
Towards the Construction of Reed-Muller Code Based Symmetric Key FHE

Ratnakumari Challa1*, VijayaKumari Gunta2

1 Computer Science and Engineering, RGUKT-RK Valley, IIIT-AP, Kadapa 516330, Andhra Pradesh, India
2 Computer Science and Engineering, JNTUH, Hyderabad, Telangana 500085, India

Corresponding Author Email: ratnamala3784@gmail.com

https://doi.org/10.18280/isi.260609 ABSTRACT

Received: 15 October 2021

Accepted: 3 December 2021

Homomorphic encryption (HE) schemes became popular cryptographic primitives and very

useful in variety of security applications. Homomorphic encryption based on coding theory

have the advantages of faster computations due to the structural properties of the codes

used. Several schemes are supporting unlimited 𝑀𝑜𝑑 2 addition operations in literature.

The present paper introduces Reed-Muller (RM) code based 𝑀𝑜𝑑 2 multiplication

operation thereby making RM code based HE scheme fully homomorphic. The

representation of the codeword with necessary adaption to support unlimited number of

𝑀𝑜𝑑 2 multiplication operations is presented along with the scheme first. The correctness

proof of the homomorphic operations along with experimental evaluation is also presented

to demonstrate the practical aspects of the proposal.

Keywords:

reed-muller code, coding theory, erroneous

codewords, permutation, majority logic

decoding

1. INTRODUCTION

Homomorphic encryption is powerful cryptographic tool

that enables secure computations on the private data. It

evaluates any function for any operation securely on the

encrypted data without knowing its corresponding plaintext.

For original data 𝑝, 𝑐 denotes the ciphertext of the original

plaintext 𝑝, i.e., 𝑐 = 𝐸𝑘(𝑝). The encryption scheme 𝐸𝑘 is said

to be homomorphic with respect to some set of operations O,

if, for any operation o ∈ O one can compute 𝐸𝑘(𝑝1 o 𝑝2) from

𝐸𝑘(𝑝1) o 𝐸𝑘(𝑝2).

In 1978, Rivest et al. investigated first design for

homomorphic encryption scheme [1] and that was broken in

1987 [2]. Later research was carried on to determine the secure

schemes which can perform homomorphic encryption

operations efficiently. In 2009, Craig Gentry’s breakthrough

work [3] has described theoretical construction of Fully

Homomorphic encryption scheme. That scheme has become

popular model as well as the root for other related

developments of FHE schemes. Based on Gentry’s

breakthrough work, a number of developments, variations and

new FHE schemes were proposed. Few of such developments

and variants are: the FHE scheme based on worst-case

hardness on lattice problems [4]; Gentry’s scheme with

reduced key and ciphertexts [5]; FHE scheme with practical

implementation [6]; FHE based on Learning with Errors over

Rings [7]; Ring-LWE based FHE [8]; Homomorphic

encryption based on coding theory [9]; levelled FHE without

bootstrapping [10]; FHE with fast implementation of

operations [11]; and Reed-Muller based FHE using post

processing [12]. Integer based HE scheme [13, 14]

Homomorphic encryption schemes based on coding theory

were developed, they support unlimited addition operations

but multiplication operations with some specified depth [9].

Based on the standard theoretical schemes, several

implementations of FHE are developed [15]. Few of them are

PALISADE [16], HEAAN [17], FV-NFLib [18], NuFHE [19].

FHE with practical time complexities has shown to be very

beneficial in secure cloud computing, as well as in a variety of

other applications. Despite the fact that FHE can be useful for

a wide range of applications, many of them are not currently

practicable in terms of FHE due to the schemes' practical

constraints in terms of computational complexity and space

requirement [15].

In this work, an afford is made to develop FHE based on

coding theory with practical time complexities. The operations

involved in coding theory are quite simple and straightforward

to execute, which make to build an efficient homomorphic

system with low computing complexity and good security.

In this paper, we present the symmetric key construction of

RM code based Fully Homomorphic Encryption (RMFHE).

Reed-Muller codes are error correcting codes. We introduce

set of artificial errors at certain positions specified by secret

key to compute the ciphertext and use majority logic decoding

to recover the message from erroneous codes using secret key.

To achieve linear homomorphism, the additive and

multiplicative property is preserved over the set.

