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 The COVID-19, which has rapidly spread and infected millions of people from all over the 

world, causes various problems including psychiatric, economic, educational as well as 

health. Many studies have been reported that COVID-19 can be characterized by vascular 

damage predominantly involving micro vessels. In this study, we proposed a method to 

examine whether COVID-19 effects on brain computer interface (BCI) performance or not. 

We collected P300 based electroencephalogram (EEG) signals from six subjects before and 

after the COVID-19 infection. For classifying the P300 and non-P300 EEG signals, single 

output and two-layer artificial neural network was utilized. Based on the t-test analysis, it 

was observed that there was a significant difference between the before and after COVID-

19 infection test groups especially on Oz channel in occipital region for alpha=0.05 percent 

while that of for alpha=0.01 percent shows no statistical difference for P300 classification 

results. The latency values, on the other hand, before and after COVID-19 infection did not 

represent any difference for both significance levels. It is clearly understood from the 

literature that COVID-19 negatively effects to the microvascular bed. Therefore, it might be 

expected that it could cause to reduce the P300 based BCI performance. This was the first 

study to investigate the impact of COVID-19 on P300-based BCI performance, taking into 

account the EEG signals of the COVID-19 infection. The obtained results showed that 

although the COVID-19 infection did not generally effected P300 based BCI application 

performance and latency values, the performance of the occipital region electrodes slightly 

effected. 
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1. INTRODUCTION 

 

COVID‐19, which was first detected in December 2019 in 

Wuhan, China, has rapidly spread and infected millions of 

people from all over the world. The World Health 

Organization declared it as a global health emergency and a 

pandemic on March 11, 2020 [1]. It was reported that the virus 

enters host cells by means of the envelope spike protein, which 

binds to angiotensin-converting enzyme 2 receptors [2]. These 

receptors are highly expressed in heart, lungs, respiratory tract 

epithelium, endothelial cells and brain. On the other hand, it is 

obvious that COVID-19 quarantine causes variety of social 

and economic problems. For example, it was found that there 

were high prevalence of mental health (MH) problems, which 

positively associated with frequently social media exposure 

[3]. Another study revealed that a high prevalence of MH 

problems and gaps in MH services for cancer patients, which 

also demonstrated high distress from COVID-19-elevated 

risks [4]. Moreover, many children did not have access to 

sustainable behavioral health services and schools from 

kindergarten through 12th grades were often closed [5]. The 

COVID-19 pandemic has led to the introduction of strong 

restrictive measures that have had a significant impact on the 

global economy, such as dramatically increasing 

unemployment in the worldwide [6]. 

While researchers have been tried to develop vaccines, they 

have started to examine the effects of the COVID -19 virus on 

humans and social lifestyles. For example, Delussi et al. 

investigated the effects of COVID-19 quarantine in migraine 

in terms of the possible changes in migraine frequency, 

severity, and days with acute medication intake during 

quarantine period [7]. Additionally, they evaluated possible 

differences in migraine outcomes in consideration of lifestyle 

changes, emotions, pandemic diffusion, and COVID-19 

infection. In another social problem based study Satre et al. 

draw attention to unhealthy alcohol consumption during 

quarantine period [8]. 

Apart from the social problems, infection in humans might 

leads to severe clinical symptoms, which of them are short-

term, some of them are long term effects. For instance, 

respiratory insufficiency, many hospitalized patients exhibit 

neurological manifestations ranging from headache and loss of 

smell, to confusion and disabling strokes [9]. It has not been 

exactly clear yet what and how will be the long-term effects of 

COVID-19. Ciceri et al. hypothesized that, in predisposed 

individuals, alveolar viral damage is followed by an 

inflammatory reaction and by microvascular pulmonary 

thrombosis [10]. They also reported that this progressive 

endothelial thromboinflammatory syndrome may also involve 

the microvascular bed of the brain and other vital organs, 
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leading to multiple organ failure and death. In another 

COVID-19 based research was reported by Kommoss et al. 

