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 Brain computed tomography (CT) provides a medical imaging tool for reviewing cerebral 

apoplexy. It is of strong clinical significance to study the key techniques for lesion 

segmentation and feature selection of cerebral apoplexy. Most of the previous research fail 

to fully utilized the other prior information, or apply to the changing feature analysis on 

multiple lesion images generated in the rehabilitation process. Therefore, this paper aims to 

develop an image segmentation method for review of cerebral apoplexy. Based on the 

correlation between image series, the authors proposed a segmentation method for CT 

images of cerebral apoplexy, and developed a way to extract and select the changing lesion 

features, which assists with the diagnosis of cerebral apoplexy rehabilitation. The image 

segmentation and feature selection results were obtained through experiments, revealing the 

effectiveness of our method.  

 

Keywords: 

cerebral apoplexy, review, image 

segmentation, lesion change features 

 

 

 
1. INTRODUCTION 

 

Cerebral apoplexy, often referred to as brain stroke, is 

mainly manifested as neurologic impairment. Whether 

hemorrhagic or ischemic, cerebral apoplexy occurs quickly 

and worsens severely, and easily leads to death [1-5]. 

Currently, the rehabilitation treatment of cerebral apoplexy 

includes exercise therapy, operation therapy, language therapy, 

and psychotherapy. The above therapies help to prevent some 

complications of cerebral apoplexy, effectively improve the 

impaired brain functions of the patient, reshape the brain 

neural network, and promote language and cognition functions 

[6-12]. Capable of distinguishing between brain tissues, brain 

computed tomography (CT) provides a medical imaging tool 

for reviewing cerebral apoplexy [13-21]. It is of strong clinical 

significance to study the key techniques for lesion 

segmentation and feature selection of cerebral apoplexy, based 

on the CT images of the disease. 

Quantitative models, essential in precision medicine, can 

predict health status and prevent diseases and disability. Cui et 

al. [22] presented a prognostic discriminative ranking strategy, 

which selects the most relevant image features for image-

assisted prediction of clinical results. The key clinical 

parameters were fused with selected image features. The 

resulting representative vectors were imported to a 

classification model. Ischemic stroke patients can benefit a lot 

from early diagnosis. Based on two-dimensional (2D) slices, 

Liu et al. [23] proposed a segmentation method with diffusion 

weighted images, apparent diffusion coefficients, and T2 

weighted images as inputs, and a designed a residual fully 

convolutional network. Brain signals and brain images are 

widely used in clinical diagnosis of cerebral apoplexy. 

Considering its accuracy and multimode features, some 

scholars relied on principal component analysis (PCA) to 

develop a pixel-level image segmentation method, in which 

image thresholding is performed through cuckoo search and 

Tsallis entropy [24, 25]. The results show that the pixel-level 

fusion improves the clinical disease diagnosis. It takes a long 

time to produce hundreds of slices through magnetic 

resonance imaging (MRI). The interpretation of these slices 

may suffer from manmade mistakes. The doctors generally 

believe that the automatic segmentation of ischemic stroke 

lesions can greatly bring forward patient treatment. Kumar et 

al. [26] studied the intensity change of the tissue using zero tilt 

and intensity normalization, and treated them as preprocessing 

operations. Drawing on existing registration and segmentation 

methods, Sridharan et al. [27] proposed a multimode analysis 

framework for largescale research of clinical quality brain 

image acquisition, and constructed a computing pipeline for 

spatial normalization and feature extraction. The aligned data 

thus obtained support clinical analysis on the spatial 

distribution of related anatomical features, and its evolution 

with age and disease progression. 

The existing image segmentation algorithms often construct 

image segmentation models based on gray information, 

without fully utilizing other prior information. There is little 

research into the lesion segmentation of CT images on cerebral 

apoplexy. Besides, the current brain CT image feature 

extraction methods are too simple to capture the changing 

features of the multiple lesion images generated through 

rehabilitation. Therefore, this paper aims to develop an image 

segmentation method for review of cerebral apoplexy. Section 

2 proposes a segmentation method for CT images of cerebral 

apoplexy based on the correlation between image series, 

aiming to overcome the difficulty in segmenting the lesion 

areas of cerebral apoplexy and extracting the changing 

features of the lesion areas during the rehabilitation. Section 3 

puts forward an approach to extract and select the changing 

lesion features, which assists with the diagnosis of cerebral 

apoplexy rehabilitation. The approach solves the problem that 

a single feature extracted from lesion images in only one 

period cannot reflect the rehabilitation state. Finally, the image 

Traitement du Signal 
Vol. 38, No. 6, December, 2021, pp. 1775-1782 

 

Journal homepage: http://iieta.org/journals/ts 
 

1775

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.380621&domain=pdf


 

segmentation and feature selection results were obtained 

through experiments, revealing the effectiveness of our 

method. 