2. NOTATIONS AND DEFINITIONS

In this section we have presented description of all symbols

and notations used in RMFHE scheme. An integer will be

expressed as lower case italic letters (for example: 𝑛), 𝔽 be the

arbitrary field. For an integer 𝑛, [𝑛] will be denoted as set of

integers [0, 1, 2, … , 𝑛 − 1] . Vector will be denoted as bold

italic lower case letter 𝒗 ∈ 𝔽2
𝑛 and matrix will be expressed as

sequence of vectors V = (𝒗𝟏, 𝒗𝟐, … , 𝒗𝒌) ∈ (𝔽2
𝑛)𝑘 and it is

denoted by uppercase letter. Upper case italic letters will

represent the set of some elements x, y and so on, i.e., I = (x,

y, …). ℱ𝑒𝑣 denotes any function that evaluates on given input

to produce the output. For example, add function ℱ𝑎𝑑𝑑 ∶

Ingénierie des Systèmes d’Information
Vol. 26, No. 6, December, 2021, pp. 585-590

Journal homepage: http://iieta.org/journals/isi

585

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260609&domain=pdf

(x, y) → z, i.e., z = addition(x, y). |𝒗| denotes the Hamming

weight of the vector 𝒗, i.e., the number of nonzero elements in

the vector, and 𝑠𝑢𝑝𝑝(𝒗) denote the positions of the non-zero

elements in the vector. The operator ′ + ′ denote the addition

𝑀𝑜𝑑 2 operator and ′. ′ denote the multiplication

𝑀𝑜𝑑 2 operator.

2.1 Expanded RM evaluation codes

In this work, our aim is to develop fully homomorphic

encryption on the linear codes. The evaluation codes given in

Frederik Scheme [9] supports unlimited addition operations

over cipher texts but supports limited multiplication

operations. To make the scheme fully homomorphic

encryption scheme, the actual RM codes are represented in

expanded form with slight modification to the codeword

representation. Hence, it is called Expanded RM evaluation

codes.

Definition 1. RM codeword matrix:

If there is a 𝑘 - dimensional linear subspace 𝒞 of 𝔽2
𝑛, which

has a minimum hamming distance of 𝑑 , then for (𝑘 < 𝑛) ,

[𝑛, 𝑘, 𝑑] represents a linear code. In the construction of

RMFHE scheme, codeword and erroneous codewords are not

exactly taken as given in def. 1 of Frederik’s scheme [9]. RM

code 𝒞 is a set of codeword matrices {W1, W2, W3, … } where

W𝑖 ∈ (𝔽2
𝑛)𝑘 is defined as 𝒎𝑖 × G𝑟𝑚 , where 𝒎𝑖 ∈ 𝔽2

𝑘 is the

message and G𝑟𝑚 ∈ (𝔽2
𝑛)𝑘 is a generator matrix for given

Reed-Muller input parameters (𝑟, 𝑚) for 𝑖 = 1,2,3, ….

To hold true for additive property over 𝒞, for codewords

W1, W2 ∈ 𝒞, W1 + W2 ∈ 𝒞. We call the codeword matrix W ∈
𝒞 is an error free codeword and W ∈ (𝔽2

𝑛)𝑘\𝒞 are erroneous

codeword. Erroneous codewords are defined as W + E where

E ∈ (𝔽2
𝑛)𝑘\0 called as error matrix. Error matrix E ∈ (𝔽2

𝑛)𝑘

can be taken as set of error vectors {𝒆1, 𝒆2, … } where 𝒆𝑖 ∈ 𝔽2
𝑛

for all 𝑖 = 1,2,3, …. Each Erroneous codewords has some good

locations and bad locations. The bad locations are the positions

of error occurrences, and are specified by 𝑠𝑢𝑝𝑝(𝒆) and

remaining error free positions are known as good locations, i.e.,
[𝑛]\𝑠𝑢𝑝𝑝(𝒆) . For a subset I⊂[n], we define 𝒞(𝐼) = {W +
E|W ∈ 𝒞 and E ∈ (𝔽2

𝑛)𝑘 for each vector 𝒆 ∈ E, 𝑠𝑢𝑝𝑝(𝒆) ⊆
[𝑛]\𝐼}. This is called set of erroneous codeword matrices.

