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Homomorphic encryption (HE) schemes became popular cryptographic primitives and very 

useful in variety of security applications. Homomorphic encryption based on coding theory 

have the advantages of faster computations due to the structural properties of the codes 

used. Several schemes are supporting unlimited 𝑀𝑜𝑑 2 addition operations in literature. 

The present paper introduces Reed-Muller (RM) code based 𝑀𝑜𝑑 2  multiplication 

operation thereby making RM code based HE scheme fully homomorphic. The 

representation of the codeword with necessary adaption to support unlimited number of 

𝑀𝑜𝑑 2 multiplication operations is presented along with the scheme first. The correctness 

proof of the homomorphic operations along with experimental evaluation is also presented 

to demonstrate the practical aspects of the proposal. 
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1. INTRODUCTION

Homomorphic encryption is powerful cryptographic tool 

that enables secure computations on the private data. It 

evaluates any function for any operation securely on the 

encrypted data without knowing its corresponding plaintext. 

For original data 𝑝, 𝑐  denotes the ciphertext of the original 

plaintext 𝑝, i.e., 𝑐 = 𝐸𝑘(𝑝). The encryption scheme 𝐸𝑘 is said

to be homomorphic with respect to some set of operations O, 

if, for any operation o ∈ O one can compute 𝐸𝑘(𝑝1 o 𝑝2) from

𝐸𝑘(𝑝1) o 𝐸𝑘(𝑝2).

In 1978, Rivest et al. investigated first design for 

homomorphic encryption scheme [1] and that was broken in 

1987 [2]. Later research was carried on to determine the secure 

schemes which can perform homomorphic encryption 

operations efficiently. In 2009, Craig Gentry’s breakthrough 

work [3] has described theoretical construction of Fully 

Homomorphic encryption scheme. That scheme has become 

popular model as well as the root for other related 

developments of FHE schemes. Based on Gentry’s 

breakthrough work, a number of developments, variations and 

new FHE schemes were proposed. Few of such developments 

and variants are: the FHE scheme based on worst-case 

hardness on lattice problems [4]; Gentry’s scheme with 

reduced key and ciphertexts [5]; FHE scheme with practical 

implementation [6]; FHE based on Learning with Errors over 

Rings [7]; Ring-LWE based FHE [8]; Homomorphic 

encryption based on coding theory [9]; levelled FHE without 

bootstrapping [10]; FHE with fast implementation of 

operations [11]; and Reed-Muller based FHE using post 

processing [12]. Integer based HE scheme [13, 14] 

Homomorphic encryption schemes based on coding theory 

were developed, they support unlimited addition operations 

but multiplication operations with some specified depth [9]. 

Based on the standard theoretical schemes, several 

implementations of FHE are developed [15]. Few of them are 

PALISADE [16], HEAAN [17], FV-NFLib [18], NuFHE [19]. 

FHE with practical time complexities has shown to be very 

beneficial in secure cloud computing, as well as in a variety of 

other applications. Despite the fact that FHE can be useful for 

a wide range of applications, many of them are not currently 

practicable in terms of FHE due to the schemes' practical 

constraints in terms of computational complexity and space 

requirement [15]. 

In this work, an afford is made to develop FHE based on 

coding theory with practical time complexities. The operations 

involved in coding theory are quite simple and straightforward 

to execute, which make to build an efficient homomorphic 

system with low computing complexity and good security. 

In this paper, we present the symmetric key construction of 

RM code based Fully Homomorphic Encryption (RMFHE). 

Reed-Muller codes are error correcting codes. We introduce 

set of artificial errors at certain positions specified by secret 

key to compute the ciphertext and use majority logic decoding 

to recover the message from erroneous codes using secret key. 

To achieve linear homomorphism, the additive and 

multiplicative property is preserved over the set.  