[11]. Their autopsy findings suggested that focal damage of 

the microvascular pulmonary circulation is a main mechanism 

of lethal lung disease due to the COVID-19. It may also be a 

cause of persistent lung damage in patients who recover from 

severe COVID-19 [12-14]. 

It is obvious from the literature that COVID-19 negatively 

effects to the microvascular bed [15, 16]. Therefore, it might 

be expected that it can cause to reduce the P300 based brain 

computer interface (BCI) performance. In this study, we 

focused on three points in order investigating the effect of 

COVID-19 infection on P300 based BCI application 

performance; 1- investigating the performance changes of 

electrodes individually, 2- revealing the performance changes 

of different number of flash repetitions and 3- investigating the 

latency changes. Based on this point of view, in this study we 

investigated the effect of COVID-19 on P300 based BCI 

application performance and the results revealed that the 

performance of the occipital region electrodes decreased 

maximum 3.08% in average. It is worthwhile mentioning that, 

this is the first study, which explores the effect of COVID-19 

on P300 based BCI performance by considering EEG signals 

recorded after and before passing through COVID-19. 

 

 

2. MATERIALS AND METHODS 

 

In this study, experiments were carried out utilizing the 

visual P300 stimulus model, which was proposed by Magliero 

et al. [17]. Also an Artificial Neural Networks (ANN) model 

was used to detect the P300 signal. In the following 

subsections, first the experimental design is introduced. Then 

the experimental procedure is defined. And finally, P300 

signal processing method is given in the last subsection. 

 

2.1 Experimental design 

 

EEG dataset was recorded from six participants, aged 

between 26 and 46. They did not used any neurological drug 

and had a neurological disorder until had not COVID-19 

infection. Data collection process was approved by the Health 

Sciences Institute Ethics Board of Ataturk University, and all 

participants signed the Consent Form, verified the board, 

before the start of EEG recording session. All EEG data was 

obtained in two sessions from these subjects, before and after 

the diagnosis of COVID-19. All participants reported that they 

have no visual impairment. The exact dates of the before the 

COVID-19 infection EEG recordings along with the infection 

diagnosis dates are given in Table 1. EEG recordings were 

obtained in about 15-30 days following the COVID-19 

infection. 

In the current study, the row-column based visual P300 

spelling paradigm, first proposed by Donchin et al., is used. A 

6x6 character matrix, shown in Figure 1a, is presented to the 

participants in order to collect target stimuli data. In each trial, 

the subject was asked to focus a character which was pre-

determined. This character was verbally announced by the 

researcher while it was displayed on the monitor as shown in 

Figure 1b. A total of 85 letters were shown as target characters 

during each experiment. For that, a row or a column, out of 12 

in the character matrix, is flashed randomly for each target 

character. In each set of flashings generated for a specific 

target character, all rows and columns are flashed once. 

Therefore, 12 flashings occur while the target character 

appears in 2 contrary to other 10 flashings as the character is 

included in a row and in a column. 

 

 
 

Figure 1. Visual paradigm: (a) Character matrix (b) A 

sample target character to focus on 

 

EEG recordings were collected with Brain Product 

ActiChamp device in all conducted experiments. Electrodes 

were placed according to the international 10/20 system and 

unipolar EEG recordings were performed. 'F2' channel is used 

as the reference electrode. Sampling frequency was 

determined as 250 Hz for all recording. The experimental 

system consists of two computers and the EEG device. EEG 

device combines data acquired from the electrodes with 

markers generated by the visual stimulation presentation 

computer and forward all information to the recording 

software running on the second computer. As a result, EEG 

data and visual stimulus type (markers) are recorded 

simultaneously. The whole data acquisition block-diagram is 

presented in Figure 2. 

