
 

 
 
 

 
 

 

1. INTRODUCTION 

Natural convection in differentially heated inclined 
cavities was the subject of an important number of researches. 
To study the effect of this inclination on heat transfer and 
fluid flow, authors choose different ranges of angles. 
Hinojosa et al. [1] numerically simulated, for a range of ten 
angles between 0° and 180°, the variation of the Nusselt 
numbers with inclination for different Rayleigh numbers in a 
tilted cubic cavity. Sharma [2], gave a critical angle 
corresponding to a maximum average Nusselt number at 
same geometry. Kolsi [3] studied the three-dimensional 
inclined solar distiller with a moving cold wall to investigate 
the double diffusive natural convection and the entropy 
generation at different Reynolds numbers and inclination 
angles. A two-dimensional investigation was made by 
Aminossadati and Ghasemi [4] on a square cavity showing 
that the inclination effect on heat transfer, is more important 
at high Rayleigh numbers. The same configuration has been 
studied by Abu-Nada and Oztop [5] for Copper–water 
nanofluid filled cavity. Heat transfer enhances by the 
addition of nanoparticles and decreases with the inclination 

angle. Oztop et al. [6] considered an open porous tilted 
square and concluded that the inclination angle is the most 
important control parameter for the evolution of the flow and 
the convection. Kherief et al. [7] considered an inclined 
rectangular cavity filled with mercury in the presence of a 
magnetic field which reduce significantly the average Nusselt 
number, as well as Hussein et al. [8] who’s considered a 
range of angles between 0° and 90° to study the magneto-
hydrodynamic natural convection in an inclined trapezoidal 
enclosure filled with a fluid-saturated porous medium. Some 
authors have chosen to add partitions in different position on 
the cavities; for example, Mamou et al. [9] studied the heat 
transfer for different inclinations and partition's number and 
thickness. Hussain et al. [10] studied the effect of the length 
and location of one partition attached in the bottom of a 
particular cavity having an adjacent inclined single cold wall 
and gave the variations of the Nusselt number with different 
conditions of wall inclinations and partitions locations. Ben-
Nakhi and Chamkha [11] put in evidence the effect of the 
inclination angles and the partition lengths on the natural 
convective heat transfer and the fluid flow inside an inclined 
enclosure equipped with partitions; they predict an average 
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Nusselt number decreasing with the increase of the 
inclination angle beyond 30°, and show that the average 
Nusselt number increases with Rayleigh numbers and the 
flow speed decreases with the increase of the partitions 
length. 

In addition to the natural convection and fluid flow, some 
researches treated the effect of inclination on entropy 
generation. Irreversibilities are mainly due to heat transfer 
and fluid friction [12-27]. For an inclined rectangular cavity, 
Bouabid et al. [28] analyzed the influence of different 
parameters on the behavior of the entropy production for a 
transient regime and concluded that the entropy increases 
with the inclination angles for a fixed aspect ratio and 
Grashof number and reaches its maximum, depending on the 
aspect ratio, then decrease and get same value at the limits 
angles 0° and 180°. In the same way, Baytaᶊ [29] identified 
some optimum angles for which the energy lost is minimum 
in an inclined square cavity. In fact, for small Rayleigh 
number values, the entropy production decreases with the 
inclination. Shavik [30] showed that the entropy generation, 
in an inclined square, increases with the inclination at the 
high Rayleigh numbers whereas Bouabid et al. [31] 
introduced, for a similar cavity, a magnetic field and showed 
that it decreases the entropy generation. 

In continuation with what was previously dealt in 
literature, this work corresponds to a study of the inclination 
angles effect with an interest to more parameters like the 
partitions length. This parameter was studied by several 
researchers like Amraqui et al. [32] and Ben-Nakhi and 
Chamkha [11], but the most important study has been made 
by Heidary [33] who combined the study of the inclination 
effect of the partitioned cavity with the effect of the length 
and location of partitions on the heat transfer, fluid flow and 
entropy generation. The study is made numerically on two-
dimensions. So the aim of the present work is to investigate 
the natural convection and entropy production in a three-
dimensional inclined and partitioned rectangular cavity. This 
geometry can be assimilated to a solar collector. The 
temperature field, flow structure and entropy generations are 
evaluated for different inclinations and the partitions length.  

2. GEOMETRY AND MATHEMATICAL MODEL 

The three-dimensional studied geometry is an inclined 
parallelepiped equipped by five partitions as shown in (Fig. 
1). It is an inclined rectangular cavity with a variable 
inclination angle α. The length of the partitions Lp is also 
variable. Lx, Ly, Lz present consecutively the depth, the width, 
and the length of the cavity; the thickness e of the partitions 
and the distance d between theme are fixed. 

