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In real training, the training conditions are often undesirable, and the use of equipment is 

severely limited. These problems can be solved by virtual practical training, which breaks 

the limit of space, lowers the training cost, while ensuring the training quality. However, the 

existing methods work poorly in image reconstruction, because they fail to consider the fact 

that the environmental perception of actual scene is strongly regular by nature. Therefore, 

this paper investigates the three-dimensional (3D) image reconstruction for virtual talent 

training scene. Specifically, a fusion network model was deigned, and the deep-seated 

correlation between target detection and semantic segmentation was discussed for images 

shot in two-dimensional (2D) scenes, in order to enhance the extraction effect of image 

features. Next, the vertical and horizontal parallaxes of the scene were solved, and the depth-

based virtual talent training scene was reconstructed three dimensionally, based on the 

continuity of scene depth. Finally, the proposed algorithm was proved effective through 

experiments. 
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1. INTRODUCTION

With the continuous development of the times, the 

computer simulation technique of virtual reality (VR) has been 

widely applied in military, medical, teaching, and many other 

fields [1-10]. In the field of education, the VR-based virtual 

talent training becomes an emerging form of training, and 

captures widespread attention from the education community, 

thanks to its diverse contents and flexible arrangements [11-

15]. The traditional training model mainly imparts knowledge 

with the aid of slides and videos. By contrast, virtual talent 

training effectively improves the knowledge learning and skill 

training effects through interaction and experience perception 

[16-19]. Compared with the current real training, virtual 

practical training breaks the limit of space, lowers the training 

cost, while ensuring the training quality. It provides a good 

solution to the problems of real training, e.g., undesirable 

training conditions and limited use of equipment [20-23]. 

Some training programs are a bit risky, such as electricity 

training and vehicle driving training. In these programs, virtual 

training provides a stronger safety guarantee for the trainees 

than the traditional training model [24, 25]. Image 

reconstruction is very important to the construction of virtual 

talent training scene. Experts and scholars have paid much 

attention to improving the accuracy and completeness of the 

three-dimensional (3D) reconstruction of virtual talent training 

scene. 

In the industrial sector, VR applications can be used to 

support training in highly risky or costly environments, which 

cannot be replicated in real life. Bellemans et al. [26] described 

a recent VR application built through the close cooperation 

between Royal Military Academy Sandhurst, the Belgian 

Navy, and the industrial community. The VR application 

allows future firefighters to be trained in a virtual replicated 

ship cabin. VR and augmented reality (AR) are very useful 

tools for developing new training tools, for they facilitate the 

creation and maintenance of multiple scenes and environments. 

AR/VR-based training can reduce the travel and living costs 

incurred when students are brought to the central training 

facility, and offer them an immersible training environment. 

Gluck et al. [27] attempted to integrate artificial intelligence 

(AI) into VR-based immersive combatant training 

environment, developed an AI-assisted VR system for training 

ground soldiers, which help soldiers walk in the environment 

without being detected. Chen et al. [28] designed an industrial 

robot training platform based on VR and mixed reality (MR). 

The platform solves multiple problems of industrial robot 

training: the high purchase cost of training equipment, the 

presence of hidden hazards, and the lack of teaching resources. 

Guptaa and Vargheseb [29] proposed a design and 

development framework for security training VR platform. As 

a design file, the framework conceptualizes the accident scene 

according to the recognized situation of the accident, and 

requires every trainee to analyze the simulation condition, 

identify the risks in each scene, and decides the right 

mitigation measures for the accident outcome. Khwanngern et 

al. [30] developed a VR application for simulating mandible 

surgery, which visualizes the operating room in a highly real 

VR environment. The user of the application can clamp, cut, 

drill, connect, and compare the 3D skull model, using a motion 

controller. 

Concerning the existing studies on virtual scene 

reconstruction, there are some methods that utilize the 

principles of camera imaging and the basic theories on 3D 

image reconstruction. However, none of them considers the 

fact that the environmental perception of actual scene is 
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strongly regular by nature. As a result, two-dimensional (2D) 

target detection has never been combined with semantic 

segmentation to reduce the demand for data, lower the cost of 

data labeling, and improve the quality of the reconstructed 

image. Therefore, this paper investigates the 3D image 

reconstruction for virtual talent training scene. The main 

contents are as follows: Section 2 identifies images on virtual 

talent training scene, designs a fusion network model, and 

explores the deep-seated correlation between target detection 

and semantic segmentation for images taken in 2D scenes, 

aiming to enhance the extraction effect of image features. 