Definition 2. Computing original RM codeword from

expanded codeword:

We define a step to compute the RM codeword 𝒘 ∈ 𝔽2
𝑛

from the codeword matrix W ∈ 𝒞 . As W is sequence of

vectors 𝒘1 , 𝒘2, 𝒘3, … , 𝒘𝑘 ; W = (𝒘1, 𝒘2, 𝒘3, … , 𝒘𝑘) ∈
(𝔽2

𝑛)𝑘 then adding of all vectors will result the RM codeword

corresponding to RM codeword matrix i.e., 𝒘 = 𝒘1 + 𝒘2 +
𝒘3 + ⋯ + 𝒘𝑘 . These codewords are now similar to the

original RM codeword where we can directly apply the

decoding algorithm to recover its original plaintext. Decoding

of plaintext message from erroneous codewords using

majority logic is now similar to the Frederik’s scheme [9].

Definition 3: Permutation function:

We define a function 𝜎𝑠: (𝔽2
𝑛)𝑘 → (𝔽2

𝑛)𝑘 for permuting the

elements of matrix V ∈ (𝔽2
𝑛)𝑘 specified by the permutation

key 𝑆 where 𝑆 ∈ (𝔽(𝑥,𝑦)
𝑛)

𝑘
 is denoted as matrix of shuffled

indices of (𝑥, 𝑦). For example, the permutation on vector V1

results to V2 . That is given as V2 ← 𝜎𝑠(V1) where V1, V2 ∈

(𝔽2
𝑛)𝑘 and V2(𝑖, 𝑗) = V1(𝑖′, 𝑗′) for all indices 𝑖 =

0, 1,2, … , 𝑘 − 1 and 𝑗 = 0, 1, 2, … , 𝑛 − 1 and (𝑖′, 𝑗′) = 𝑆[𝑖, 𝑗].

Definition 4: Addition and multiplication operations:

We define the addition (+) and multiplication (.)

operations on the vector/matrix as the component wise 𝑀𝑜𝑑 2

addition and 𝑀𝑜𝑑 2 multiplication respectively over finite

fields GF(2).

3. IDEA OF THE PROPOSED SCHEME

An abstract level description of the RMFHE scheme and the

design principles of scheme are presented. The proposed

scheme constructs Fully Homomorphic encryption scheme

based on coding theory. Several works [20-24] have studied

and presented on construction of encryption schemes based on

coding theory. As depicted in the Figure 1, the basic idea is to

get a codeword 𝒘 𝔽2
𝑛 using encoding technique for a given

plaintext 𝒎 𝔽2
𝑘 . Then embedding artificial errors into

codeword 𝒘 to get the ciphertext 𝒄. Using the secret key, the

erroneous positions are identified which makes the decryption

easy. However, decryption for an attacker with unknown error

positions (secret key) is supposedly as hard as decoding a

random code.

The proposed scheme is an extension and variant of the

scheme proposed by Kiayias et al. [20, 25, 26] and Armknecht

et al. [9]. Encryption works in three steps: (i) at first, encoding

over a plaintext produces a codeword (error-free) and (ii) then,

some random errors at fixed positions, given by the secret key,

are embedded in the codeword to get an erroneous codeword

(iii) then, apply a fixed permutation on the erroneous

codeword specified by a secret pattern to provide additional

security. Similar to the scheme presented elsewhere [9],

proposed scheme makes use of the concept of linear codes and

it also maintains codeword synchronization.

Due to symmetric key, the erroneous positions as well as

good positions repeat for each encryption, and component-

wise operations over the ciphertexts also preserves the good

positions and thus satisfies the homomorphic property.

The proposed FHE scheme is designed based on the Reed-

Muller coding. Reed-Muller code (RM Code) is [𝑛, 𝑘, 𝑑]
linear code and popular error correcting code. According to

Reed-Muller coding [27-29], every message 𝒎 ∈ 𝔽2
𝑘 is

mapped to codeword 𝒘 ∈ 𝔽2
𝑛 i.e. 𝒘=encode(𝒎) using 𝑮𝒓𝒎 ∈

(𝔽2
𝑛)𝑘 , where 𝑮𝒓𝒎 is a generator matrix of size 𝑘 × 𝑛. RM

code has capability to auto correct the errors at the time of

decoding when the number of errors in the received codeword

is less than 𝑑/2. Decoding using majority logic recover the

message 𝒎 from the received erroneous codeword 𝒘' i.e., 𝒎

= decode (𝒘') when number of errors in 𝒘' is less than 𝑑/2.