The two horizontal walls representing the glazing of the 
collector (upper face) and the absorber (lower face), are 
maintained at hot (Th) and cold (Tc) temperature respectively, 
while the lateral walls are maintained adiabatic. To develop 
the mathematical model, some simplifying assumptions were 
presented; the fluid is Newtonian, incompressible and the 
flow is laminar, the heat transfer by radiation is neglected; 
the specific heats Cp and the viscosity ν are assumed constant 
and the Boussinesq approximation were adopted.  

In order to eliminate the pressure gradient terms, the 
numerical method used to solve the governing equations in 
this work is based on "the vector potential-vorticity " 

( )  Formalism ".  

 

 
 

Figure 1. Geometry of the problem under consideration 
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The continuity, momentum and energy equations are as 

following: 
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The dimensionless equations are established using the 

following expressions:  
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The obtained dimensionless equations are: 
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Some assumptions were considered for energy equations: 
The energy equation is solved in the fluid domain. At the 

solid-liquid interface, the boundary condition is expressed by:  
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with Rc = kp / kf , is the thermal conductivities ratio. 
The control volume finite difference method is used to 

discretize equations (5-7). The central-difference scheme is 
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used for treating convective terms and the fully implicit 
procedure to discretize the temporal derivatives. The 
successive relaxation iterating scheme is used to solve the 
resulting non-linear algebraic equations. The grid is uniform 
in all directions with additional nodes on boundaries. The 
time step 10-4 and spatial mesh 51x151x76 are retained to 
carry out all numerical tests. The solution is considered 
acceptable when the following convergence criterion is 
satisfied for each step of time: 
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The boundary conditions for the considered model are 

given as follows: 
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Velocity 
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Local and average Nusselt at hot wall is given as follows: 
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Equations (5-7) are written is the scalar form as: 
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All the above equations can be written according to a 

general form as flowing:   
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With: 
 

o   : T, x , y or z  

o  : dimensionless coefficient  

o S : source term 

 
Thus, the general equation can be written as: 

 

yx z
LL L

S
t x y z



 
   

   
 (16) 

 

With: .x xL u
x




  


 ,  .y yL u
y




 


 

and .z zL u
z




  


  

Using a pure implicit scheme, the system of algebraic 
coupled equations in three-dimensional formulation can be 
written as: 
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e, w, n, s, b and t, denote the faces of control volume 
centered in P, E, W, N, S, B and T, denote the nodes around 

the nodal point P ,A B  gives the maximum between A and 

B. 
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- Energy equation ( T ): 
 

p p E E W W N N S S H H

B B p

a T a T a T a T a T a T

a T b

     


   (18) 

With：
. . 1

2
p p

x y z
b T

t

   



 

 

- Vorticity equation; x-component ( x  ) 

-  

p xp E xE W xW N xN S xS

H xH B xB p

a a a a a

a a b

    

 

    

 
   (19) 

with: 
 

. .
. . .

2

. . .
2

. . .
2

.Pr . .cos . .
2

xE xw
p xp xp

xS xN
yp

xH xB
zp

H B

V Vx y z
b y z

t

V V
x z

V V
x y

T T
Ra x y

 







     
     

  

 
   

 

 
   

 

 
  

 

  

- Vorticity equation; x-component ( y  ) : 
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- Vorticity equation; x-component ( z  ) : 
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- vector potential equations 
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Entropy production is the result of an imbalance state, 

caused by thermal and viscous irreversibilities  
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Indeed, the temperature gradient is the origin of the 
entropy production called the "thermal entropy", while the 
dissipation energy leads to the production of the entropy 
called "viscous entropy" so the total generated entropy can be 
defined as the sum of these two quantities: 

 

' ' 'gen th frS S S   (25) 

 
In general, the generated entropy is given as follows:   
 

2

1
' . . ' . '

''
genS q T

TT


     (26) 

 
with:        
 

.q k gradT   (27) 

 
The first term represents the generated entropy due to the 

temperature gradient, while the second is that due to the 
friction effects. ɸ’ is the dissipation function which 
represents the degradation of interior heat forces. 