Section 3 solves the vertical and horizontal parallaxes of the 

scene, and reconstructs the 3D virtual talent training based on 

depth, using the continuity of scene depth. Finally, 

experiments were carried out to verify the effectiveness of the 

proposed algorithm [31, 32]. 

 

 

2. IMAGE IDENTIFICATION 

 

In a virtual talent training scene, the images shot in the scene 

(hereinafter referred to as scene images) are the most 

important information source for perceiving the virtual 

training environment. The images taken by cameras in the 

virtual training environment can be imported to the 

convolutional neural network (CNN). The network output will 

assist with the adjustment of the training strategy, providing 

an important guarantee to training quality. Normally, two 

independent CNNs are selected to detect the targets and 

segment the semantics of the training scene, respectively. 

However, the labeling of semantic segmentation data is too 

costly, given the limited number of training samples. It is 

difficult for the independently trained semantic segmentation 

model to achieve an ideal effect of image feature extraction. 

To overcome the difficulty, this paper designs a fusion 

network model, which improves the image feature extraction 

effect by mining the deep-seated correlation between target 

detection and semantic segmentation for images taken in 2D 

scenes. 

In this paper, the deep residual network (DRN) is employed 

as the feature extraction module for scene images. Let G(a) 

denote the residual. To prevent network degradation, the 

proposed deep neural network is transformed into a shallow 

neural network through the following identity mapping: 

 

( ) ( ) aaGaF +=  (1) 

 

To reduce the difficulty for the neural network model to 

directly learn identity mapping, formula (1) is converted 

equivalently into: 

 

( ) ( )aGaFa -=  (2) 

 

Formula (2) shows that the identity mapping F(a)=a can be 

constructed, as long as G(a)=0 holds. Table 1 shows the 

network structure of the feature extraction module for the 

scene images. 

 

Table 1. Network structure of the feature extraction module for the scene images 

 
Module number 0 1 

Layer structure Conv(3, 32, [4, 4]) MaxPooling([4, 4]) 

Conv(64, 32, [3, 3]) 

Conv(64, 32, [3, 3]) ×4 

Conv(64, 32, [3, 3]) 

Modul number 2 3 4 

Layer structure 

Conv(128, 64, [4, 4]) 

Conv(64, 64, [3, 3])×2 

Conv(64, 256, [4, 5]) 

Conv(256, 128, [2, 2]) 

Conv(128, 128, [5, 5]) ×2 

Conv(128, 512, [2, 2]) 

Conv(512, 64, [2, 2]) 

Conv(256, 256, [2, 2]) ×2 

Conv(256, 512, [2, 2]) 

 

 
 

Figure 1. Target-grid mapping 

 

After the feature mapping is completed by the feature 

extraction module, the center of the target in the scene image 

will fall within a grid in the feature map (Figure 1). The 

prediction of the target will be carried out based on grids. 

During the prediction, the corresponding grid will generate an 

m-anchor box that approximates the true bounding box for 

each prediction vector. Let (da, db) be the coordinates of upper 

left corner of the grid; (oa, ob) be the coordinates of the center 

of the true bounding box to be predicted; (oq, of) be the size of 

the true bounding box; o*a, o*b, o*q and o*f be the abscissa, 

ordinate, width, and height of the predicted bounding box, 

respectively; tq and tf be the width, and height of the anchor 

box, respectively; ε(.) be the sigmoid function that maps the 

input to the interval (0, 1). Then, the true bounding box can be 

predicted based on the information of the anchor box by: 
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 (3) 

 

In fact, the neural network needs to predict ε(pa), ε(pb), spq, 

and spf. Let (pa, pb) and (pq, pf) be the true coordinates and true 

size of the predicted bounding box, respectively. After 

obtaining the values of ε(pa), ε(pb), spq, and spf, (pa, pb) and (pq, 

pf) can be restored through reverse deduction by formula (3). 