 

 

2. LESION SEGMENTATION  

 

The segmentation of lesion areas from cerebral apoplexy 

CT images is the difficulty in assisted diagnosis of cerebral 

apoplexy review. The segmentation accuracy directly bears on 

the extraction effect of the changing lesion features. Owing to 

image defects like irregular shapes and fuzzy boundaries, it is 

difficult to segment the lesion areas of cerebral apoplexy, or 

capture the changing features of such areas during the 

rehabilitation. To solve these problems, this paper proposes a 

segmentation method for CT images of cerebral apoplexy 

based on the correlation between image series. 

The proposed method integrates the prior constraints 

between series of multiple planes, fuses the segmentation 

results of multi-directional plane series of the input CT images 

through voting, and corrects the final segmentation results to 

judge the changing rehabilitation state during the treatment of 

cerebral apoplexy.  

Figure 1 shows the flow of cerebral apoplexy lesion 

segmentation based on the prior constraints between series. 

After optical flow registration, the lesion shape prior of 

cerebral apoplexy helps to solve two problems facing the 

segmentation of lesion areas from brain CT images on cerebral 

apoplexy, namely, the fuzzy boundaries of lesion areas, and 

the low differentiation between similar tissues, thereby 

enhancing the contour extraction accuracy of lesion areas. 

Firstly, an interactive image segmentation algorithm is 

adopted to segment the cerebral apoplexy lesions in CT slices. 

Let PI={τm|m=1, 2, ..., M} be the input CT slice series; τm be 

the m-th layer slice in the series. Then, the m0∈{m|m=1, 2, ..., 

M}-th layer is selected as the initial slice layer. The label 

vectors of all the pixels on the initial slice are denoted as 

BVm0=(BQm0
1, …, BQm0

i, …, BQm0
I), and the label value of the 

i-th pixel in the initial slice layer τm0 is denoted as 

BQm0
i∈{0,1}. If the label value is 0, then the pixel belongs to 

the background; otherwise, the pixel belongs to the foreground. 

Let i and j be two adjacent pixels connected by a weighted 

edge σ; ψ0 be the constant coefficient of the ratio of the 

boundary term to the area term; QY(BQm0
i) be the area term, 

also the penalty term, with the label value BQm0
i equaling 

either 0 or 1. Then, the segmentation energy function of the 

initial slice can be expressed as: 
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Let hi be the gray value of the i-th pixel. Then, the area term 

can be expressed as:  
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When the i-th pixel is labeled 0, the corresponding area term 

is the negative log of its gray value in the foreground gray 

histogram. When the i-th pixel is labeled 1, the corresponding 

area term is the positive log of its gray value in the foreground 

gray histogram. 

The penalty boundary term PU(BQm0
i,BQm0

j) that assigns 0 

and 1 or 1 and 0 to the adjacent pixels i and j can be calculated 

by: 
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Figure 1. Flow of cerebral apoplexy lesion segmentation based on the prior constraints between series 
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Solving formula (1), the global optimal segmentation results 

of cerebral apoplexy lesions in τm0 can be obtained. That is, the 

value of label vector BV*m0 can be given by: 

 

( )0 0*
arg min

m m
BV GO BV=   (4) 

 

The optical flow displacement fields for the adjacent slices 

of cerebral apoplexy CT images are registered. Based on the 

lesion contours BQ*m0 of the initial layer, it is possible to 

derive the shape prior contours of the lesions in the current 

slice. Let τm-1 and τm be two adjacent slices. Through optical 

flow calculation, the displacement field of the i-th pixel in τm-

1 can be obtained, and used to derive the coordinate deviations 

c and d in the horizontal and vertical directions of the m-th 

layer slice τm. 