 

 
 

Figure 2. Data acquisition block diagram 

 

Table 1. Experiment and diagnosis dates 

 
Participant Sex Age EEG recording before COVID-19 diagnosis Diagnosed COVID-19 positive date 

Subject 1 M 30 07.04.2020 02.11.2020 

Subject 2 F 26 17.04.2020 02.11.2020 

Subject 3 M 46 07.07.2020 07.10.2020 

Subject 4 F 27 07.06.2020 30.10.2020 

Subject 5 F 35 06.06.2020 10.12.2020 

Subject 6 M 29 25.06.2020 29.11.2020 
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2.2 Experimental procedure 

 

In the proposed study, the row-column based visual P300 

spelling paradigm is used. The visual stimuli were shown on a 

1920 x 1080 resolution LED display. Experiments were 

carried out while the participants were sitting on a comfortable 

armchair with their head about 100 cm away from the screen. 

The visual stimuli were shown on the screen for 100 ms with 

interstimulus interval (ISI) of 75 ms as demonstrated in Figure 

3. 

Each run for which a character is flashed twice was 

completed with randomly flashing 6 rows and 6 columns 

together with the ISI periods. During the experiments, each run 

for a specific character is repeated consequently for 15 times, 

called trial, and the experiment is performed for 85 letters. A 

three-minute break was given after 23 character display trials 

with a last session performed for 16 characters. Also, the 

following target character was shown on the screen during 5 

seconds after each trial. This way, an additional rest time is 

provided for the participant while the target character location 

is introduced. That is, each run is completed in 2.1 seconds 

while a trial takes about 36.5 seconds yielding an experiment 

time of 61 minutes including the breaks. The timing details are 

demonstrated in Figure 3. 

 

 
 

Figure 3. Experiment paradigm 

 

2.3 P300 signal processing 

 

EEG signals were recorded on 10 channels for O1, Oz, O2, 

P3, P4, Pz, P7, P8, ground and reference electrodes, located 

according to 10-20 international location procedure. 

Electrodes used in the analysis are shown in Figure 4. The 

general flow chart of the P300 signal processing procedure is 

shown in Figure 5.  

 

 
 

Figure 4. (a) Electrodes, (b) electrode groups, (c) equipment, 

(d) a participant 
 

 
 

Figure 5. General flowchart 

Independent component analysis (ICA), time/frequency 

analysis, artifact elimination and determination of event-

related potentials were performed on each recorded EEG data. 

At the very beginning a 0.1-10 Hz bandpass filtering is 

applied since P300 signals have low frequency components 

[18]. After that, ICA was performed to define independent 

EEG channels. With this approach, noise in the EEG channels 

can be determined and eliminated [19]. Artifacts, formed in 

the frontal region on EEG channels depending on eye 

movements or noise and occurred in the EEG channels due to 

various factors such as movement of the subject during the 

experiment, is suppressed by ICA analysis [20, 21]. This way, 

higher classification accuracy (CA) was achieved by removing 

eye and other artifacts utilizing ICA. 

In the second step, EEG data was divided into two classes 

as data with and without target stimuli depending on the 

specific flashing during the data collection. Hence, the 

response of the brain to 2 flashings, which include the stimulus, 

out of 12 flashings is different from all others since these two 

results in P300 waves. However, the P300 wave is not 

observable in EEG signals of a single trial. Instead, it is 

obtained by averaging more than one EEG signals with target 

stimuli. This is shown in Figure 6. Here, one-second EEG 

signals for 12 flashings are shown for 15 repetitions as well as 

their averages obtained for target character “S”. As can be seen 

clearly, the P300 wave is observable only in two average EEG 

flashings, one for row with target character (number 4) and the 

other for column (number 10). During the data recording, 85 

characters were shown to each participant as target. This 

results in, EEG data collection of 170 (2×85) with P300 wave 

and 850 (10×85) with non-P300 in each experiment per subject. 