Confidence CLo is calculated by sigmoid function, and used 

to judge whether any target exists in the predicted bounding 
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box. If CLo>0.5, the target exists in the box; if CLo<0.5, the 

target does not exist in the box. The confidence of each type 

of targets in the scene image, denoted as CL1~CLmd, can also 

be computed by sigmoid function. The predicted class is the 

class corresponding to the target with the highest confidence 

in the scene image: 

 

( ),
X Y X Y

TO X Y
X Y X Y X Y

= =
+ −

 (4) 

 

Our feature extraction model fuses target detection and 

semantic segmentation. In the target detection module, the loss 

function defines four prediction errors: center offset, size, 

confidence, and class confidence: 
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(5) 

 

where, q and f are the width and height of feature map, 

respectively; ϕij
O is a binary function (any value greater than 

0.5 is set to 1, and any value smaller than 0.5 is set to 0); oa, 

ob, oq, and of are the abscissa, ordinate, width, and height of 

the true bounding box, respectively; CLdij and CLdij
* are the 

true and predicted class confidences, respectively; CL0ij and 

CL0ij
* indicate whether the true and predicted targets are 

confident, respectively.  

The semantic segmentation module consists of a feature 

extraction module of the scene images, and a spatial pyramid 

pooling module containing dilation convolution layers and 

pooling layers. The flow of the semantic segmentation module 

is explained in Figure 2. The network structure of spatial 

pyramid pooling module is given in Table 2. 

 

Table 2. Network structure of spatial pyramid pooling 

module 

 
Serial 

number 
1 2 3 

Structure 

Conv(1024, 128, 

[2, 2],  

dilate=2) 

Conv(1024, 128, 

[5, 5],  

dilate=7) 

Conv(1024, 128, 

[5, 5],  

dilate=14) 

Serial 

number 
4 5  

Structure 

Conv(1024, 128, 

[5, 5],  

dilate=19) average 

pooling 

Conv(1024, 128, 

[2, 2],  

dilate=2) 

 

 

In the spatial pyramid pooling module, the spliced output of 

each network layer is up-sampled through bilinear 

interpolation. Let g(W11), g(W12), g(W21), and g(W22) be the 

values of function g(.) at points W11(a1, b1), W12(a1, b2), W21(a2, 

b1), and W22(a2, b2), respectively. To predict the value of g(.) 

at interpolation point T(a, b), the first step is to perform linear 

interpolation along the a-axis: 
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(6) 

 

Then, another linear interpolation should be implemented 

on points V1 and V2 along the b-axis:  
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(7) 

 

The final result of semantic segmentation can be obtained 

by splicing the output of the feature extraction module with the 

output of up-sampling, and performing bilinear interpolation 

again on the spliced result. Let B be the true label of semantic 

segmentation data; B* be the predicted semantic segmentation 

results. In the fusion feature extraction model, the loss function 

of the semantic segmentation module can be realized by the 

cross-entropy function below: 

 

( )
= =


=

q

i

f

j

ijijSEM BlogBLoss
1 1  

(8) 

 

 
 

Figure 2. Flow of semantic segmentation module 

 

 

3. 3D RECONSTRUCTION 

 

The corresponding points on two 2D planar scene images 

can be constrained by polar lines. However, these points on the 

3D reconstructed scene images for virtual training cannot be 

solved under the constraint of polar lines. To better interact 

with the scene, and realize fast, accurate, and dense 

correspondence, this paper solves the vertical and horizontal 

parallaxes of the scene, and reconstructs the 3D virtual training 

scene based on depth, using the continuity of the depth of the 

scene. 

 

3.1 Solving vertical and horizontal parallaxes 

 

Let (0, 0, 0), and (0, 0, -v1) be the coordinates of U and U1, 

respectively; (e0, r0) be the coordinates of T0 in image SA0. 

Then, the corresponding coordinates in the global coordinate 

system can be expressed as T0(-g sin(e0), -(F/2-r0), -g cos(e0)), 

where g and F are the focal length and height of the panoramic 
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image shot in scene SA0, respectively. The polar plane passing 

through T0UU1 can be described by: 

 

( ) ( ) ( ) 0

00

 2/ 000 =

−

−−−−

v

ecosgrFusing

cba

 

(9) 

 

The cylindrical surface with U1 as the center can be 

expressed as:  

 

( ) ( ) 222

00 , gvcare =++
 

(10) 

 

Formula (10) can be converted into a parametric equation:  
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(11) 

 

Point T1 must exist on the quadratic curve, where the 

cylindrical surface with U1 as the center intersects the polar 

plane. Combining formulas (9) and (11), the intersecting line 

can be expressed as: 

 

( ) ( )
( )

( )


20
2/

0
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−

−=
esin

sinrF
b

 

(12) 

 

The same vertical parallax can be obtained by restoring the 

depth of any point on SA0, based on image SA2. Figure 3 

presents the principle of calculating the vertical parallax. 

