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 Using machine vision and image processing as a non-destructive and rapid method can play 

an important role in examining defects of agricultural products, especially potatoes. In this 

paper, we propose a convolution neural network (CNN) to classify the diseased potato into 

five classes based on their surface image. We trained and tested the developed CNN using 

a database of 5000 potato images. We compared the results of potato defect classification 

based on CNN with the traditional neural network and Support Vector Machine (SVM). The 

results show that the accuracy of the deep learning method is higher than the Traditional 

Method. We get 100% and 99% accuracy in some of the classes, respectively. 
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1. INTRODUCTION 

 

Machine vision is one of the most widely used technologies 

in modern food and agricultural industries. This technology is 

a cost-effective tool for the rapid and accurate evaluation of 

food quality. The determination of surface defects of potatoes 

is important in automatic defect detection. The potato plant 

hosts many pathogens, including bacteria, fungus, viroids, 

viruses, and phytoplasmas. These pathogens can reduce 

product yield and quality individually or together. Adverse 

environmental conditions and some specific crop conditions 

can also have adversely affected the potato plant health and 

product quality. Control of pathogens and avoidance of 

aggravating conditions is one of the important goals of 

commercial potato production centers. 

Several image processing methods have been reported for 

potato diseases detections. Al Riza et al. [1] used diffuse 

reflection features to detect potato surface defects. Su et al. [2] 

presented a three-dimensional approach for identifying and 

predicting the characteristics of a potato-based on machine 

vision. In this study, a three-dimensional surface model of 

potatoes that uses two images is developed. The model is very 

accurate in calculating potato volume. Using a depth and color 

camera, they extracted potato surface information like length, 

width, thickness, area, volume and two-dimensional border 

changes. The success rate in potato size grading with the 

volume density model reaches 93%, while with the area 

concentration model it reaches 73%. 

Gao et al. [3] diagnosed damaged skin (Solanum tuberosum 

L problem) in potato tubers by comparing the visible and 

biospeckle imaging. They extracted properties like pixel color 

and texture characteristics of surface potato from the image 

surface. Least-squares SVM, and binary logistic regression 

(BLR) is used for classification. Their best maximum 

classification accuracy is 90%. 

Brar and Singh performed a C-mean fuzzy clustering for 

segmentation in this potato defect detection [4]. The proposed 

scheme has 95% accuracy in grading the potatoes in three 

basic external faults, including greening, spoiled, rotten, and 

potato slits [4]. All three types are 100% are identified. 

However, some healthy images incorrectly identified as 

defective, using of fuzzy c-mean clustering is very effective in 

segmenting potato images into healthy and defective areas [4]. 

Moallem et al. [5] suggested color image segmentation of 

the potato using an inference fuzzy system. The accuracy of 

the proposed algorithm segmentation rate is 98% on 500 

potato images. They used HSV color space, genetic algorithm 

thresholding, and morphology to detect the defected segment. 

In another research, Moallem et al. performed potato defect 

using neural network and support vector machine [6]. After 

preprocessing and features extracting stage, classification 

methods including ANN and SVM, are used to identify the 

potato diseases. The results show that the SVM classifier has 

better performance than the radial bases function (RBF) and 

multilayer perceptron (MLP) neural networks on the detection 

of potato defects [6]. The correct detection rate (CDR) for 

SVM is about 96.7%. Their method showed the defective part 

of the potato [6]. In another paper, Razmjooy and Daviran [7] 

reported potato defect detection using machine vision and 

neural networks. After the segmentation and feature extraction 

stage, classification methods such as MLP, SVM, RBF are 

used to identify the potato problems. The results show that the 

SVM classifier has better performance. Based on tests on 

different input images, it is shown that the SVM method has 

high accuracy and high value compared to MLP and RBF. The 

accuracy is over 90% percent. Razmjooy et al. [8] after pre-

processing with classification methods such as MLP, SVM, 

KNN methods, identified the faulty part of the potato. The 

results show that the SVM classifier has high speed and 

accuracy among classifiers for defect detection. It has 95% 

accuracy in classification and 96.86% accuracy in 

classification. 