 

 
 

Figure 6. P300 waves obtained by averaging the EEG signals 

 

This obtained data samples was randomly divided into 70% 

training, 15% validation, and 15% test partitions for each 

subject. It should be noted that the aforementioned P300 signal 

processing procedure is repeated twenty times in order to show 

the robustness of the method and avoid the problems of the 

random selections of the training, validation and test sets. The 

average CA was calculated for the Parietal and Occipital 

region EEG electrodes, used in this study, as they are related 

to visual activities [22, 23]. Since the inequality between the 

sample size of the two classes has a negative effect on the 

classification task success, synthetic data was generated to 

eliminate this imbalance between the classes. For this purpose, 

synthetic P300 data was created by adding Gaussian 

distributed noise, with 0 mean and 0.01 standard deviation, to 

the existing P300 samples as suggested by [22, 24, 25]. Thus, 

the imbalance between the classes was removed by increasing 

the samples of P300 data from 170 to 850, that of the non-P300 
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data samples. Then, baseline noise was removed from P300 

and non-P300 EEG data sets by evaluating the 200ms EEG 

data before the arrival of the target stimulus, and using this 

information for the baseline removal of 1000ms EEG data 

after the arrival of the target stimulus as shown in Figure 7. 

 

 
 

Figure 7. P300 data example before and after the baseline 

removal 

 

 
 

Figure 8. Two-layer artificial neural network model 

 

The resulting data set, cleared of baseline noise and 

equalized in both classes sample sizes are then used in a two-

class classification problem, namely P300 and non-P300. 

Finally, a single-output two-layer ANN, including one hidden 

layer with 50 neurons [26, 27], was used for classifying the 

obtained EEG signals. The training of ANN is performed by 

updating the model weights in an iterative manner using the 

supplied training data, and it is verified using the validation 

data. At the end, the model is tested using test data. To evaluate 

the performance, an error term, the difference between the 

estimated value through the testing and the corresponding data 

label, is calculated. A sample neural network model with 

single output and two-layers is shown in Figure 8, and given 

by Eq. (1).  

 

�̂� = �̃�(∑𝑤1𝑗
(2) ∗

𝑀

𝑗=1

𝑔(∑𝑤𝑗𝑖
(1)

𝑑

𝑖=1

∗ 𝑥𝑖 + 𝑤𝑗0
(1))+ 𝑤10

(2) (1) 

 

where, �̃�, g, 𝑤(1) and 𝑤(2) represent the linear function, the 

tan-sigmoid function, hidden layer weights and output layer 

weights, respectively. The error function J(w), on the other 

hand, is represented by Eq. (2). 

 

𝐽(𝑤) = −
1

𝑁
∑[𝑦𝑛𝑙𝑜𝑔�̂�𝑛 + (1 − 𝑦𝑛)log⁡(1 − �̂�𝑛)]

𝑁

𝑛=1

 (2) 

 

where, N is the number of samples in the test set, 𝑦𝑛 is the real 

value (label) and �̂�𝑛  is its estimated label produced by the 

model. This error term is subjected to a minimization process 

during the training for a satisfactory result. 

 

 

3. RESULTS 

 

In this study, we investigated the effect of COVID-19 

infection on P300 based BCI application performance. We 

used the row-column based spelling paradigm for collecting 

EEG signals from six subjects. The obtained CA results of 

subjects for each considered electrode and their groups are 

presented as radar plots in Figure 9 and Figure 10. To reveal 

the performance change with number of repetitions, all results 

in both figures are presented for 5, 10 and 15 flashings. The 

average CAs of these flashings are also included in these 

figures. The location of the electrodes and their groups are 

shown in Figure 4. It should also be noted that the data set 

partitioning as train, validation and test and the corresponding 

CAs are obtained for twenty times to show the robustness of 

the model. That is, the reported CAs reflect the average of 

obtained twenty experiments. 