2. NOTATIONS AND DEFINITIONS

In this section we have presented description of all symbols 

and notations used in RMFHE scheme. An integer will be 

expressed as lower case italic letters (for example: 𝑛), 𝔽 be the 

arbitrary field. For an integer 𝑛, [𝑛] will be denoted as set of 

integers [0, 1, 2, … , 𝑛 − 1] . Vector will be denoted as bold 

italic lower case letter 𝒗 ∈ 𝔽2
𝑛 and matrix will be expressed as

sequence of vectors V =  (𝒗𝟏, 𝒗𝟐, … , 𝒗𝒌) ∈ (𝔽2
𝑛)𝑘  and it is

denoted by uppercase letter. Upper case italic letters will 

represent the set of some elements x, y and so on, i.e., I = (x, 

y, …). ℱ𝑒𝑣 denotes any function that evaluates on given input

to produce the output. For example, add function ℱ𝑎𝑑𝑑 ∶
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(x, y) → z, i.e., z = addition(x, y). |𝒗| denotes the Hamming 

weight of the vector 𝒗, i.e., the number of nonzero elements in 

the vector, and 𝑠𝑢𝑝𝑝(𝒗) denote the positions of the non-zero 

elements in the vector. The operator ′ + ′ denote the addition 

𝑀𝑜𝑑 2  operator and ′. ′  denote the multiplication 

𝑀𝑜𝑑 2 operator. 

 

2.1 Expanded RM evaluation codes 

 

In this work, our aim is to develop fully homomorphic 

encryption on the linear codes. The evaluation codes given in 

Frederik Scheme [9] supports unlimited addition operations 

over cipher texts but supports limited multiplication 

operations. To make the scheme fully homomorphic 

encryption scheme, the actual RM codes are represented in 

expanded form with slight modification to the codeword 

representation. Hence, it is called Expanded RM evaluation 

codes. 

 

Definition 1. RM codeword matrix: 

If there is a 𝑘 - dimensional linear subspace 𝒞 of 𝔽2
𝑛, which 

has a minimum hamming distance of 𝑑 , then for (𝑘 < 𝑛) , 

[𝑛, 𝑘, 𝑑]  represents a linear code. In the construction of 

RMFHE scheme, codeword and erroneous codewords are not 

exactly taken as given in def. 1 of Frederik’s scheme [9]. RM 

code 𝒞 is a set of codeword matrices {W1, W2, W3, … } where 

W𝑖  ∈  (𝔽2
𝑛)𝑘  is defined as 𝒎𝑖 × G𝑟𝑚 , where 𝒎𝑖  ∈ 𝔽2

𝑘  is the 

message and G𝑟𝑚 ∈ (𝔽2
𝑛)𝑘 is a generator matrix for given 

Reed-Muller input parameters (𝑟, 𝑚) for 𝑖 = 1,2,3, …. 

To hold true for additive property over 𝒞, for codewords 

W1, W2 ∈ 𝒞, W1 + W2 ∈ 𝒞. We call the codeword matrix W ∈
𝒞 is an error free codeword and W ∈ (𝔽2

𝑛)𝑘\𝒞 are erroneous 

codeword. Erroneous codewords are defined as W + E where 

E ∈ (𝔽2
𝑛)𝑘\0 called as error matrix. Error matrix E ∈ (𝔽2

𝑛)𝑘 

can be taken as set of error vectors {𝒆1, 𝒆2, … } where 𝒆𝑖 ∈ 𝔽2
𝑛 

for all 𝑖 = 1,2,3, …. Each Erroneous codewords has some good 

locations and bad locations. The bad locations are the positions 

of error occurrences, and are specified by 𝑠𝑢𝑝𝑝(𝒆)  and 

remaining error free positions are known as good locations, i.e., 
[𝑛]\𝑠𝑢𝑝𝑝(𝒆) . For a subset I⊂[n], we define 𝒞(𝐼) = {W +
E|W ∈ 𝒞  and E ∈ (𝔽2

𝑛)𝑘  for each vector 𝒆 ∈ E, 𝑠𝑢𝑝𝑝(𝒆) ⊆
[𝑛]\𝐼}. This is called set of erroneous codeword matrices.   

 

Definition 2. Computing original RM codeword from 

expanded codeword: 

We define a step to compute the RM codeword 𝒘 ∈ 𝔽2
𝑛 

from the codeword matrix W  ∈  𝒞 . As W  is sequence of 

vectors 𝒘1 , 𝒘2, 𝒘3, … , 𝒘𝑘 ; W = (𝒘1, 𝒘2, 𝒘3, … , 𝒘𝑘) ∈
(𝔽2

𝑛)𝑘 then adding of all vectors will result the RM codeword 

corresponding to RM codeword matrix i.e., 𝒘 = 𝒘1 + 𝒘2 +
𝒘3 + ⋯ + 𝒘𝑘 . These codewords are now similar to the 

original RM codeword where we can directly apply the 

decoding algorithm to recover its original plaintext. Decoding 

of plaintext message from erroneous codewords using 

majority logic is now similar to the Frederik’s scheme [9]. 