Let BVm-1 be the label vectors of all pixels in the nearby m-

1-th layer slice; a and b be the coordinates of all pixels in that 

slice. The shape prior model of the lesions in the m-th layer 

slice can be described as COm=(COm
1,...,COm

i,...,COm
I). If 

COm
i=1, then the i-th pixel in the m-th layer slice is labeled as 

a foreground prior; If COm
i=0, then the i-th pixel in the m-th 

layer slice is labeled as a background prior. The shape prior 

constraint model COm of the lesions in the m-th layer slice can 

be expressed as: 

 

( ) ( )1, ,m mCO a b BV a c b d−= + +   (5) 

 

The lesions shape prior of the current slice can be solved 

based on the COm between slice series. Suppose the COm of 

the m-th layer slice is known. Let XS be all the pixels in the m-

th layer slice; ψ1 and ψ2 be the constant coefficients that 

measure the effective proportions of the shape prior constraint 

and the boundary term, respectively. Based on the shape prior 

constraint COm, the energy function of the image segmentation 

model can be expressed as:  
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Comparing the energy formula (6) with that of classic image 

segmentation models, formula (6) introduces a 1-tuple to the 

penalty term 1-CO(BQm
i) of the shape prior constraint, i.e., the 

sum between the area term and the penalty term of shape prior 

constraint in classic image segmentation models. Hence, 

formula (6) actually extends the energy function of classic 

image segmentation models. The boundary term 

PU(BQm
i,BQm

j) is a 2-tuple. The area term QY(BQm
i) can be 

deduced from the probabilistic distribution of the foreground 

and background gray histograms about the initial lesion 

segmentation statistics. Under the minimal shape prior, the 

global optimal solution BV*m to the energy function of the 

image segmentation model can be solved by the maximum 

flow algorithm. This solution is the lesions segmentation 

results of the m-th layer slice. 

The principle of lesions segmentation with multiple plane 

series is as follows: Each input cerebral apoplexy CT image 

has three different planes: sectional plane, vertical plane, and 

coronal plane. The three planes correspond to different lesions 

segmentation results: {BVm
cs|m=l, 2, …, Mcs}, {BVm

sp|m=l, 

2, …, Msp}, and {BVm
cp|m=l, 2, …, Mcp}. Let {BVm|m=1, 2, ..., 

M} be the final lesions segmentation results. Then, the fusion 

decision formula of cerebral apoplexy lesions segmentation 

can be expressed as:  
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3. FEATURE EXTRACTION AND FEATURE 

SELECTION  

 

The cerebral apoplexy lesions are segmented by the 

algorithm designed in the preceding section. This section 

intends to extract and select the changing features of the 

segmented lesions. Traditionally, only a single feature is 

extracted from the lesion images of a single patient in one 

period. In fact, multiple lesion images are produced through 

the treatment of every patient. It is impossible to reflect the 

rehabilitation state with a single feature from the lesion images 

in one period only. In addition, the direct selection approach 

often collects statistically insignificant or meaningless 

changing features of the lesions. To solve these problems, this 

paper proposes a way to extract and select the changing lesion 

features, which assists with the diagnosis of cerebral apoplexy 

rehabilitation. The roadmap of this method is shown in Figure 

2. 

 

 
 

Figure 2. Roadmap of feature extraction and feature 

selection 

 

Firstly, the imaging features and review clinical information 

features are extracted from the segmented lesions. The flow of 

feature extraction is explained in Figure 3. Then, the 

statistically meaningful imaging features and review clinical 

information features are selected through Mann-Whitney U 

test and chi-squared test. Finally, the candidate features were 

selected using the least absolute shrinkage and selection 

operator (LASSO).  

The Mann-Whitney U test consists of the following steps: 

Step 1. Mix the data of two sample sets, and sort and label 

them in ascending order. If two samples have the same value, 

take the mean value as the rank. 

Step 2. Solve the rank sums of the two sample sets, and 

denote them as Q1 and Q2, respectively. 
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Figure 3. Flow of feature extraction 

 

Step 3. Let m1 and m2 be the number of observations in the 

two sample sets, respectively. Then, the statistics can be 

solved by: 
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Compare the minimums of V1 and V2 with the critical value 

VCR. If V<VCR, reject the null hypothesis F0 and accept the null 

hypothesis F1. If the null hypotheses are true, the mean and 

variance of V can be calculated by: 
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If m1 and m2 are both greater than 10, treat V as 

approximately normally distributed. 