Based on the obtained results, CA rates increase with the 

increasing number of flashings as the noise included in the 

experiments caused by subjects, environment, etc., conversely 

decreases. Hence, when the CAs, calculated over all subjects, 

are compared for before and after COVID-19 data especially 

for 15 repetitions, there is a significant difference between the 

two cases for Oz channel, and that of after COVID-19 CA rate 

decreases. Namely, all subjects average of Oz channel CA 

rates before and after COVID-19 for 15 repetitions are 95.58% 

with a standard deviation of 2.54 and 93.51% with standard 

deviation of 3.23, respectively. 

Based on the rough evaluation of Figure 9 and Figure 10, it 

is observed that the obtained CA is about 95-100% especially 

for group as well as occipital region electrodes with 15 

flashings. When compared with similar results of literature, 

these results are consistent, and the current study is considered 

to perform well [28]. To further investigate, the before and 

after COVID-19 infection performances, namely red and blue 

radar plots in Figure 9 and 10, are compared by each other. It 

is observed that after the infection BCI performance is slightly 

lower than that of the before COVID-19 infection performance. 

In other words, red lines are encapsulated by blue lines in the 

radar plots except for specific subjects. For an overall 

evaluation, average CA is obtained over all subjects in terms 

of all EEG channels as well as electrode groups as shown in 

Figure 11. Comparison of red and blue radar plot in these 

figures suggest that there is a slight difference between the two. 

That is, the location of the red lines is also inside the blue lines. 

Especially considering 10, 15 flashings of Oz and O1 channels, 

this difference is more distinct. It is worth to mention that these 

two channels are located on the occipital region of the human 

brain that is responsible for visual activities. 
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Figure 9. CA results of subjects for each considered 

electrode 
 

 
 

Figure 10. CA results of subjects for each considered 

electrode group 

 
 

Figure 11. Average CA results of all subjects for each 

considered electrode and their groups 

 

However, this visual inspection is far from being 

quantitative and needs to be supported by a detailed analysis. 

For that purpose, t-test statistics are performed to determine if 

there is a significant difference between before and after the 

infection classification performance. For that, two-sample t-

test of the null hypothesis of the similarity between CA before 

and after the COVID-19 infection was performed with df=5 

and p=0.03. The corresponding t-test Degree of Significance 

results in terms of separate and group EEG electrodes are 

shown in Figure 12. In this figure, threshold values for 

alpha=0.01 (tk-α=0.01 in color green) and alpha=0.05 (tk-

α=0.05 in color purple) are both shown in this figure. While 

there is no difference between the CA results of two sets for 

alpha=0.01, that for alpha=0.05 reveals a significant difference 

for Oz channel with 15 flashings, based on this figure results. 

It is worth to mention that it is rejected the high significance 

result of Occipital channel for 5 flashings since it is very 

sensitive to noise as explained before. 

 

 
 

Figure 12. Degree of significance results in terms of separate 

and group EEG electrodes for CA 
 

In addition to target and non-target EEG signal 

classification, P300 signal latency, the time delay between the 

target character stimulus and the peak value of the P300 wave, 

were also analyzed. The latency values of subjects before and 

after the COVID-19 infection are shown in Figure 13 as bar 

graphs. In these figures, the electrode names are given in x-

axis and the corresponding latency values, in milliseconds 

(ms), are given in y-axis. A rough comparison of the latency 

values indicates that there is an increase for Subject 3, Subject 
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4 and Subject 6 while a decrease is perceived for other subjects 

after the COVID-19 infection experiments. The maximum 

increase and decrease changes are observed for Subject 4 and 

Subject 1, respectively. 

 

 
 

Figure 13. Latency values of all subjects 

 

The latency before and after the COVID-19 infection was 

performed with df=5 and p=0.03. Corresponding t-test Degree 

of Significance results in terms of separate and group EEG 

electrodes are shown in Figure 14. In this figure, threshold 

values for alpha=0.01 (tk-α=0.01 in color orange) and 

alpha=0.05 (tk-α=0.05 in color yellow) are both shown in this 

figure. It is clear from this figure that there is no difference 

between the latency results of two sets for both alpha=0.01 and 

alpha=0.05. 

