establishes again. In non-Newtonian fluid like Bingham, 

unlike Newtonian fluid, viscous coefficient changes 

dependent on strain rate. The values of yield stress and viscous 

coefficient of the Bingham fluid for modeling sand is 

according to Ref. [20] which are selected after try and error to 

have the best values for our studied sand. Reminding that two 

kinds of sand are studied, different values for yield stress  𝜏𝐵 =
200  Pa and 𝜏𝐵 = 1000 Pa with constant  2

Bμ 0.1N.s/m=  and 

𝜌𝑠𝑎𝑛𝑑 = 1950𝑘g/m3  are considered for two types of beds 

whose physical properties are consistent with experiments of 

Rzadkiewicz et al. [27]. 

The modeling results for non-Newtonian fluid of sand with 

𝜏𝐵 = 200 Pa and 𝜇𝐵 = 0.1N.s/m2 in different time intervals 

are available in Figs. 17-21. The demonstrated regions from 

coastal profile include the area before and after wave break to 

reflect its effect, if available, on changing bed profile. 

According to the result, modeled bed under the effect of finite 

yield stress of 𝜏𝐵 =200Pa varies fast and after 2 to 4 seconds 

(dependent on conditions of simulation), the profile of ripples 

become steady. 

 
 

Figure 17. The variations of first type of sandy coast bed in 

t=0 

 

 
 

Figure 18. The variations of first type of sandy coast bed in 

t=0.7s 

 
 

Figure 19. The variations of first type of sandy coast bed in 

t=2s 

 

 
 

Figure 20. The variations of first type of sandy coast bed in 

t=4s 

 

 
 

Figure 21. The variations of first type of sandy coast bed in 

t=8s 

 

For next step, streamline contours have shown in Figures 

22-27. According to the results, streamline contours has 

irregularity in early moments. But in the following, regular 

structure occurs with progress in time and wave formation. 

 

 
 

Figure 22. The streamline contour of first type of sandy coast 

bed in t=0.7 
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Figure 23. The streamline contour of first type of sandy coast 

bed in t=4 

 
 

Figure 24. The streamline contour of first type of sandy coast 

bed in t=8 

 
 

Figure 25. The streamline contour of first type of sandy coast 

bed in t=10 

 
 

Figure 26. The streamline contour of first type of sandy coast 

bed in t=12 

 
 

Figure 27. The streamline contour of first type of sandy coast 

bed in t=16 

 

 
 

Figure 28. Comparison between two kinds of modelled beds 

possessing different yield stresses (left hand side) and 

comparison between these two models with their similar real 

sandy beds (right hand side) 

Two types of costal beds which are defined and 

distinguished from each other by their difference in value of 

yield stress are shown in Figure 28. Modeling the effect of 

wave in these two beds (left hand side) and the figures of 

similar real beds to this modeling (right hand side) are shown. 
 

 

6. CONCLUSIONS   

 

In this study sandy, coast bed was investigated with 

WCSPH method as the main model. To validate this method, 

the different fluidic phenomena were simulated. During this 

step, the problems of outlet flow through a hatch and the 

phenomenon of dam failure in two cases of wet and dry beds 

as the Newtonian events and the problem of water-sediment 

two-phase flow as a non-Newtonian fluidic phenomenon are 

considered for simulation and validation during which the 

investigation proves the correctness of simulation and desired 

accuracy of current method. As the main model, changes in 

profile of a sandy coast bed with specific physical and 

rheological properties were modeled at different times under 

the effect of a sinusoidal wave maker pedal. The appearance 

of modeled bed under the effect of finite yield stress of 

𝜏𝐵 =200 Pa varies fast and after 2 to 4 seconds (dependent on 

conditions of simulation), the profile of ripples become steady. 

In addition, since the second type of bed includes finer 

particles, a significant change in profile cannot be observed; 

but on the contrary, for the first type of bed by considering 

more finite yield stress, the resulted change of profile is 

observable. The dentate profile appearance of this type of beds 

is ripple-shaped which is among the most important and 

common profile changes in sandy beds. 
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NOMENCLATURE 

D Repulsive force parameter     

g Gravity constant (m/s2) 

h Smoothing length (m) 

L0 Initial particle distance(m) 

m Mass (kg)  

P Pressure (Pa) 

r Position vector (m) 

t Time (s) 

T Non dimensional time (s) 

u,v Horizontal velocity, Vertical velocity (m/s) 

Greek symbols 

α Upstream to downstream ratio 

�̇� Shear strain rate (s-1) 

ε XSPH factor 

 µ Viscosity ( 2N.s / m ) 

µeff Effective viscosity ( 2N.s / m )  

ρ Density ( 3kg/m ) 

τ Shear stress (Pa) 

τB Yield (Pa) 
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