For an incompressible flow, this dissipation function is 
expressed by: 
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 (28) 

 
Hence the total generated entropy is expressed by: 
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 (29) 

 
Using the dimensionless parameters, the generated entropy 

number (dimensionless local entropy generated) is expressed 
as following: 
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 (30) 

 

with 
2

2 2

mT

l k T


 



 is the irreversibility distribution 

coefficient. 
The total dimensionless generated entropy is written as:   
 

 tot s s th s fr th fr
v v

S N dv N N dv S S        (31) 

3. RESULTS AND DISCUSSIONS 
 
A numerical study of three-dimensional natural 

convection heat transfer in an inclined rectangular cavity 
assimilated to a solar collector was made to investigate the 
effect of the inclination angles on the temperature repartition, 
flow behavior and entropy generation for different length of 
partitions and different Rayleigh numbers. The average 
Nusselt number for the different inclinations and length 
partitions will be also discussed. 
Results are presented for Pr = 0.71 and a range of angles 0° ≤ 
α ≤ 90°; the Rayleigh numbers and the length of partitions 
are varied respectively from Ra = 103 to 105 and Lp = 0.2 , 
0.5 and 0.8. The dimensionless irreversibility distribution 
ratio  , is fixed at 10−5. Partitions and cover are assumed to 

be in Plexiglas (k = 1.8 W.m-1.K-1) 7cR . 

Figure 2 and 3 present, the three-dimensional iso-surfaces 
of temperature for different inclinations, Rayleigh numbers 
and partitions length. For Ra = 103, the iso-surfaces of 
temperature are almost quasi-parallel, the regime is 
conductive and the presence of the partitions seems without 
influence. 

The wavy ordered aspect begin for Ra = 104, the iso-
surfaces present a slight distortion in the center of the gravity 
of the cavity for the cases of Lp = 0.2 and 0.5, for this last 
case (Lp = 0.5) the gradient of the temperature is accentuated 
in the upper part near the cold wall and the lower part near 
the hot wall. For Lp = 0.8 the quasi-parallel behavior 
reappears showing the effect of the partitions to put in order 
the thermal iso-surfaces by increasing the length of partitions.  
For Ra = 105, the distortion increases, the excessive gradient 
in upper part of the cold wall intensifies and it occupy the 
major volume of the cavity. 

The length of partitions effect is more evident for high 
Rayleigh numbers. We can notice a symmetrical distribution 
for Lp = 0.8 for all Rayleigh numbers range, this symmetry is 
less evident for Lp = 0.5 and 0.2 and we can conclude that by 
increasing the length of partitions, the iso-surfaces of 
temperature distribution become more and more organized 
and the wavy behavior more and more evident. 

Figure 4 present a comparison, at high Rayleigh number 
Ra = 105, between the behaviors of the isotherms projection 
in the x-y plan at z = 0.5, with the length partitions and the 
inclination angles. At high Rayleigh number the length 
partitions effect is evident for all the angles and the intensity 
of isotherms lines patterns depends from this length. 

By increasing the tilted angles, the isotherm lines 
behaviors variation is so evident in the middle of the cavity, 
but near the active walls, for most cases, we can notice the 
existence of an excessive gradient. This gradient is located 
near the cold wall in the upper part and near the hot wall in 
the inferior part of cavity; the increase of angles inclination 
ad the length partitions tend to spread this excessively along 
those active walls and we found at α=90° the accentuated 
gradient near the whole active walls. By increasing the length 
partitions, we found also this spread of the excessive gradient 
but we notice a decrease of intensity from a length to other.  
The behaviors variation of the isotherm lines in the middle of 
the cavity due to the increase of the inclination angles tends 
to the formation of cells. Only for the case of α = 90° we can 
notice the existence of cells special in the space between the 
partitions walls. 
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Figure 2.  iso-surfaces of temperature for α = 0° and 
different Ra and Lp  
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Figure 3. Iso-surfaces of temperature for  α = 60° and 
different Ra and Lp 
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Figure 4. Isotherms at z = 0.5 for Ra=105 and different Lp 
and α  
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Figure 5. Some particles trajectories for Ra=105
 and different 

Lp and α. 
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Figure 6. Velocity vector projection at z = 0.5 for Ra = 105 

and different Lp and α 

 
For this angle of 90°, a main cell is obtained at Lp = 0.2 

filling all the enclosure, with small little cells between the 
partitions with two others inside the main one and the effect 
of partition forms on the isotherm pattern is so evident.   

By increasing Lp, the dimension of main cell becomes 
smaller, it is divided to secondary concentric cells and we 
notice a symmetric behavior increasing with the increase of 
the length partitions.  