 

 
 

Figure 14. Degree of significance results in terms of separate 

and group EEG electrodes for latency 

 

 

4. CONCLUSIONS 

 

In this study, it is investigated the effect of COVID-19 

infection on the performance of P300 based BCI application 

as well as change in the P300 wave latency using the data of 

six subjects. For that, corresponding results, obtained before 

and 15-30 days after the COVID-19 infection, are compared 

with each other. It is worthwhile to mention that because the 

participants did not used any neurological drug and had not a 

neurological disorder until had COVID-19 infection, we 

believe that the brain activity were not distorted by any daily 

life changes. 

It is observed that there is a visible difference in the BCI 

performance, mostly in the occipital region electrodes. 

Therefore, it is thought that this may cause vision problems in 

people. However, it is observed from the t-test results that 

there is a significant difference only on the performance of the 

Oz channel for alpha=0.05 while there is no difference for any 

EEG channel for alpha=0.01. On the other hand, latency 

comparison for before and after the COVID-19 infection is 

subject dependent as it increased for some subjects while 

decreasing for others regardless of their sex or age. The 

corresponding t-test also showed that there is no difference for 

latency. As a result, we concluded that the COVID-19 

infection, in general, has no negative effect on the EEG data 

from a statistically point of view. 
 

 

ACKNOWLEDGMENT 
 

This work was derived from the project work of TUBITAK 

215E155 and supported by the Inter Computer Electronics Ltd., 

Brain Products GmbH, and the Atatürk University Scientific 

Research Projects Coordination Unit with the project number: 

FOA-2018-6524. 

 

 

REFERENCES  
 

[1] World_Health_Organization. Caronavirus disease 

(COVID-19). 2021; Available from: 

https://www.who.int/emergencies/diseases/novel-

coronavirus-2019, accessed on 13 April 2020. 

[2] Orrù, G., Conversano, C., Malloggi, E., Francesconi, F., 

Ciacchini, R., Gemignani, A. (2020). Neurological 

complications of COVID-19 and possible neuroinvasion 

pathways: a systematic review. International Journal of 

Environmental Research and Public Health, 17(18): 6688. 

https://doi.org/10.3390/ijerph17186688 

[3] Gao, J., Zheng, P., Jia, Y., Chen, H., Mao, Y., Chen, S., 

Wang, Y., Fu, H., Dai, J. (2020). Mental health problems 

and social media exposure during COVID-19 outbreak. 

Plos One, 15(4): e0231924. 

https://doi.org/10.1371/journal.pone.0231924 

[4] Wang, Y., Duan, Z., Ma, Z., Mao, Y., Li, X., Wilson, A., 

Qin, H., Ou, J., Peng, K., Zhou, F., Liu, Z., Chen, R. 

(2020). Epidemiology of mental health problems among 

patients with cancer during COVID-19 pandemic. 

Translational Psychiatry, 10(1): 1-10. 

https://doi.org/10.1038/s41398-020-00950-y 

[5] Phelps, C., Sperry, L.L. (2020). Children and the 

COVID-19 pandemic. Psychological Trauma: Theory, 

Research, Practice, and Policy, 12(S1): S73-S75. 

https://psycnet.apa.org/doi/10.1037/tra0000861 

[6] Kawohl, W., Nordt, C. (2020). COVID-19, 

unemployment, and suicide. The Lancet Psychiatry, 7(5): 

389-390. https://doi.org/10.1016/S2215-0366(20)30141-

3 

  

  

  

 

 

310

320

330

340

350

360

Pz P3 P7 O1 Oz O2 P4 P8

La
te

n
cy

Subject 1

340

350

360

370

380

390

Pz P3 P7 O1 Oz O2 P4 P8

La
te

n
cy

Subject 2

330

340

350

360

370

380

Pz P3 P7 O1 Oz O2 P4 P8

La
te

n
cy

Subject 3

320

330

340

350

360

370

Pz P3 P7 O1 Oz O2 P4 P8

La
te

n
cy

Subject 4

300

310

320

330

340

350

Pz P3 P7 O1 Oz O2 P4 P8

La
te

n
cy

Subject 5

300

305

310

315

320

325

330

Pz P3 P7 O1 Oz O2 P4 P8

La
te

n
cy

Subject 6

Before COVID-19 After COVID-19 

1772

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019


[7] Delussi, M., Gentile, E., Coppola, G., et al. (2020).