Several researches [26, 30] stated that RM codes are best

suitable as cryptographic primitives in security systems. The

RMFHE scheme in principle follows the idea of adding

artificial errors at the fixed position in the codeword specified

by secret key (between 𝑑/2 to d positions) yield to give an

erroneous codeword w' as ciphertext. Decoding of this

erroneous codeword using secret key permit to produce the

plaintext message uniquely. When an addition operation is

applied on two ciphertexts, decoding of the resultant ciphertext

again permit to produce plaintext which is equal to the result

of addition on the original plaintexts. That means it holds true

for additively homomorphic property. But this approach does

not necessarily satisfy multiplicatively homomorphic

586

encryption. Hence, to get multiplicative homomorphic

encryption, we consider the RM codeword in expanded form

(matrix form) and is denoted as W ∈ (𝔽2
𝑛)𝑘 instead of

codeword vector 𝒘𝔽2
𝑛 . The proposed RMFHE with

encryption and decryption is presented in the Figure 2.

Figure 1. Basic idea of coding theory based encryption

m-Plaintext; Grm-Generator Matrix; W-Codeword matrix; W'-Erroneous codeword matrix;

E-Error Matrix; C-Ciphertext; w'-Erroneous codeword

Figure 2. Proposed RMFHE scheme

4. RMFHE SCHEME

Present section provides a formal description of

constructing the RMFHE scheme. The scheme is symmetric

key fully homomorphic construction. This scheme is

composed of four functions- Setup, Encryption, Decryption

and Evaluation. Each function of the scheme is described is as

follows:

Choose the initial RM parameters 𝑟, 𝑚 where 𝑚 ≥ 2 and

0 < 𝑟 ≤ 𝑚.

Setup: 𝐾 ← 𝑆𝑒𝑡𝑢𝑝(𝑟, 𝑚)

Setup function take the initial RM parameters (𝑟, 𝑚) as

input and compute the secretkey 𝐾 = (𝑆1, 𝑆2) as an output.

The setup algorithm chooses a key 𝑆1 for representing the

error positions in the codeword and another key 𝑆2 as

permutation key depending on the other parameters; length of

the codeword 𝑛, dimension 𝑘 and hamming distance 𝑑 of RM

code.

The algorithm for Setup is given as follows:

1. Given 𝑟, 𝑚 , the RM code computes

𝑘 = 1 + [
𝑚
1

] + [
𝑚
2

] + [
𝑚
3

] + ⋯ + [
𝑚
3

]

𝑛 = 2𝑚 and 𝑑 = 2𝑚−1

2. Choose 𝑆1 ⊂ [𝑛], set of error locations of length between

d/2 and 𝑑.

3. Choose the permutation key 𝑆2 of 𝑘 × 𝑛 matrix.

4. Output the secretkey 𝐾 = (𝑆1, 𝑆2).

Encryption: C ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐾, 𝒎)

An encryption function ℱ𝐸𝑛𝑐𝑟𝑦𝑝𝑡: 𝔽2
𝑘 × 𝐾 → (𝔽2

𝑛)𝑘 gets a

plaintext 𝒎 ∈ 𝔽2
𝑘 and a secretkey 𝐾 = (𝑆1, 𝑆2) as inputs.

Encryption function transforms the plaintext 𝒎 into a

ciphertext matrix C ∈ (𝔽2
𝑛)𝑘. First, it encodes the plaintext 𝒎

into a codeword matrix W ∈ 𝒞 using generator matrix G𝑟𝑚 .

Then it samples a random error matrix E𝑆𝟏
∈ (𝔽2

𝑛)𝑘\0 for each

vector 𝒆 ∈ E𝑆1
, 𝑠𝑢𝑝𝑝(𝒆) ⊆ 𝑆1 to produce the erroneous

codeword matrix W′ = W + E𝑆1
 where W′ ∈ 𝒞(𝑆1). Finally,

the permutation function 𝜎𝑆2
is applied on W′ to get the

ciphertext C using the permutation key 𝑆2 . The ciphertext

matrix C is the output of the encryption function. Given a

message plaintext vector 𝒎 ∈ 𝔽2
𝑘 as an input to encryption

algorithm, it computes the ciphertext C as follows:

𝐶 = 𝜎𝑆2
(𝒎 × 𝐺𝑟𝑚 + 𝐸𝑆𝟏

)

Decryption: 𝒎 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐾, C)