Deep learning has been widely used in recent years such as 

in the large-scale image recognition, for remote sensing, 
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architectures, predicting the sequence specificities of DNA- 

and RNA-binding proteins, detecting robotic grasps, visual 

understanding, in processing images, video, speech and audio, 

[9-19]. Deep learning also accurately detects crop diseases in 

agriculture and its accuracy is more than previous and 

traditional methods [10-12]. 

We are examining two goals in this paper. CNN parameters 

and structure are improved to classify and recognize different 

classes of the potato images. We also simulate some traditional 

intelligent system for potato classification and compare their 

results with the CNN based method. The diseases we detect 

are Gray Mold, Skin Spot, Common Scab, Gangrene and Leak. 

The classification of 5 classes in this article is a new task for 

diagnosing surface defects of potatoes, and the previous 

researches classified them into two groups of healthy and 

defective. The results show that the accuracy of the deep 

learning method is higher than the traditional method, and get 

100% and 99% accuracy in some of the classes.  

This remaining part of the paper is as follow. In Section I, 

we express the introduction of surface defect potato and study 

research in this field. In Section II, we explain the proposed 

methods, and in section III simulation results of two methods 

are presented and compared with other traditional methods for 

surface defect potato. Finally, the last section is conclusion. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Dataset  

 

We provide 5000 potato images. All images were taken 

from databases CFIA, USDA and potatoes farms in Ardebil, 

the city of Iran. Dataset images had all major types of potato 

diseases. All the input images have the same size. 

Several types of potato diseases are shown in Figure 1. 

Several of potato diseases have been studied in this study, 

names of potato diseases are Bacterial Ring Rot, Clostridium 

spp, Common Scab, Gangrene, Rosellinia Black Rot, Gray 

Mold, Septoria Leaf Spot, Silver Scurf, Skin Spot and Leak.  

Our system classifies the potatoes to 5 types, one is healthy 

and the others are Leak, Gangrene, Gray Mold, Skin Spot and 

Common Scab.  

Data gathering and training are essential for CNNs. More 

learned data yield more accurate classification. For CNN 

training a lot of data needs to be acquired, and the current 

potato images collected are not enough. We increase the data 

set in various ways, including rotating the image to 90°, 180°, 

270°, cropping center of the image and transforming to 

grayscale. Increasing the number of datasets helps to reduce 

overfitting during training. We use 80% of data for training 

and 20% for testing. 

 

 
 

Figure 1. Nine common potato diseases 

 

2.2 Image preprocessing and labelling 

 

To implement better feature extraction, the images in the 

dataset are pre-processed. It is important to normalize the 

image size. In this study, all images were resized to 32 x 32 by 

MATLAB software. All classes in the dataset and the training 

and testing set are separated. 

 

2.3 Convolutional Neural Networks 

 

Figure 1 shows an architecture of the convolutional neural 

network to classify [20]. An overview of convolutional neural 

network architecture is displayed in Figure 2. There are two 

steps to train this method, the feed-forward phase and the 

backpropagation phase. The network training ends after 

repeating suitable numbers of these steps.  

The convolutional neural network uses layers such as: 

pooling layer, fully connected layers. 

In Figure 3 you can see the Max pooling process [20, 21]. 

In the fully connected layer the result network is shown in 

vector and we can use it for images classification [22] or for 

subsequent processing [23]. 

There are some popular models for CNN used in researches. 

These methods are AlexNet [20], the Visual Geometry Group 

(VGG) [24], GoogleNet [25] and Inception-ResNet [26]. Each 

model has different performance and advantages [27]. This 

models and networks trained through some data set to perform 

recognition for problems [28, 29]. 

Some research works applied CNN architectures ResNetA, 

lexNet, and VGG, and some researchers used the CNN with 

PCA [30], SVM [31], macroscopic cellular automata [32], 

linear regression [33], large margin classifiers (LMC) [34]. 