 

Definition 3: Permutation function: 

We define a function 𝜎𝑠: (𝔽2
𝑛)𝑘 → (𝔽2

𝑛)𝑘 for permuting the 

elements of matrix V ∈ (𝔽2
𝑛)𝑘 specified by the permutation 

key 𝑆  where 𝑆 ∈ (𝔽(𝑥,𝑦)
𝑛 )

𝑘
 is denoted as matrix of shuffled 

indices of (𝑥, 𝑦). For example, the permutation on vector V1 

results to V2 . That is given as V2 ← 𝜎𝑠(V1)  where V1, V2 ∈

(𝔽2
𝑛)𝑘  and V2(𝑖, 𝑗) = V1(𝑖′, 𝑗′)  for all indices 𝑖 =

0, 1,2, … , 𝑘 − 1 and 𝑗 = 0, 1, 2, … , 𝑛 − 1 and (𝑖′, 𝑗′) = 𝑆[𝑖, 𝑗]. 
 

Definition 4: Addition and multiplication operations: 

We define the addition (+)  and multiplication ( . ) 

operations on the vector/matrix as the component wise 𝑀𝑜𝑑 2 

addition and 𝑀𝑜𝑑 2 multiplication respectively over finite 

fields GF(2). 

 

 

3. IDEA OF THE PROPOSED SCHEME 

 

An abstract level description of the RMFHE scheme and the 

design principles of scheme are presented. The proposed 

scheme constructs Fully Homomorphic encryption scheme 

based on coding theory. Several works [20-24] have studied 

and presented on construction of encryption schemes based on 

coding theory. As depicted in the Figure 1, the basic idea is to 

get a codeword 𝒘   𝔽2
𝑛 using encoding technique for a given 

plaintext 𝒎   𝔽2
𝑘 . Then embedding artificial errors into 

codeword 𝒘 to get the ciphertext 𝒄. Using the secret key, the 

erroneous positions are identified which makes the decryption 

easy. However, decryption for an attacker with unknown error 

positions (secret key) is supposedly as hard as decoding a 

random code.  

The proposed scheme is an extension and variant of the 

scheme proposed by Kiayias et al. [20, 25, 26] and Armknecht 

et al. [9]. Encryption works in three steps: (i) at first, encoding 

over a plaintext produces a codeword (error-free) and (ii) then, 

some random errors at fixed positions, given by the secret key, 

are embedded in the codeword to get an erroneous codeword 

(iii) then, apply a fixed permutation on the erroneous 

codeword specified by a secret pattern to provide additional 

security. Similar to the scheme presented elsewhere [9], 

proposed scheme makes use of the concept of linear codes and 

it also maintains codeword synchronization.  

Due to symmetric key, the erroneous positions as well as 

good positions repeat for each encryption, and component-

wise operations over the ciphertexts also preserves the good 

positions and thus satisfies the homomorphic property. 

The proposed FHE scheme is designed based on the Reed-

Muller coding. Reed-Muller code (RM Code) is [𝑛, 𝑘, 𝑑] 
linear code and popular error correcting code. According to 

Reed-Muller coding [27-29], every message 𝒎 ∈ 𝔽2
𝑘  is 

mapped to codeword 𝒘 ∈ 𝔽2
𝑛 i.e. 𝒘=encode(𝒎) using 𝑮𝒓𝒎 ∈

(𝔽2
𝑛)𝑘 , where 𝑮𝒓𝒎  is a generator matrix of size 𝑘 × 𝑛. RM 

code has capability to auto correct the errors at the time of 

decoding when the number of errors in the received codeword 

is less than 𝑑/2. Decoding using majority logic recover the 

message 𝒎 from the received erroneous codeword 𝒘' i.e., 𝒎 

= decode (𝒘') when number of errors in 𝒘' is less than 𝑑/2. 