The inputs to decryption function ℱ𝐷𝑒𝑐𝑟𝑦𝑝𝑡: (𝔽2
𝑛)𝑘 × 𝐾 →

𝔽2
𝑘 are ciphertext matrix C ∈ (𝔽2

𝑛)𝑘 and secret key 𝐾 =
(𝑆1, 𝑆2) . Decryption function first computes the erroneous

codeword matrix W′ ∈ (𝔽2
𝑛)𝑘 using inverse permutation

function 𝜎′with permutation key 𝑆2 . Then, it computes the

RM codeword 𝒘′ ∈ 𝔽2
𝑛 from the erroneous codeword matrix

W' by adding all its rows as given in Definition. 2 of Section

2. Since the codeword matrix is erroneous, the computed

codeword is also erroneous. Then the erroneous codeword

𝒘′ can be decoded to recover the plaintext 𝒎 ∈ 𝔽2
𝑘 by using

majority logic decoding with known error positions specified

by 𝑆1 . Given a ciphertext matrix C as an input to the

decryption algorithm, it computes the plaintext vector 𝒎 as

follows:

1. Compute Codeword matrix W′ from C using inverse

permutation function 𝜎𝑆2
′

W′ = 𝜎𝑆2
′ (C)

2. Compute the RM codeword 𝒘′ ∈ 𝔽2
𝑛 from codeword

matrix W′

587

3. Extract the plaintext vector 𝒎 from the codeword 𝒘′

using majority logic decoding function

𝒎 = 𝐷𝑒𝑐𝑜𝑑𝑒(𝑆1, 𝒘′)

Addition: C3 ← 𝐴𝑑𝑑(C1, C2)

Addition function ℱ𝐴𝑑𝑑: (𝔽2
𝑛)𝑘 + (𝔽2

𝑛)𝑘 → (𝔽2
𝑛)𝑘 gets two

ciphertexts C1, C2 ∈ (𝔽2
𝑛)𝑘 as input where C1 and C2 are

encryption of plaintext vectors 𝒎𝟏 and 𝒎𝟐. An encryption of

sum of corresponding underlying plaintexts (𝒎𝟏 + 𝒎𝟐), as a

ciphertext C3 ∈ (𝔽2
𝑛)𝑘 is generated. The addition operation on

the two ciphertexts is given as follows:

C3 = {C1 + C2|C1(𝑖, 𝑗) + C2(𝑖, 𝑗) ∀𝑖 = 0, 1, 2, … , 𝑘 − 1

∀𝑗 = 0, 1, 2, … , 𝑛 − 1}

Multiplication: C3 ← 𝑀𝑢𝑙(C1, C2)

Multiplication function ℱ𝑀𝑢𝑙: (𝔽2
𝑛)𝑘. (𝔽2

𝑛)𝑘 → (𝔽2
𝑛)𝑘 gets

two ciphertexts C1, C2 ∈ (𝔽2
𝑛)𝑘 as input and computes the

product of corresponding underlying plaintexts as a ciphertext

C3 ∈ (𝔽2
𝑛)𝑘. The multiplication operation on the two ciphers

texts is given as follows:

C3 = {C1. C2|C1(𝑖, 𝑗). C2(𝑖, 𝑗) ∀𝑖 = 0, 1, 2, … , 𝑘 − 1

∀𝑗 = 0, 1, 2, … , 𝑛 − 1}

5. CORRECTNESS PROOF OF THE PROPOSED

RMFHE SCHEME

Proposition 1:

The scheme is correct for encryption, decryption, addition

and multiplication operations.

Theorem 1:

The scheme proposed above is correct with respect to fresh

cipher text as well as homomorphic operations addition 𝑀𝑜𝑑 2

and multiplication 𝑀𝑜𝑑 2 over finite fields GF(2) as defined.

(Bitwise AND and XOR Gentry circuit based unlimited

operations supported).

Proof:

Decryption is implemented simply based on majority logic

based RM decoder. When errors are within the limit between

𝑑/2 and 𝑑, decoding works correct only with the known error

positions.

Let C be the ciphertext corresponding to the plaintext vector

𝒎. Decryption algorithm deciphers the plaintext 𝒎 by using

two step technique to eliminate the masks on the plaintext. In

the first step, it removes the permutation mask using secretkey

𝑆2. In the second step, it extracts the plaintext vector 𝒎 using

RM error correction decoding with known error positions in

the erroneous codeword specified by secretkey S1.