Step 4. Let λ1 and λ2 be the global means of the two sample 

sets, respectively. Then, make the following judgment:  

(a) F0: λ1≤λ2, F1: λ1>λ2, if V<-VCR, then reject F0;  

(b) F0: λ1≥λ2, F1: λ1<λ2, if V>-VCR, then reject F0;  

(c) F0: λ1=λ2, F1: λ1≠λ2, if V>-VCR/2, then reject F0. 

The chi-squared test (χ2 test) is a consistency test about 

whether the actual distribution of the sample data significantly 

deviates from the expected distribution. Let l be the number of 

subsets of the sample set; gt and gs be the observed and 

expected frequencies, respectively. Then, the chi-squared can 

be expressed as:  
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The smaller the χ2, the greater the similarity between gt and 

gs; the greater the χ2, the greater the gap between gt and gs. χ2 

satisfies the chi-squared distribution of l-1 degrees of freedom. 

Before the chi-squared test of a 2×2 sample data array, the 

following hypotheses should be established: 

(1) F0: θ1=θ2: the actual distribution of the sample data does 

not significantly deviate from the expected distribution; 

(2) F1: θ1≠θ2: the actual distribution of the sample data 

significantly deviates from the expected distribution. 

The significance level φ is set to 0.05. Then, the probability 

SC solved by the chi-squared test is compared with φ. If SC<φ, 

reject F0; If SC>φ, reject F1. 

Let LDP be the expected frequency of the data in row D and 

column P; mD and mP be the number of data in row D and 

column P, respectively; m be the total frequency. Then, we 

have: 

 

D P

DP

m m
L

m


=   (11) 

 

Let u, v, w and q be the actual frequency of two rows and 

two columns. Then, the χ2 value can be solved by formula (10) 

or χ2=[(uq-vw)2m]k[(u+v)(w+ q)(u+w)(v+q)], and used to 

solve the value of probability SC. 

If LDP<5, and the sample size is greater than 40, the χ2 value 

needs to be corrected by: 
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If multiple datasets need to go through the chi-squared test, 

the procedure is similar to the above. The only difference lies 

in the calculation of the χ2 value: 
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t
i

D P
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i
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The statistically meaningful imaging features extracted 

through the Mann-Whitney U test and the chi-squared test are 

too redundant to assist with the diagnosis and treatment of 

cerebral apoplexy. It is important to further screen these 

imaging features. Capable of selecting sparse features, the 

LASSO is introduced to filter the highly redundant imaging 

features. In essence, the LASSO introduces the L1-norm to the 

regression model, such that the regression coefficients of the 

insignificant imaging features become zero. In this way, the 

salient imaging features can be selected automatically. 

Let Ai=(ai1, ai2, …, aiM)T be the eigenvector of the i-th CT 
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image; M be the number of samples; Bi be the label of the i-th 

sample. Then, the LASSO regression model can be expressed 

as: 

 

1

M

i i j ijj
B a 

−
= +   (14) 

 

Let γi
*and ξi

* be the intercept and weight coefficient of the 

i-th sample, respectively; aij be the feature of the i-th sample. 

Then, the imaging feature selection can be transformed into an 

optimization problem under the constraint of the L1-norm. Let 

γ* and ξ* be the estimations of γi and ξi under the optimization 

problem, respectively; μ be the adjustment parameter. Then, 

we have: 
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Let RE(μ) be the number of effective regression coefficients; 

SRS(μ) be the sum of residual squares. Then, the μ value can 

be determined through generalized cross validation:  
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where,  
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The optimal result is obtained when the generalized cross 

validation value is minimized. To sum up, the LASSO-based 

imaging features can be selected in three steps: (1) compute 

the regression coefficient of each imaging feature, and select 

the salient features based on the distribution of the regression 

coefficients; (2) determine the μ value through generalized 

cross validation; (3) output the imaging feature corresponding 

to the optimal μ value. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

This paper chooses five image segmentation metrics to 

verify the effectiveness of our algorithm, namely, volume 

overlap error, relative volume difference, mean SSD, RMS-

SSD, and maximum SSD. The effectiveness of our algorithm 

was compared experimentally with the reference algorithm: H-

DenseUnet algorithm. Table 1 lists the mean values of the five 

metrics and the final scores of the two algorithms, concerning 

the cerebral apoplexy lesions segmentation of the entire brain 

CT image training set. It can be observed that our algorithm 

outperformed the reference algorithm on all metrics. The 

results show that high accuracy, robustness, and universality 

of our method. 