Some papers used the popular architecture DL framework with 

Caffe, Theano, Pylearn2, MatConvNet, and Deep Learning 

Matlab Toolbox, Tensor Flow. 

 

 
 

Figure 2. An outline of the convolutional neural network architecture 
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Figure 3. Max pooling step 

 

Some researchers combine CNN architectures to take the 

advantages [28] and use the popular CNN models knowledge 

for increasing the learning efficiency and changing pre-trained 

models. We use another pre-trained model when we don’t 

have enough training data set. Usually Pre-trained CNN have 

been trained by proper data set. These models studied and 

followed by Lee et al. [35], Reyes et al. [36], Sa et al. [37], 

Steen et al. [38], Bargoti and Underwood [39], Douarre et al. 

[31], Mohanty et al. [40], Christiansen et al. [38], Lu et al. [41] 

and Sørensen et al. [42] for the VGG16, DenseNet, AlexNet 

and GoogleNet architectures. 

Deep learning is used extensively in different areas of 

computer vision like image classification, object detection, 

semantic segmentation and image retrieval which are key 

activities to understand the image. In this section we 

summarize the images categories with deep-learning in crops. 

Sample of studied papers in agriculture is state in Table 1. 

 

Table 1. Sample of studied papers in agriculture 

 
Product Method Accuracy Year Author 

potato PLS-GA 97.6% 2017 Dimas 

fruit SVM,LDA, PCA 83%, 89% 2017 Jose 

tomato Wavelet and radon 94%,91%,89% 2017 Maduguri Sudhir 
Classify banana leaf 

diseases 
deeplearning4j 90% 2017 Amara et al. 

potato Fuzzy C-mean 95% 2016 Er. Amrinder 

potato 

LS-SVM (Least Square 

Support Vector 

Machine), BLR (Binary 

Logistic Regression) 

90% 2016 Yingwang Gao 

apple SVM, MLP, KNN 96.7% 2016 moallem 

pomegranate SURF Feature extraction 89.2%-92.5% 2016 Yogesh 

tomato Fuzzy logic 98.6 2016 Lenard C. Dorado 

orange PCA 93% 2016 Jiangbo Li 

apple fuzzy-C means  2016 Hamidreza Saberkari 

mango SDA,ANN, FD  2016 Dameshwari Sahu 

apple MLP, Fuzzy logic - 2016 Misigo Ronald 

Classify 91 weed seed 

types 

PCANet + LMC 

classifiers 
96% + (CA), 0.968 (F1) 2015 Xinshao and Cheng 

potato Fuzzy logic, GA 88.10% 2014 razmjooy 

potato MLP, SVM, RBF 95%,96%,86% 2011 razmjoo 

 

 

3. SIMULATION OF PREVIOUS METHODS 

 

3.1 Simulation with MLP, RBF, and SVM 

 

In this section we simulated traditional methods. We use 

three classification methods of MLP, RBF, and SVM. 

 

 
 

Figure 4. The diagram of developed systems in Section 3.1 

3.1.1 Equipment for simulation 

Matlab software is applied in all stages. The computer 

specifications are Memory: 4Gb, Processor: Intel Core i7-

7700 CPU @3.60 GHz 3.60 GHz. 

 

3.1.2 The diagram of developed traditional system 

Figure 4 shows the diagram of developed traditional 

systems. 

 

3.1.3 Data sources and Image acquisition 

We produce some potato images taken with the camera 

from the farm and resize them. The number of the dataset in 

this section is 1000. In this example, we set the size potato to 

256x256. Almost 30% of potatoes are healthy and 70% are 

defective. 

 

3.1.4 Segmentation 

Classification is the first step and the most critical stage of 

the analyzed image, which aims extracting the information 

within the inner image (edges, fronts, and the identity each of 

the regions) through described, regions and reducing them to 

a suitable form for computer processing and diagnostics of the 
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regions. The resulting segmentation will have a significant 

impact on the accuracy of features evaluation. Segmentation is 

often a description of the process of dividing the image into 

main components and extracting interest object. Otsu method 

is used for segmentation. 