Several researches [26, 30] stated that RM codes are best 

suitable as cryptographic primitives in security systems. The 

RMFHE scheme in principle follows the idea of adding 

artificial errors at the fixed position in the codeword specified 

by secret key (between 𝑑/2 to d positions) yield to give an 

erroneous codeword w' as ciphertext. Decoding of this 

erroneous codeword using secret key permit to produce the 

plaintext message uniquely. When an addition operation  is 

applied on two ciphertexts, decoding of the resultant ciphertext 

again permit to produce plaintext which is equal to the result 

of addition on the original plaintexts. That means it holds true 

for additively homomorphic property. But this approach does 

not necessarily satisfy multiplicatively homomorphic 
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encryption. Hence, to get multiplicative homomorphic 

encryption, we consider the RM codeword in expanded form 

(matrix form) and is denoted as W ∈ (𝔽2
𝑛)𝑘  instead of 

codeword vector 𝒘𝔽2
𝑛 . The proposed RMFHE with 

encryption and decryption is presented in the Figure 2. 

 

 

 
 

Figure 1. Basic idea of coding theory based encryption 

 

 
m-Plaintext; Grm-Generator Matrix; W-Codeword matrix; W'-Erroneous codeword matrix;  

E-Error Matrix; C-Ciphertext; w'-Erroneous codeword 

 

Figure 2. Proposed RMFHE scheme 

 

 

4. RMFHE SCHEME 

 

Present section provides a formal description of 

constructing the RMFHE scheme. The scheme is symmetric 

key fully homomorphic construction. This scheme is 

composed of four functions- Setup, Encryption, Decryption 

and Evaluation. Each function of the scheme is described is as 

follows:  

Choose the initial RM parameters 𝑟, 𝑚  where 𝑚 ≥ 2 and 

0 < 𝑟 ≤ 𝑚. 

 

Setup: 𝐾 ← 𝑆𝑒𝑡𝑢𝑝(𝑟, 𝑚) 

Setup function take the initial RM parameters (𝑟, 𝑚)  as 

input and compute the secretkey 𝐾 = (𝑆1, 𝑆2) as an output. 

The setup algorithm chooses a key 𝑆1  for representing the 

error positions in the codeword and another key 𝑆2  as 

permutation key depending on the other parameters; length of 

the codeword 𝑛, dimension 𝑘 and hamming distance 𝑑 of RM 

code.  

The algorithm for Setup is given as follows:  

1. Given 𝑟, 𝑚 , the RM code computes 

 

𝑘 = 1 + [
𝑚
1

] + [
𝑚
2

] + [
𝑚
3

] + ⋯ + [
𝑚
3

] 

𝑛 = 2𝑚 and 𝑑 = 2𝑚−1 

 

2. Choose 𝑆1 ⊂ [𝑛], set of error locations of length between 

d/2 and 𝑑. 

3. Choose the permutation key 𝑆2 of 𝑘 × 𝑛 matrix. 

4. Output the secretkey 𝐾 = (𝑆1, 𝑆2). 

 

Encryption: C ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐾, 𝒎) 

An encryption function ℱ𝐸𝑛𝑐𝑟𝑦𝑝𝑡: 𝔽2
𝑘 × 𝐾 → (𝔽2

𝑛)𝑘  gets a 

plaintext 𝒎 ∈ 𝔽2
𝑘  and a secretkey 𝐾 = (𝑆1, 𝑆2)  as inputs. 

Encryption function transforms the plaintext 𝒎  into a 

ciphertext matrix C ∈ (𝔽2
𝑛)𝑘. First, it encodes the plaintext 𝒎 

into a codeword matrix W ∈ 𝒞  using generator matrix G𝑟𝑚 . 

Then it samples a random error matrix E𝑆𝟏
∈ (𝔽2

𝑛)𝑘\0 for each 

vector 𝒆 ∈ E𝑆1
, 𝑠𝑢𝑝𝑝(𝒆) ⊆ 𝑆1  to produce the erroneous 

codeword matrix W′ = W + E𝑆1
 where W′ ∈ 𝒞(𝑆1). Finally, 

the permutation function 𝜎𝑆2
is applied on W′  to get the 

ciphertext C  using the permutation key 𝑆2 . The ciphertext 

matrix C  is the output of the encryption function. Given a 

message plaintext vector 𝒎 ∈ 𝔽2
𝑘  as an input to encryption 

algorithm, it computes the ciphertext C as follows:  

 

𝐶 = 𝜎𝑆2
(𝒎 × 𝐺𝑟𝑚 + 𝐸𝑆𝟏

) 

 

Decryption: 𝒎 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐾, C) 