Deciphering process by eliminating the masks is illustrated as

follows

𝒎 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑆1, 𝜎𝑆2
′ (C))

=> 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑆1, 𝜎𝑆2
′ (𝜎𝑆2

(𝒎 × G𝑟𝑚 + E𝑆1
)))

=> 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑆1, 𝜎𝑆2
′ (𝜎𝑆2

(W + E𝑆1
)))

(1)

where, W=m×Grm.

Inverse permutation operation using key 𝑆2 will remove the

permutation mask and then Eq. (1) can now be

=> 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑆1, W + E𝑆1
)

The majority logic decoding of erroneous codeword using

secret key 𝑆1 will eliminate the error mask and extract the

plaintext vector 𝒎 as output. Hence, the correctness of

decryption of fresh ciphertext is proved. Similarly, correctness

of decryption can be proved for addition and multiplication

operations over ciphertexts as given below:

Let C1 and C2 be the ciphertexts corresponding to two

plaintexts 𝒎𝟏 and 𝒎𝟐 . The homomorphic addition on C1and

C2 will produce C3 i.e., C3 = C1 + C2. The decryption of the

resultant cipher deciphers the sum of two plaintext vectors.

The correctness of homomorphic addition operation is proved

as follows:

C3 = C1 + C2

=> 𝜎𝑆2
(𝒎𝟏 × G𝑟𝑚 + E𝑆1

) + 𝜎𝑆2
(𝒎𝟐 × G𝑟𝑚 + E𝑆1

)

=> 𝜎𝑆2
(𝒎𝟏 × G𝑟𝑚 + E𝑆1

+ 𝒎𝟐 × G𝑟𝑚 + E𝑆1
)

=> 𝜎𝑆2
(𝒎𝟏 × G𝑟𝑚 + 𝒎𝟐 × G𝑟𝑚 + E𝑆1

+ E𝑆1
)

Since E𝑆1
+ E𝑆1

 will generate another error matrix E𝑆1
′ with

random bits at the positions specified by 𝑆1 and remaining bits

will become 0s.

=> 𝜎𝑆2
((𝒎𝟏 + 𝒎𝟐) × G𝑟𝑚 + E𝑆1

′)

C3 = 𝜎𝑆2
((𝒎𝟏 + 𝒎𝟐) × G𝑟𝑚 + E𝑆1

′

Decryption of the result cipher C3 will result 𝒎𝟑 = 𝒎𝟏 +
𝒎𝟐. Hence, homomorphic addition operation is proved.

Finally, for homomorphic multiplication operation.

Let C1 and C2 be the ciphertexts corresponding to two

plaintexts 𝒎𝟏 and 𝒎𝟐 . The homomorphic multiplication on

C1and C2 will produce C3 i.e., C3 = C1. C2. The decryption of

the resultant cipher deciphers the product of two plaintext

vectors. The correctness of homomorphic multiplication

operation is proved as follows:

C3 = C1. C2

=> 𝜎𝑆2
(𝒎𝟏 × G𝑟𝑚 + E𝑆1

). 𝜎𝑆2
(𝒎𝟐 × G𝑟𝑚 + E𝑆1

)

=> 𝜎𝑆2
(W1 + E𝑆1

). 𝜎𝑆2
(W2 + E𝑆1

)

=> 𝜎𝑆2
((W1 + E𝑆1

). (W2 + E𝑆1
))

=> 𝜎𝑆2
(W1. W2 + W1. E𝑆1

+ W2. E𝑆1
+ E𝑆1

. E𝑆1
)

=> 𝜎𝑆2
(W1. W2 + E𝑆1

′)

Since W1. E𝑆1
+ W2. E𝑆1

+ E𝑆1
. E𝑆1

will generate another

error matrix E𝑆1
′ with random bits at the positions specified by

𝑆1 and remaining bits will become 0s.

=> 𝜎𝑆2
((𝒎𝟏. 𝒎𝟐) × G𝑟𝑚 + E𝑆1

′)

C3 = 𝜎𝑆2
((𝒎𝟏. 𝒎𝟐) × G𝑟𝑚 + E𝑆1

′)

Decryption of the result cipher C3 will result 𝒎𝟑 = 𝒎𝟏. 𝒎𝟐.

Hence, homomorphic multiplication operation is proved.