Investigating the effects of COVID-19 quarantine in

migraine: an observational cross-sectional study from the

Italian National Headache Registry (RICe). Frontiers in

Neurology, 11: 1383.

https://doi.org/10.3389/fneur.2020.597881

[8] Satre, D.D., Hirschtritt, M.E., Silverberg, M.J., Sterling,

S.A. (2020). Addressing problems with alcohol and other

substances among older adults during the COVID-19

pandemic. The American Journal of Geriatric Psychiatry,

28(7): 780-783.

https://www.ajgponline.org/article/S1064-

7481(20)30296-7/pdf.

[9] Iadecola, C., Anrather, J., Kamel, H. (2020). Effects of

COVID-19 on the nervous system. Cell.

https://doi.org/10.1016/j.cell.2020.08.028

[10] Ciceri, F., Beretta, L., Scandroglio, A.M., Colombo, S.,

Landoni, G., Ruggeri, A., Peccatori, J., D'Angelo, A., De

Cobelli, F., Rovere-Querini, P., Tresoldi, M., Dagna, L.,

Zangrillo, A. (2020). Microvascular COVID-19 lung

vessels obstructive thromboinflammatory syndrome

(MicroCLOTS): An atypical acute respiratory distress

syndrome working hypothesis. Critical Care and

Resuscitation, 22(2): 95-97.

[11] Kommoss, F.K., Schwab, C., Tavernar, L., Schreck, J.,

Wagner, W.L., Merle, U., Jonigk, D., Schirmacher, P.,

Longerich, T. (2020). The pathology of severe COVID-

19-related lung damage: Mechanistic and therapeutic

implications. Deutsches Ärzteblatt International, 117(29-

30): 500-506.

https://dx.doi.org/10.3238%2Farztebl.2020.0500

[12] Dimbath, E., Maddipati, V., Stahl, J., Sewell, K., Domire,

Z., George, S., Vahdati, A. (2021). Implications of

microscale lung damage for COVID-19 pulmonary

ventilation dynamics: A narrative review. Life Sciences,

119341. https://doi.org/10.1016/j.lfs.2021.119341

[13] Tonelli, R., Marchioni, A., Tabbì, L., Fantini, R., Busani,

S., Castaniere, I., Andrisani, D., Gozzi, F., Bruzzi, G.,

Manicardi, L., Demurtas, J., Andreani, A., Cappiello,

G.F., Samarelli, A.V., Clini, E. (2021). Spontaneous

breathing and evolving phenotypes of lung damage in

patients with COVID-19: Review of current evidence

and forecast of a new scenario. Journal of Clinical

Medicine, 10(5): 975.

https://doi.org/10.3390/jcm10050975

[14] Janssen, R., Visser, M.P., Dofferhoff, A.S., Vermeer, C.,

Janssens, W., Walk, J. (2021). Vitamin K metabolism as

the potential missing link between lung damage and

thromboembolism in Coronavirus disease 2019. British

Journal of Nutrition, 126(2): 191-198.

[15] Roberts, K.A., Colley, L., Agbaedeng, T.A., Ellison-

Hughes, G.M., Ross, M.D. (2020). Vascular

manifestations of COVID-19–thromboembolism and

microvascular dysfunction. Frontiers in Cardiovascular

Medicine, 7: 215.

https://doi.org/10.3389/fcvm.2020.598400

[16] Sabioni, L., De Lorenzo, A., Lamas, C., Muccillo, F.,

Castro-Faria-Neto, H.C., Estato, V., Tibirica, E. (2021).