The inputs to decryption function ℱ𝐷𝑒𝑐𝑟𝑦𝑝𝑡: (𝔽2
𝑛)𝑘 × 𝐾 →

𝔽2
𝑘 are ciphertext matrix C ∈ (𝔽2

𝑛)𝑘  and secret key 𝐾 =
(𝑆1, 𝑆2) . Decryption function first computes the erroneous 

codeword matrix W′ ∈ (𝔽2
𝑛)𝑘  using inverse permutation 

function 𝜎′with permutation key 𝑆2 . Then, it computes the 

RM codeword 𝒘′ ∈  𝔽2
𝑛 from the erroneous codeword matrix 

W' by adding all its rows as given in Definition. 2 of Section 

2. Since the codeword matrix is erroneous, the computed 

codeword is also erroneous. Then the erroneous codeword 

𝒘′ can be decoded to recover the plaintext 𝒎 ∈ 𝔽2
𝑘 by using 

majority logic decoding with known error positions specified 

by 𝑆1 . Given a ciphertext matrix C  as an input to the 

decryption algorithm, it computes the plaintext vector 𝒎 as 

follows: 

1. Compute Codeword matrix W′ from C using inverse 

permutation function 𝜎𝑆2
′  

 

W′ = 𝜎𝑆2
′ (C)  

 

2. Compute the RM codeword 𝒘′ ∈ 𝔽2
𝑛  from codeword 

matrix W′ 
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3. Extract the plaintext vector 𝒎  from the codeword 𝒘′ 

using majority logic decoding function 

 

𝒎 = 𝐷𝑒𝑐𝑜𝑑𝑒(𝑆1, 𝒘′) 

 

Addition: C3 ← 𝐴𝑑𝑑(C1, C2) 

Addition function ℱ𝐴𝑑𝑑: (𝔽2
𝑛)𝑘 + (𝔽2

𝑛)𝑘 → (𝔽2
𝑛)𝑘  gets two 

ciphertexts C1, C2 ∈ (𝔽2
𝑛)𝑘  as input where C1 and C2  are 

encryption of plaintext vectors 𝒎𝟏  and 𝒎𝟐. An encryption of 

sum of corresponding underlying plaintexts (𝒎𝟏 + 𝒎𝟐), as a 

ciphertext C3 ∈ (𝔽2
𝑛)𝑘 is generated. The addition operation on 

the two ciphertexts is given as follows: 

 

C3 = {C1 + C2|C1(𝑖, 𝑗) + C2(𝑖, 𝑗) ∀𝑖 = 0, 1, 2, … , 𝑘 − 1 

∀𝑗 = 0, 1, 2, … , 𝑛 − 1} 

 

Multiplication: C3  ← 𝑀𝑢𝑙(C1, C2) 

Multiplication function ℱ𝑀𝑢𝑙: (𝔽2
𝑛)𝑘. (𝔽2

𝑛)𝑘 →  (𝔽2
𝑛)𝑘  gets 

two ciphertexts C1, C2 ∈ (𝔽2
𝑛)𝑘  as input and computes the 

product of corresponding underlying plaintexts as a ciphertext 

C3 ∈ (𝔽2
𝑛)𝑘. The multiplication operation on the two ciphers 

texts is given as follows: 

 

C3 = {C1. C2|C1(𝑖, 𝑗). C2(𝑖, 𝑗) ∀𝑖 = 0, 1, 2, … , 𝑘 − 1  

∀𝑗 = 0, 1, 2, … , 𝑛 − 1} 

 

 

5. CORRECTNESS PROOF OF THE PROPOSED 

RMFHE SCHEME 

 

Proposition 1:  

The scheme is correct for encryption, decryption, addition 

and multiplication operations. 

 

Theorem 1: 

The scheme proposed above is correct with respect to fresh 

cipher text as well as homomorphic operations addition 𝑀𝑜𝑑 2 

and multiplication 𝑀𝑜𝑑 2 over finite fields GF(2) as defined. 

(Bitwise AND and XOR Gentry circuit based unlimited 

operations supported). 

 

Proof:  

Decryption is implemented simply based on majority logic 

based RM decoder. When errors are within the limit between 

𝑑/2 and 𝑑, decoding works correct only with the known error 

positions.  