Figure 5and 6 present the particles trajectories and vector 
velocity projection for Ra = 105 at central xy-plan. The 
regime is multi-cellular even for low length partitions, but 
the flow structure become more and more complex by 
increasing the angle inclinations. In fact for Lp = 0.2, the 
flow seems to be organized for α = 0° and it is characterized 
by a main centered vortex occupying the major portion of the 
cavity. For α = 60° the flow become disordered and the 
vortex is decentered downward. The 3D character is more 
pronounced with a modified structure at α = 90° at which the 
collector is in horizontal position; the flow changes direction 
and turns around the x-axis and more irregularity is observed 
due to the stronger buoyancy forces. 

For Lp = 0.5, as the partition lengths increase, four 
equal vortexes appear with tow little ones near the extreme 
partitions for α = 0°. For α = 60° and 90° the flow become 
disordered. For Lp = 0.8, we notice there is a symmetry at 
low inclination angles, the vortexes have the same size and 
the partitions effect. For α = 90° the flow turns around the x-
axis. Due to the small distance between the walls and 
partitions, rectangular shaped cells are formed at the bottom 
and the top of the enclosure for the cases of Lp = 0.5 and 0.8 
even for α = 90°. The increase of Lp at a fixed angle tends to 
put the flow in an organized behavior. 

Average Nusselt number versus Rayleigh numbers has 
been illustrated for different inclination angles for a fixed 

Length partitions in fig. 7. Nusselt number increases with the 
Rayleigh number for all inclinations, which is due to the 
increase of the buoyancy forces at higher Rayleigh numbers.  

At low Rayleigh numbers, the average Nusselt number 
seems not to change significantly with the inclination angle 
which is due to the conduction dominated mechanism at low 
Rayleigh number. At high Rayleigh numbers, the inclination 
effect is more evident, Nusselt number is more pronounced 
and the maximum occurs at α = 90°. 
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Figure 7. verage Nusselt number versus Rayleigh numbers 
for different inclination angles, for partitions lengths : (a): Lp 

= 0.2 ; (b): Lp = 0.5 ; (c): Lp = 0.8 
 

By considering the application of partitions, we conclude 
that Nusselt number does not change significantly with the 
length partitions; when studying this evaluation at a given 
inclination angle and Rayleigh number, the results affirm this 
last conclusion; indeed, for α = 90° for example Nu increases 
at Lp = 0.5 then decreases when increasing Lp again to 0.8 
but, for α = 30°, Nu decrease when Lp pass from 0.2 to 0.5 
and then increase at Lp = 0.8; for Ra 104 at 0° and 60°, Nu 
deceases with the increase of Lp. This variation of the 
average Nusselt number with the length partitions is so weak, 
Nusselt number remains approximately constant.  
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On figure 8, the local entropy generation for different 
Rayleigh numbers and inclination angles is depicted. 
Partition lengths were fixed at Lp = 0.5 and the cut plan is 
fixed at z = 0.5. Results show that the entropy generation 
increases with Rayleigh number; it is localized near the walls 
and mostly located at the right side of the bottom hot wall 
and around the fins boundary especially for high Rayleigh 
numbers. At α = 90°, the entropy is concentrated around the 
bottom side of the partitions for Ra=103 and 104, but for high 
Rayleigh number, it is located, in addition of the partitions 
walls, near the active walls. Figure 9 presents the evolution 
of the total entropy generation versus the Rayleigh number 
for every inclination angle at Lp = 0.2. 

It can be observed that the total entropy generation 
increases as function of Rayleigh number. At low Rayleigh 
numbers, the variation of total entropy does not vary much as 
the conduction mechanism dominates and the temperature 
gradient and the flow field are so weak; but the for high 
Rayleigh numbers, the increase of the total entropy 
generation is more evident which can be explained by the 
increase of the fluid flow and the temperature gradient.  

We notice that for Lp = 0.2, the total entropy generation 
don't vary much with the inclination at low Rayleigh 
numbers, but for high Rayleigh numbers a small variation is 
observed;  
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Figure 8. Variation of local entropy generation for Lp = 
0.5 at z = 0.5 for different Rayleigh numbers and inclination 

angles 
 

As illustration figure 10 presents variation of thermal and 
viscous entropy generations for Lp = 0.2 and Lp = 0.8 and 
fixed inclination (α = 30°). This figure shows that for a low 
Rayleigh number, the entropy generation due to the fluid 
friction irreversibility Sfr is negligible and the entropy 
generations due to heat transfer Sth is more important and 
almost equal to the total generated entropy. For high 
Rayleigh number (from Ra = 105),  the generated entropy 
increases and we notice that for Lp = 0.2  the entropy due to 
the fluid friction is higher than the entropy due to heat 

transfer which is absolutely the contrary in the case of Lp = 
0.8 .  