Systemic microvascular endothelial dysfunction and

disease severity in COVID-19 patients: Evaluation by

laser Doppler perfusion monitoring and

cytokine/chemokine analysis. Microvascular Research, 

134: 104119. https://doi.org/10.1016/j.mvr.2020.104119 

[17] Magliero, A., Bashore, T.R., Coles, M.G., Donchin, E.

(1984). On the dependence of P300 latency on stimulus

evaluation processes. Psychophysiology, 21(2): 171-186.

https://doi.org/10.1111/j.1469-8986.1984.tb00201.x

[18] Rakotomamonjy, A., Guigue, V. (2008). BCI

competition III: Dataset II-ensemble of SVMs for BCI

P300 speller. IEEE Transactions on Biomedical

Engineering, 55(3): 1147-1154.

https://doi.org/10.1109/TBME.2008.915728

[19] Calhoun, V.D., Liu, J., Adalı, T. (2009). A review of

group ICA for fMRI data and ICA for joint inference of

imaging, genetic, and ERP data. Neuroimage, 45(1):

S163-S172.

https://doi.org/10.1016/j.neuroimage.2008.10.057

[20] Subasi, A., Gursoy, M.I. (2010). EEG signal

classification using PCA, ICA, LDA and support vector

machines. Expert Systems with Applications, 37(12):

8659-8666. https://doi.org/10.1016/j.eswa.2010.06.065

[21] Winkler, I., Haufe, S., Tangermann, M. (2011).

Automatic classification of artifactual ICA-components

for artifact removal in EEG signals. Behavioral and Brain

Functions, 7(1): 1-15. https://doi.org/10.1186/1744-

9081-7-30

[22] Thut, G., Nietzel, A., Brandt, S.A., Pascual-Leone, A.

(2006). α-Band electroencephalographic activity over

occipital cortex indexes visuospatial attention bias and

predicts visual target detection. Journal of Neuroscience,

26(37): 9494-9502.

https://doi.org/10.1523/JNEUROSCI.0875-06.2006

[23] Yildirim, S., Kocer, H.E., Ekmekci, A.H. (2021).

Quantitative analysis of EEG slow wave activity based

on minpeakprominence method. Traitement du Signal,

38(3): 757-773. https://doi.org/10.18280/ts.380323

[24] Prince, E., Nicholson, W.L. (1983). A test of a

robust/resistant refinement procedure on synthetic data

sets. Acta Crystallographica Section A: Foundations of

Crystallography, 39(3): 407-410.

https://doi.org/10.1107/S0108767383000859

[25] Wu, X., Liang, L., Shi, Y., Fomel, S. (2019). FaultSeg3D:

Using synthetic data sets to train an end-to-end

convolutional neural network for 3D seismic fault

segmentation. Geophysics, 84(3): IM35-IM45.

https://doi.org/10.1190/geo2018-0646.1

[26] Engel, A., Köhler, H.M., Tschepke, F., Vollmayr, H.,

Zippelius, A. (1992). Storage capacity and learning

algorithms for two-layer neural networks. Physical

Review A, 45(10): 7590.

https://doi.org/10.1103/PhysRevA.45.7590

[27] Huang, G.B., Chen, Y.Q., Babri, H.A. (2000).

Classification ability of single hidden layer feedforward

neural networks. IEEE Transactions on Neural Networks,

11(3): 799-801. https://doi.org/10.1109/72.846750

[28] Gu, X., Cao, Z., Jolfaei, A., Xu, P., Wu, D., Jung, T.P.,

Lin, C.T. (2021). EEG-based brain-computer interfaces

(BCIs): A survey of recent studies on signal sensing

technologies and computational intelligence approaches

and their applications. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 18(5): 1645-

1666. https://doi.org/10.1109/TCBB.2021.3052811

1773