Let C be the ciphertext corresponding to the plaintext vector 

𝒎. Decryption algorithm deciphers the plaintext 𝒎 by using 

two step technique to eliminate the masks on the plaintext. In 

the first step, it removes the permutation mask using secretkey 

𝑆2. In the second step, it extracts the plaintext vector 𝒎 using 

RM error correction decoding with known error positions in 

the erroneous codeword specified by secretkey S1. 

Deciphering process by eliminating the masks is illustrated as 

follows 
 

𝒎 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑆1, 𝜎𝑆2
′ (C)) 

=> 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑆1, 𝜎𝑆2
′ (𝜎𝑆2

(𝒎 × G𝑟𝑚 + E𝑆1
))) 

=> 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑆1, 𝜎𝑆2
′ (𝜎𝑆2

(W + E𝑆1
)))  

(1) 

 

where, W=m×Grm. 

Inverse permutation operation using key 𝑆2 will remove the 

permutation mask and then Eq. (1) can now be 

=> 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑆1, W + E𝑆1
) 

 

The majority logic decoding of erroneous codeword using 

secret key 𝑆1  will eliminate the error mask and extract the 

plaintext vector 𝒎  as output. Hence, the correctness of 

decryption of fresh ciphertext is proved. Similarly, correctness 

of decryption can be proved for addition and multiplication 

operations over ciphertexts as given below: 

Let C1 and C2  be the ciphertexts corresponding to two 

plaintexts 𝒎𝟏  and 𝒎𝟐 . The homomorphic addition on C1and 

C2 will produce C3 i.e., C3 =  C1 + C2. The decryption of the 

resultant cipher deciphers the sum of two plaintext vectors. 

The correctness of homomorphic addition operation is proved 

as follows: 

 

C3 = C1 + C2 

=> 𝜎𝑆2
(𝒎𝟏 × G𝑟𝑚 + E𝑆1

) + 𝜎𝑆2
(𝒎𝟐 × G𝑟𝑚 + E𝑆1

) 

=> 𝜎𝑆2
(𝒎𝟏 × G𝑟𝑚 + E𝑆1

+ 𝒎𝟐 × G𝑟𝑚 + E𝑆1
) 

=> 𝜎𝑆2
(𝒎𝟏 × G𝑟𝑚 + 𝒎𝟐 × G𝑟𝑚 + E𝑆1

+ E𝑆1
) 

 

Since E𝑆1
+ E𝑆1

 will generate another error matrix E𝑆1
′ with 

random bits at the positions specified by 𝑆1 and remaining bits 

will become 0s. 

 

=> 𝜎𝑆2
((𝒎𝟏 + 𝒎𝟐) × G𝑟𝑚 + E𝑆1

′ ) 

C3 = 𝜎𝑆2
((𝒎𝟏 + 𝒎𝟐) × G𝑟𝑚 + E𝑆1

′  

 

Decryption of the result cipher C3 will result 𝒎𝟑 = 𝒎𝟏 +
𝒎𝟐. Hence, homomorphic addition operation is proved. 

Finally, for homomorphic multiplication operation.  

Let C1 and C2  be the ciphertexts corresponding to two 

plaintexts 𝒎𝟏  and 𝒎𝟐 . The homomorphic multiplication on 

C1and C2 will produce C3 i.e., C3 = C1. C2. The decryption of 

the resultant cipher deciphers the product of two plaintext 

vectors. The correctness of homomorphic multiplication 

operation is proved as follows: 

 

C3 = C1. C2 

=> 𝜎𝑆2
(𝒎𝟏 × G𝑟𝑚 + E𝑆1

). 𝜎𝑆2
(𝒎𝟐 × G𝑟𝑚 + E𝑆1

) 

=> 𝜎𝑆2
(W1 + E𝑆1

). 𝜎𝑆2
(W2 + E𝑆1

) 

=> 𝜎𝑆2
((W1 + E𝑆1

). (W2 + E𝑆1
)) 

=> 𝜎𝑆2
(W1. W2 + W1. E𝑆1

+ W2. E𝑆1
+ E𝑆1

. E𝑆1
) 

=> 𝜎𝑆2
(W1. W2 + E𝑆1

′ ) 

 

Since W1. E𝑆1
+ W2. E𝑆1

+ E𝑆1
. E𝑆1

will generate another 

error matrix E𝑆1
′  with random bits at the positions specified by 

𝑆1 and remaining bits will become 0s. 