 

3.1.5 Feature extraction 

Huang et al. [43] developed a new method using the SIFT 

algorithm. In this method, first, SIFT descriptors are extracted 

from the image. The key point of this algorithm is the SIFT 

descriptors are resistant to changes in scale, rotation, and 

brightness. Therefore, matching these descriptors can be used 

to identify duplicated regions. The SIFT algorithm extracts the 

distinguishing features of local fragment images that are 

resistant to scaling and rotation. These features are also 

powerful against changes such as noise, distortion, and 

brightness, and give the same results. 

 

3.1.6 Classification 

In this section, we examine three types of classification 

approaches, Multi-Layer-Perceptron (MLP), Radial Basis 

Function Networks (RBF), and Support Vector Machines 

(SVM), and Simulation results and classification accuracy are 

shown. We use also some papers in this field such as [44-46]. 

 

3.1.7 Implementation parameters  

The performance of the MLP method is selected as: 

Learning rate= 0.01 

Epochs= 1000 

Target error goal: 10-4 

Radial Basis Function has its maximum, 1 if its input is 0; 

since to reduce w (weight vector) and p (input), the output is 

increased. a radial basis neuron produces 1 when the input p is 

as similar as its weight vector p [47]. 

In SVM we set End-accuracy: 10-4, we select the input 

image 256*256 for easily comparing. All of the images 

converted to this size. The result of experiments, show that 

RBF networks have higher performance than the MLP. SVM 

classifier is the best classifier for potato defect detections. 

There are three metrics for comparing the performance of 

applied methods. These metrics are: the correct detection rate 

(CDR), The false acceptance rate (FAR), the false rejection 

rate (FRR) [6], which are defined in (1). 

 
𝐶𝐷𝑅

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

𝐹𝐴𝑅 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑝𝑜𝑡𝑎𝑡𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
 𝑎𝑠 𝑝𝑜𝑡𝑎𝑡𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

𝐹𝑅𝑅 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑡𝑎𝑡𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
 𝑎𝑠 𝑛𝑜𝑛 − 𝑝𝑜𝑡𝑎𝑡𝑜 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

(1) 

 

3.2 Simulation with CNN 

 

The initial learning rate of the model is 0.0001, top - 5 

testing accuracy is 100%. Figure 5 displays the curve of the 

system loss. the top - 5 identification accuracy converge after 

480th iterations and can see that. The training time and the 

convergence time of the model are long. Learning Rate and 

Loss and accuracy with each Iteration showed in Table 4. In 

Epoch 10 and Iteration 480, value accuracy is 100%, and Time 

Elapsed is accurate too. The model also has very parameters. 

Parameter network and structure our deep CNN network are 

displayed in Table 2. Considering the various tests performed 

in the article implementation program and comparing similar 

work done in the articles [48], the size of deep learning layers, 

parameters setting, several Epochs and number of Relu Layer, 

convolution2d Layer and Fully Connected Layer and learning 

rate and the number of iterations and so on. At the end the 

values of Table 2 are selected to get high classification 

accuracy. 

 

Table 2. Parameters deep network for this paper 

 
Name Parameters Name Parameters 

Solver type SGD 'Mini Batch Size' 100 

Base learning rate 0.001 to 0.0001 convolution2d Layer Two layer 

'Validation Frequency' 30 Relu Layer Two layer 

Learning rate 0.0001 Max Pooling2d Layer Two layer, 'Stride',2 

Initial Learn Rate 0.001 Fully Connected Layer 384 class 

Learn Rate Schedule 'piecewise' Fully Connected Layer 192 class 

'Learn Rate Drop Factor' 0.1 Fully Connected Layer 4 class 

Hardware resource Single CPU Softmax Layer One layer 

iteration 480 Classification Layer One layer 

'L2Regularization' 0.004 'Learn Rate Drop Period' 8 

'Max Epochs' 10   

 

 

4. RESULTS 

 

4.1 Results for traditional methods 

 

The number of repeats is 100 times. The mean classification 

rate was calculated correctly and tested 20 times to obtain 

statistical comparisons between the SVM, RBF, and MLP 

methods. In Table 3 we show the performance of each method 

and its accuracy on databases CFIA [49], USDA [50] and a 

custom database. 