 

 
 

Figure 3. Calculation principle of vertical parallax 

 

Suppose T'0(x2, ri) is the right adjacent pixel of T0(x1, ri) in 

SA0, T1(α1, ri1) be the corresponding point of T0(α1, ri) in SA1, 

and T'1(α1, r'i1) be the corresponding point of T'0(α1, r'i1) in SA1. 

Let δ1 and δ2 be the depth and height of T0, respectively. 

Provided that l=δ2/δ1, we have: 

 

( ) ( )11111 /  −= sinsine  (13) 

 

( ) ( )22212 /  −= sinsine  (14) 

 

Given δ2=lδ1, formulas (13) and (14) can be combined into: 
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( )
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1 1 1 2

1 1 2 2 2 2cos
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 
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− −
 (15) 

Let Q be the width of SA0. Substituting β1=β2-2π/Q into 

formula (15): 
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 (16) 

 

It can be seen that the range of T'1 is related to β, α1, and l. 

Formula (16) can be simplified as: 
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 (17) 

 

If 0<β<π, then α(l)≤α2≤α(1/l). Otherwise, if α(l)<0 or 

α(1/l)<0, the angle should be adjusted by α(l)+π or α(1/l)+π. 

When π<β<2π, if α(l)>0 and α(1/l)>0, then α(1/l)+π≤α2≤α(l)+π. 

Otherwise, the angle should be adjusted accordingly. Similarly, 

we have:  
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(19) 

 

Figure 4 presents the top view of horizontal parallax 

calculation. 

 

 
 

Figure 4. Top view of horizontal parallax calculation 

 

3.2 Depth-based 3D reconstruction 

 

 
 

Figure 5. Calculation of the 3D coordinates of the scene 

image 
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Suppose SAN×M is the generated scene image of virtual talent 

training, whose resolution is N×M. The depth image of SAN×M 

is denoted as δN×M (Figure 5). Taking the center of the 

panoramic image shot in the scene as the origin, a regular 

coordinate system U-ABC is constructed. In addition, the 

camera coordinate system of SA is established as S-ERQ. It is 

assumed that the origins of the two coordinate systems 

coincide. Let VP(VPa, VPb, VPc) be the position of the view 

point. For any pixel t(e, r) in the panoramic image, its 

coordinates in U-ABC can be recorded as T(Qa, Qb, Qc). Let T' 

be the projection of T on AUC plane; δ be the depth of point 

T solved by quadratic polar curve. Then, we have:  
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(20) 

 

where, g can be calculated through calibration. Any four 

adjacent pixels T(i, j), T(i+1, j), T(i+1, j+1) and T(i, j+1) of the 

panoramic image, plus the corresponding view points T(i, j), 

T(i+1, j), T(i+1, j+1), and T(i, j+1), form a space quadrangle, 

i.e., the reconstructed 3D scene. 

On the panoramic scene image, if there exists an adjacent 

pixel on the same plane with pixel T(e, r), then the depth 

difference between T(e, r) and that pixel should be constant. 

In the real training scene space, the depth δ mutates only on 

the edge of a plane. Thus, this paper adopts a second-order 

differential operator to process the image: 

 

( ) ( ) ( )

( ) ( ) ( )

2 , 4 , , 1

, 1 1, 1,

i j i j i j

i j i j i j

  
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 = − −

− + − − − +
 (21) 

 

The resulting second-order differential image contains 

many areas with the gradient of zero. For the special pixels in 

the noisy depth image, this paper sets a relatively small 

threshold, which is always greater than the second-order 

difference of the pixels in large planar areas of the panoramic 

scene image. In this way, the similarly judgment can be 

completed on the special pixels. 