In fact, by the study made for all cases, it turns out that 
for high Rayleigh number (Ra=105) when the inclination 
angle is low (α = 0° and 30°), Sfr is more important than Sth at 
low (Lp = 0.2 and 0.5) but Sth become higher than Sfr at high 
Lp; whereas, for high inclination angles (α = 60° and 90°), Sth 

remains dominant at all the length partitions at all Rayleigh 
numbers. 
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Figure 9. Dimensionless total entropy generation versus 
Rayleigh Numbers for different inclination angle at Lp = 0.2 
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Figure 10. Stot  , Sth , Sfr versus Rayleigh Numbers for 
inclination angle α = 30° and length partitions:  

(a): Lp = 0.2 ; (b): Lp = 0.8 
 
Inclination effect on total entropy generation for different 

partition lengths Rayleigh numbers is displayed on figure 11.  
It can be observed that total entropy vary by different ways. 
The variation is almost decreasing for low Ra and almost 
increasing for higher Ra.  
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Figure 11. Dimensionless total entropy generation versus 
inclination angles for different length partitions at: (a): Ra = 

103; (b): Ra = 104; (c): Ra = 105 

 
 

4. CONCLUSION 

A numerical three-dimensional study of the natural 
convection and entropy generation in an inclined rectangular 
equipped with partitions was presented in this paper. Results 
show that for low Rayleigh numbers, the regime is 
conductive and there is a symmetrical distribution of 
temperature, this symmetry disappear by increasing the 
Rayleigh numbers and the structure become more distorted, 
the 3D character is more pronounced special for low 
partitions lengths. At high partitions lengths, the symmetrical 
distribution tends to reappears even for high Rayleigh 
numbers. 

The average Nusselt number increases with Rayleigh 
numbers for all the inclination angles at all the length 
partitions; the results we find show that for low Rayleigh 
numbers, the average Nusselt number seems not to change 

significantly with the inclination angle but for high Rayleigh 
numbers, the inclination effect is more evident, moreover, the 
Nusselt number does not change significantly with the length 
partitions 

The total entropy generation study shows that it increases 
with the increase of Rayleigh number. At low Rayleigh 
numbers, the variation of total entropy does not vary much 
but, the for high Rayleigh numbers, the increase of the total 
entropy generation is more evident.  

For low Rayleigh number, the entropy generation due to 
the fluid friction irreversibility is negligible whereas the 
entropy generations due to heat transfer is more important 
and almost equal to the total generated entropy; whereas, for 
high Rayleigh number of 105, it turns out that, the entropy 
generation due to the fluid friction is more important for Lp = 
0.2 and 0.5 at little inclination angles ( α = 0° and 30°), but, 
at high Lp the contrary happens; whereas, for high inclination 
angles (α = 60° and 90°),  the entropy generations due to heat 
transfer remains dominant at all the length partitions at all 
Rayleigh numbers.    
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NOMENCLATURE 

 
d       distance between partitions [-]  
D      thermal diffusivity [m2·s-1]  
e       partitions thickness [-] 
g       acceleration due to gravity [m.s-2] 
k       Thermal conductivity [W.m−1.K−1] 
L      characteristic length [m]  
Nu    Nusselt number [-] 
P       pressure [N.m-2]  
Pr     Prandtl number (=ν/D) [-] 

q


     heat flux vector 

Ra Rayleigh number      DLTTg chT  /3  [-] 

Rc     Thermal conductivity ratio [-]  
S       generated entropy [KJ.Kg−1.K−1] 
t        time [s]  

T       temperature [-] 
V      dimensionless velocity vector [-] 
u, v, w  
        velocity components in x, y, z  directions [m .s-1] 
 

Subscripts 

 
C      cold 
f       fluid  
fr     friction, viscous  
gen     generated 
h         hot  
m        average 
n        the direction of n is normal to a given wall  
p         solid  
th        thermal 
tot       total  
x, y, z  Cartesian coordinates 
0          Reference 
 

Greek Symbols 

 
α      inclination angle of the cavity [°] 
βt     thermal bulk expansion coefficient [K-1]  
ΔT    temperature difference [K] 
μ      dynamic viscosity, [kgm-1 s-1] 
ν       kinematic viscosity [m2·s-1] 
ρ      fluid density [kg·m-3] 
ɸ    the irreversibility distribution coefficient ratio 
     vector potential 

     vorticity 

 

Superscript 

 
'dimensional variable 
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