 

Table 3. Neural networks accuracy in three databases 

 
Test Accuracy 

Database MLP RBF SVM 

USDA 81% 83% 90% 

CFIA 80% 82% 89% 

Custom 86% 87% 91% 

 

4.2 Result for CNN method 

 

4.2.1 Test on the sample from group one 

Figure 5(a) displays the changes accuracy and system loss 
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than to iterations. Learning Rate and Loss and accuracy with 

each Iteration showed in Table 4. In the Epoch 10 and Iteration 

480, value accuracy is 100%. The following Figure 6 is an 

example of a test performed to detect the first class of potato 

surface defects from the data set which classification accuracy 

is 100% for this first class. 

CNN Accuracy in first class is 100% and in the others class 

accuracy are 0%. Therefore, this potato image is in first class. 

 

Table 4. Learning rate and loss and accuracy with each iteration for group one 

 
Epoch Iteration Time Elapsed (hh:mm:ss) Mini-batch Accuracy Mini-batch Loss Base Learning Rate 

1 1 00:00:08 20.00% 1.6078 0.0010 

2 50 00:03:52 34.00% 1.4722 0.0010 

3 100 00:07:16 51.00% 1.1939 0.0010 

4 150 00:10:41 81.00% 0.6212 0.0010 

5 200 00:14:06 87.00% 0.3554 0.0010 

6 250 00:17:25 93.00% 0.1806 0.0010 

7 300 00:20:43 88.00% 0.2063 0.0010 

8 350 00:24:03 98.00% 0.1133 0.0010 

9 400 00:27:21 94.00% 0.1474 0.0001 

10 450 00:30:39 100.00% 0.0254 0.0001 

10 480 00:32:39 100.00% 0.0250 0.0001 

 

 
 

Figure 5. The curve of the system loss for group one 

 

 
 

Figure 6. Variation of partial accuracy based on iterations for 

group one 

 

4.2.2 Test on the sample from group second 

Figure 7 displays the changes of accuracy and system loss 

versus iterations. Learning Rate, Loss and accuracy with each 

Iteration are shown in Table 5. In Epoch 10 and Iteration 480, 

value accuracy is 98%. The following Figure 8 is an example 

of a test performed to detect the second class of potato surface 

defects from the data set for which classification accuracy is 

98% for this second class. 

CNN Accuracy in second class is 98% and in the One class 

accuracy is 2%. Therefore, this potato image is in the second 

class.  

 
 

Figure 7. The curve of the system loss for group 2 

 

 
 

Figure 8. Variation of partial accuracy based on iterations for 

group 2 

 

4.2.3 Test on the sample from group third 

Figure 9 displays the changes of accuracy and system loss 

versus iterations. Learning Rate, Loss and accuracy with each 

Iteration are shown in Table 5. In the Epoch 10 and Iteration 

480, value accuracy is 100%. The following Figure 10 is an 

example of a test performed to detect the third class of potato 

surface defects from the data set which classification accuracy 

is 100% for this third class. 

CNN Accuracy in third class is 100% and in the others class 

accuracy are 0%. Therefore, this potato image is in third class. 
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Figure 9. Variation of loss based on iterations for group 3 

 

 
 

Figure 10. Variation of partial accuracy based on iterations 

for group 3 

 

4.2.4 Test on the sample from group Fourth 

Figure 11 displays the changes of accuracy and system loss 

versus iterations. Learning Rate, Loss and accuracy with each 

Iteration are shown in Table 5. In Epoch 10 and Iteration 480, 

value accuracy is 99%. The following Figure 12 is an example 

of a test performed to detect the Forth class of potato surface 

defects from the data set which classification accuracy is 99% 

for this Forth class. 

CNN Accuracy in forth class is 99% and in the third class 

accuracy is 0.5%, and in the fifth class accuracy is 0.5%. 