Firstly, it is necessary to establish the covariance matrix of 

all points ri in the l*l neighborhood of any special point T' on 

the panoramic scene image:  

 

( ) ( )( ) =
−−=

M

i i

T

i CrCrDE
1  

(22) 

 

where, C is the centroid of the adjacent point set. The offset of 

point T' from the fitted plane is characterized by the minimum 

eigenvalue of the covariance matrix. If the offset is smaller 

than the preset threshold, then point T' and its adjacent points 

both belong to the fitted plane, and the normal vector of that 

plane is the corresponding eigenvector. This operation can 

effectively eliminate the poorly fitted points, and obtain the 

normal vector of the fitted pixels. Let L be the number of 

randomly selected points; Sj be the normal vector of the fitted 

plane at the j-th random point. Then, the normal vector NV of 

the i-th initial fitted plane can be calculated by: 

 


=

=
L

j

ji S
L

NV
1

1

 

(23) 

 

Let NV1 and NV2 be the normal vectors of two adjacent fitted 

planes in the reconstructed 3D scene, respectively; THR be the 

preset threshold. For the two planes to merge into one plane, 

the following condition must be satisfied: 

 
THRNVNV  21

 
(24) 

 

The above method can satisfactorily segment the panoramic 

scene image based on planar features. 

The surfaces in the training scene are reconstructed in the 

following manner. Firstly, the panoramic scene image is 

segmented based on planar features. After that, the grids of the 

scene are reconstructed through triangular expanding. Let T be 

the point in the 3D space corresponding to the center pixel of 

any region; NV’ be the normal vector of the fitted plane for the 

region. Then, the four spatial triangles adjacent to T are tested. 

Let NVi' be the normal vector of the i-th spatial triangle. Then, 

the seed triangle can be expressed as:  

 

i
i

VNVNminargvalue =
 30  

(25) 

 

Let T1(a1, b1, c1) and T2(a2, b2, c2) be the 3D coordinates of 

points T1 and T2, respectively; NV'SC be the normal vector of 

the fitted plane for the semi-circular search area; Ti(ai, bi, ci) 

be the 3D coordinates of any unexpanded pixel in that region. 

If there is a boundary point on the fitted plane, any boundary 

point will be taken as the new vertex of the plane; otherwise, 

the point corresponding to the minimum of the following 

formula will be taken as the new vertex of the plane: 

 

𝑁𝑉𝑆𝐶
′ = {𝑎1 − 𝑎𝑖 , 𝑏1 − 𝑏𝑖 , 𝑐1 − 𝑐𝑖} 

𝑙 = {𝑎2 − 𝑎𝑖 , 𝑏2 − 𝑏𝑖 , 𝑐2 − 𝑐𝑖}, 

𝑉𝑁𝐸𝑊 = 𝑚𝑖𝑛(|𝑁𝑉𝑆𝐶
′ × (𝑁𝑉𝑆𝐶

′ × 𝑙)|) 

(26) 

 

The above analysis shows that the resolution of the 

triangular grid model is directly influenced by the length of the 

extension lines of T1 and T2. The longer these lines, the larger 

the semi-circular search area of the new vertex, and the better 

the resolution of the generated triangular grid model. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

Figure 6 shows the variation of the IoU of the scene image 

set with the growing number of iterations. The proposed model, 

which fuses target detection with semantic segmentation, went 

through four rounds of training and four rounds of testing. As 

shown in Figure 6, the proposed model achieved a better effect 

of semantic segmentation, when it was trained by the auxiliary 

data source, i.e., the target detection data. 

Table 1 shows how the target confidence varies of different 

training scenes after the addition of semantic segmentation 

data. The experimental results show that, when the target had 

sufficient instances in the training set of scene images, the 

introduction of semantic segmentation could provide pixel-

level labels for the target. Then, the trained model had a 

relatively high prediction confidence for such a target. By 

contrast, when the target had insufficient instances, the model 

would have a relatively low prediction confidence. 
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Table 2 shows the semantic segmentation test results of our 

model. The model performance was evaluated by seven 

metrics, including maximum F1-score, mAP, Precision, Recall, 

FPR, and FNR. Models 1-4 are respectively the proposed 

model, weak supervised semantic segmentation model, 

region-based semantic segmentation model, and fully 

convolutional network (FCN)-based semantic segmentation 

model. Two types of test sets were experimented, namely, 

outdoor training scene, and indoor training scene. The results 

show that our model outperformed the other models in 

maximum F1-score and Recall, and achieved the lowest FNR. 

Both indoor and outdoor training scenes were tested. Three 

modes were designed for each scene: no dynamic target, a 

single dynamic target, and multiple dynamic targets. Tables 3 

and 4 present the 3D reconstruction results of indoor and 

outdoor training scenes, respectively. It can be seen that the 

indoor training scene was reconstructed better than the outdoor 

training scene. The scenes with a single dynamic target were 

reconstructed better than those with multiple dynamic targets. 