Through Mann-Whitney U test and chi-squared test, a total 

of 104 statistically meaningful imaging features were obtained 

for LASSO feature selection. The feature selection model was 

tuned to the optimal state under 5-, 10-, 15-, and 20-fold cross 

validations, respectively. The regression parameters 

corresponding to the selected features are listed in Table 2. 

To verify the effectiveness of LASSO feature selection, our 

feature selection algorithm was compared with linear 

regression algorithm and ridge regression algorithm. Different 

weight coefficients were assigned to different features, such as 

to compare the selectivity of different algorithms. Figure 4 

compares the feature coefficients selected in different cross 

validations. 

 

Table 1. Segmentation results of CT image training set 

 
Metric Method Mean Standard deviation 

Volume overlap error 
Reference algorithm 5.75 1.52 

Our algorithm 5.69 1.46 

Relative volume difference 
Reference algorithm 1.72 2.31 

Our algorithm 1.35 0.85 

Mean symmetric surface distance 

(SSD) 

Reference algorithm 1.12 0.14 

Our algorithm 1.05 0.06 

Root-mean-square (RMS) of SSD 
Reference algorithm 2.14 0.71 

Our algorithm 1.76 0.55 

Maximum SSD 
Reference algorithm 21.46 5.68 

Our algorithm 18.29 3.48 

Score 
Reference algorithm 78.29 6.72 

Our algorithm 77.18 4.62 

 

Table 2. Regression parameters corresponding to the selected features 

 
Feature number 1 2 3 4 5 6 7 

 Intercept β1 β2 β3 β4 β5 β6 β7 

5 folds 21.0526 5.3628 -0.8524 -2.2362 -0.1204 8.7129 -9.4152 0.5293 

10 folds 26.1824 5.2637 -0.8426 -2.4158 -0.0146 9.3685 -13.4852 0.8516 

15 folds 26.1859 5.1274 -1.1296 -2.1481 -0.7415 9.4851 -16.2937 1.1482 

20 folds 28.1674 5.1924 -1.3927 -2.1637 -0.0042 9.3562 -15.4297 1.2846 

Feature number 8 9 10 11 12 13  

 Intercept β8 β9 β10 β11 β12 β13  

5 folds 21.0526 -0.0421 -0.0326 4.6253 2 -16.2637 -0.0251  

10 folds 26.1824 -0.0748 -0.0126 4.1628 -1.2958 -14.7515 -0.0362  

15 folds 26.1859 -0.0182 -0.2618 4.6284 -2.1692 -16.3748 -0.0718  

20 folds 28.1674 -0.0418 -0.0812 4.6297 -2.8519 -1.6248 -0.0157  
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(a) (b) 

 

Figure 4. Feature coefficients selected in different cross validations 

 

The restoration of the patient’s brain neural network hinges 

on the size change of cerebral apoplexy lesions through the 

rehabilitation. Therefore, this paper classifies the extracted 

lesion areas by size, and explores the distribution proportions 

of large lesion areas and small lesion areas. Figure 5 suggests 

that the three groups of lesion areas are roughly balanced in 

distribution proportion. This further demonstrates the 

effectiveness of our algorithm. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5. Distribution of lesions size in different classes 

 

 

5. CONCLUSIONS 

 

This paper investigates the image segmentation for review 

of cerebral apoplexy. Based on the correlation between image 

series, a segmentation method was proposed for CT images of 

cerebral apoplexy. The method overcomes the difficulty in 

segmenting the lesion areas of cerebral apoplexy and 

extracting the changing features of the lesion areas during the 

rehabilitation. Besides, a lesion area feature extraction and 

selection approach was developed to assist with the diagnosis 

of cerebral apoplexy rehabilitation, because the rehabilitation 

state cannot be reflected by a single feature extracted from the 

lesion images in the same period. Then, the segmentation 

results on a CT image training set were obtained, which 

demonstrate the high segmentation accuracy, robustness, and 

universality of the proposed method. In addition, the authors 

summarized the regression parameters corresponding to the 

selected features, plotted the feature coefficients selected in 

different cross validations, and presented the distribution of 

lesions size in different classes. The results show that the three 

groups of lesion areas are roughly balanced in distribution 

proportion. This further demonstrates the effectiveness of our 

algorithm. 
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