Therefore, this potato image is in the fourth class. 

 

 
 

Figure 11. Variation of loss based on iterations for group 3 

 
 

Figure 12. Variation of partial accuracy based on iterations 

for group 4 

 

4.2.5 Test on the sample from group Fifth 

Figure 13 displays the changes of accuracy and system loss 

versus iterations. Learning Rate, Loss and accuracy with each 

Iteration are shown in Table 5. In the Epoch 10 and Iteration 

480, value accuracy is 100%. The following Figure 14 is an 

example of a test performed to detect the Fifth class of potato 

surface defects from the data set for which classification 

accuracy is 100% for this Fifth class. 

CNN Accuracy in fifth class is 100%, and in the others class 

accuracy are 0%. Therefore, this potato image is in fifth class. 

Figure 15 displays the accuracy of each class according to 

the iteration number. 

 

 
 

Figure 13. Variation of loss based on iterations for group 5 

 

 
 

Figure 14. Variation of partial accuracy based on iterations 

for group 5 

1788



Table 5. Learning rate and loss and accuracy with each Iteration for all group 

Epoch Iteration Time Elapsed (hh:mm:ss) Mini-batch Accuracy Mini-batch Loss Base Learning Rate class 

10 480 00:32:39 100.00% 0.0250 0.0001 one 

10 480 00:33:22 98.00% 0.0503 0.0001 second 

10 480 00:33:56 100.00% 0.0065 0.0001 third 

10 480 00:34:24 99.60% 0.0517 0.0001 forth 

10 480 00:31:41 100.00% 0.4659 0.0001 fifth 

Figure 15. The accuracy of each class according to the 

iteration number 

Figure 16 shows the confusion matrix for the CNN network. 

Each cell in the confusion matrix defined the percentage of 

images of the row’s class that were categorized into the 

column’s class of diseases potato. The results show that 100% 

Gray Mold and Skin Spot disease potato were classified, and 

95.34% Common Scab disease potato were classified. The 

percentage portion of each of the row classes in the column 

classes is shown, for example in the first row of Common Scab, 

95.34% is for Common Scab disease potato, and 3.64 this 

disease is for Gray Mold disease potato, and 1.02 is for 

Gangrene disease potato. 

Figure 16. The confusion matrix of the CNN model rows are 

the actual classes of an image. Columns are CNN’s class 

prediction 

We examine the CNN performance for different usage of 

available data for improve the classification and decrease the 

error rate must use the more data from the data set. Table 6 

shows the accuracy for different exams. 

Table 6. CNN model accuracy in each train–test set 

Train-Test set split Accuracy 

Portion Number 

90%-10% 4331-481 98.65% 

80%-20% 3850-962 98.32% 

70%-30% 3369-1443 97.59% 

60%-40% 2887-1925 97.43% 

50%-50% 2406-2406 95.64% 

40%-60% 1925-2887 94.37% 

30%-70% 1443-3369 93.23% 

20%-80% 962-3850 90.04% 

10%-90% 481-4331 87.56% 

5. CONCLUSIONS

In this paper, we examined the detection and classification 

of surface potato defects using image processing and neural 

network, RBF, MLP, and SVM, and CNN. In the traditional 

intelligent methods, we simulate and report the performances 

of each method and its accuracy on databases CFIA, USDA, 

and a custom database. SVM classifier is the best classifier for 

potato defect detections. By using our deep CNN network 

displayed in Table 2, we get high classification accuracy. The 

CNN based method has higher accuracy than other techniques. 

In our paper, we achieved 100% and 99% accuracy in surface 

potato defects categorization. Some potato diseases are well 

categorized which the confusion matrix shows it. Potato 

diseases potato are Gray Mold, Skin Spot, Common Scab, 

Gangrene and Leak. The classification of 5 classes in this 

article is a new task for diagnosing surface defects of potatoes, 

and the previous researches classified them into two groups of 

healthy and defective. The number of images used in the 

potato dataset is 5000, and this high accuracy indicates the 

success of the method used.  
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