The results confirm that our model can accurately identify 3D 

targets. 

Figure 7 compares the mean back projection error of our 

method with that of traditional incremental reconstruction. 

The image adoption rate of our method reached 77.6%, which 

is 23.1% higher than that of incremental reconstruction. The 

mean back projection error of our method was around 0.5 pixel, 

which is 0.1 pixel smaller than that of the other method. The 

comparison further verifies the effectiveness of our 

reconstruction method. 

 
 

Figure 6. IoU curve of the scene image set 

 

Table 1. Target confidence variation in different training 

scenes 

 
Target class Equipment People Desks and chairs 

Confidence 1 0.9253 0.8549 0.712 

Confidence 2 0.9855 0.9316 0.6827 

Target class Blackboard Digital screen Others 

Confidence 1 0.8255 0.8746 0.7418 

Confidence 2 0.7848 0.7318 0.6685 

 

 

Table 2. Test results of semantic segmentation  

 
Image type Outdoor Indoor 

Model 1 2 3 4 1 2 3 4 

Maximum F1-score 93.25% 92.35% 91.75% 90.75% 96.75% 92.18% 94.26% 91.37% 

Mean average precision (mAP) 87.18% 84.27% 83.28% 85.74% 88.44% 89.48% 91.45% 92.37% 

Precision 85.17% 91.22% 88.52% 92.38% 92.68% 94.27% 95.38% 93.27% 

Recall 98.24% 95.48% 93.28% 96.15% 95.37% 99.22% 92.35% 88.29% 

False positive rate (FPR) 6.14% 4.11% 5.36% 4.25% 8.42% 6.85% 5.39% 6.24% 

False negative rate (FNR) 3.82% 6.75% 6.59% 8.48% 1.78% 8.48% 6.92% 11.48% 

 

Table 3. Reconstruction results of outdoor training scene  

 

 

Time consumption Evaluation metrics 

Scene depth 

calculation 

3D coordinate 

calculation 

Image 

segmentation 
Triangulation 

Maximum 

depth 

Mean 

depth 

Maximum 

error 

No dynamic target 0.326 33.284 18.249 263.458 3.29585 0.12517 0.0748516 

Single dynamic 

target 
0.395 33.265 20.448 243.585 2.36258 0.152475 0.0518465 

Multiple dynamic 

targets 
0.362 33.451 21.367 258.162 1.02575 0.184633 0.0144756 

 

Table 4. Reconstruction results of indoor training scene  

 

 

Time consumption Evaluation metrics 

Scene depth 

calculation 

3D coordinate 

calculation 

Image 

segmentation 
Triangulation 

Maximum 

depth 

Mean 

depth 

Maximum 

error 

No dynamic 

target 
0.362 32.158 16.285 162.37 1.25814 0.152485 0.045125 

Single 

dynamic 

target 

0.369 32.485 18.296 162.74 1.62835 0.132854 0.0484257 

Multiple 

dynamic 

targets 

0.355 31.4564 17.214 161.12 1.5474 0.142451 0.0387456 

 

1724



 
(a) Our method 

 
(b) Incremental reconstruction 

 

Figure 7. Mean back projection errors of different 

reconstruction methods 

 

 

5. CONCLUSIONS 

 

In this paper, 3D image reconstruction is studied in the 

context of virtual talent training scene. To improve image 

feature extraction, a fusion network model was designed to 

mine the deep-seated correlation between target detection and 

semantic segmentation for 2D scene images. On this basis, the 

vertical and horizontal parallaxes of the scene were solved, 

and the depth-based virtual talent training scene was 

reconstructed three dimensionally, based on the continuity of 

scene depth. Drawing on experimental results, the authors 

plotted the variation curve of the IoU of scene image set with 

the growing number of iterations, presented the target 

confidence change of different training scene images, and 

obtained the semantic segmentation test results. The relevant 

results confirm that our fusion model achieved better 

maximum F1-score and Recall than the other models, and 

realized the lowest FNR among all contrastive models. Finally, 

the reconstruction results of indoor and outdoor training 

scenes were collected, and the mean back projection errors of 

different reconstruction methods were summarized, which 

further demonstrate the effectiveness of our reconstruction 

method.  
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