 

=> 𝜎𝑆2
((𝒎𝟏. 𝒎𝟐) × G𝑟𝑚 + E𝑆1

′ ) 

C3 = 𝜎𝑆2
((𝒎𝟏. 𝒎𝟐) × G𝑟𝑚 + E𝑆1

′ ) 

 

Decryption of the result cipher C3 will result 𝒎𝟑 = 𝒎𝟏. 𝒎𝟐. 

Hence, homomorphic multiplication operation is proved. 

 

 

6. EXPERIMENTAL EVALUATION 

 

The proposed RM FHE scheme is implemented in JAVA 

platform to execute all the functions of the scheme: Encryption, 

Decryption, Homomorphic operations. The program was run 

on the system with basic configurations: Intel(R) Core(TM) 
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i5-3230M CPU 2.60 GHz and 4GB RAM, in Windows 10 

Professional 64-bit Operating system environment. The 

experimental evaluation is conducted to measure the practical 

time required for every function of the proposed scheme for 

different parameter values. The implementation of the scheme 

for various levels of security is obtained. The values of the 

various parameters corresponding to the different security 

levels (Toy, small, Medium and Large) is explored and 

presented in the Table 1. The time required for the functions 

and operations at different security levels is also obtained and 

presented in Table 2. The space required to store the secret key 

(key1 and key2) and ciphertext is presented in Table 3. 

The execution results shown that the scheme is quite simple 

for implementation. Given novelty of the scheme, we consider 

the results are quite promising at the different security levels. 

Comparative to the other coding theory based homomorphic 

schemes (Fredrik’s Scheme [9]), the scheme supports 

unlimited addition and multiplication operations over 

ciphertext with reasonable time effort. The time for decryption 

and size of the ciphertext is high compared to other similar 

schemes. However, it is considered that the decryption is 

required only at the end when the user decrypt ciphertext after 

performing all required homomorphic operations by the third 

party. Hence, there is no much effect of the decryption time on 

the efficiency of the scheme. Over all the practical 

implementation of our scheme is possible for FHE with high 

efficiency, compared to the other schemes based on Lattice 

cryptography [16], CKKS [17]. RLWE [18].

 

Table 1. Parameter values at different levels 

 
Level of 

Security 

(r,m) Codeword length 

n 

Codeword dimension 

k 

Minimum distance 

d 

Auto error correcting capability 

𝒅𝒎𝒊𝒏 

Toy (1,3) 8 4 4 1 

Small (1,5) 32 6 16 7 

Medium (1,8) 256 8 128 63 

Large (1,11) 2048 12 1024 511 

Very Large (1,15) 32768 16 16384 8191 

 

Table 2. Practical performance of the scheme at different security levels 

 
 Encryption (in Sec) Decryption (in Sec) Addition (in Sec) Multiplication (in Sec) 

Toy 0.000019110 0.00010892 0.00000382 0.00000299 

Small 0.00016293 0.00203898 0.00001671 0.00001939 

Medium 0.000204300 0.26720770 0.000216690 0.000172310 

Large 0.010767670 4.822113740 0.000069260 0.000147250 

Very Large 6.046015519 36879 0.000889150 0.003025590 

 

Table 3. Space requirement of Key and Ciphertext at different security level 

 
 Size of 𝑺𝟏 (in KBytes) Size of 𝑺𝟐 (in KBytes) Length of C (in bits) Size of C (in KBytes) 

Toy < 1 < 1 32 < 1 

Small < 1 < 1 192 < 1 

Medium < 1 17 2304 < 1 

Large 14 75 24576 16 

Very Large  34 1662 5,24,288 98 

 

 

7. CONCLUSIONS 

 

In this paper an efficient variation of Fredrik’s scheme [9] 

is presented with correctness proof and experimental 

evaluation. To achieve multiplicative homomorphism, Reed-

Muller code has been represented and considered in an 

expanded form (matrix form), i.e., (𝔽2
𝑛)𝑘  instead of 𝔽2

𝑛. The 

scheme supports unlimited 𝑀𝑜𝑑 2 addition and multiplication 

operations over ciphertexts without refreshing operation. The 

experimental evaluation of the scheme is performed at 

different levels of security and the results shown that 

implementation of our scheme is really practical with high 

efficiency as compared to other practical implementations of 

FHE schemes such as schemes based on RLWE, Lattice 

cryptography, CKKS, in terms of simple and easy operations 

involved in the scheme. 
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