6. EXPERIMENTAL EVALUATION

The proposed RM FHE scheme is implemented in JAVA

platform to execute all the functions of the scheme: Encryption,

Decryption, Homomorphic operations. The program was run

on the system with basic configurations: Intel(R) Core(TM)

588

i5-3230M CPU 2.60 GHz and 4GB RAM, in Windows 10

Professional 64-bit Operating system environment. The

experimental evaluation is conducted to measure the practical

time required for every function of the proposed scheme for

different parameter values. The implementation of the scheme

for various levels of security is obtained. The values of the

various parameters corresponding to the different security

levels (Toy, small, Medium and Large) is explored and

presented in the Table 1. The time required for the functions

and operations at different security levels is also obtained and

presented in Table 2. The space required to store the secret key

(key1 and key2) and ciphertext is presented in Table 3.

The execution results shown that the scheme is quite simple

for implementation. Given novelty of the scheme, we consider

the results are quite promising at the different security levels.

Comparative to the other coding theory based homomorphic

schemes (Fredrik’s Scheme [9]), the scheme supports

unlimited addition and multiplication operations over

ciphertext with reasonable time effort. The time for decryption

and size of the ciphertext is high compared to other similar

schemes. However, it is considered that the decryption is

required only at the end when the user decrypt ciphertext after

performing all required homomorphic operations by the third

party. Hence, there is no much effect of the decryption time on

the efficiency of the scheme. Over all the practical

implementation of our scheme is possible for FHE with high

efficiency, compared to the other schemes based on Lattice

cryptography [16], CKKS [17]. RLWE [18].

Table 1. Parameter values at different levels

Level of

Security

(r,m) Codeword length

n

Codeword dimension

k

Minimum distance

d

Auto error correcting capability

𝒅𝒎𝒊𝒏

Toy (1,3) 8 4 4 1

Small (1,5) 32 6 16 7

Medium (1,8) 256 8 128 63

Large (1,11) 2048 12 1024 511

Very Large (1,15) 32768 16 16384 8191

Table 2. Practical performance of the scheme at different security levels

 Encryption (in Sec) Decryption (in Sec) Addition (in Sec) Multiplication (in Sec)

Toy 0.000019110 0.00010892 0.00000382 0.00000299

Small 0.00016293 0.00203898 0.00001671 0.00001939

Medium 0.000204300 0.26720770 0.000216690 0.000172310

Large 0.010767670 4.822113740 0.000069260 0.000147250

Very Large 6.046015519 36879 0.000889150 0.003025590

Table 3. Space requirement of Key and Ciphertext at different security level

 Size of 𝑺𝟏 (in KBytes) Size of 𝑺𝟐 (in KBytes) Length of C (in bits) Size of C (in KBytes)

Toy < 1 < 1 32 < 1

Small < 1 < 1 192 < 1

Medium < 1 17 2304 < 1

Large 14 75 24576 16

Very Large 34 1662 5,24,288 98

7. CONCLUSIONS

In this paper an efficient variation of Fredrik’s scheme [9]

is presented with correctness proof and experimental

evaluation. To achieve multiplicative homomorphism, Reed-

Muller code has been represented and considered in an

expanded form (matrix form), i.e., (𝔽2
𝑛)𝑘 instead of 𝔽2

𝑛. The

scheme supports unlimited 𝑀𝑜𝑑 2 addition and multiplication

operations over ciphertexts without refreshing operation. The

experimental evaluation of the scheme is performed at

different levels of security and the results shown that

implementation of our scheme is really practical with high

efficiency as compared to other practical implementations of

FHE schemes such as schemes based on RLWE, Lattice

cryptography, CKKS, in terms of simple and easy operations

involved in the scheme.

REFERENCES

[1] Rivest, R., Adleman, L., Dertouzos, M. (1978). On data

banks and privacy homomorphisms. Foundations of

Secure Communication, pp. 169-177.

[2] Brickell, E.F., Yacobi, Y. (1987). On privacy

homomorphisms. Advances in Cryptology – Proceedings

of EUROCRYPT'87, the Netherlands, pp. 117-125.

https://doi.org/10.1007/3-540-39118-5_12

[3] Gentry, C. (2009). Fully homomorphic encryption using

ideal lattices. Proceedings of the 41st Annual ACM

Symposium on Theory of Computing (STOC’09), New

York, NY, USA, pp. 169-178.

https://doi.org/10.1145/1536414.1536440

[4] Gentry, C. (2010). Toward basing fully homomorphic

encryption on worst-case hardness. Advances in

Cryptology- Proceedings of CRYPTO’10, Santa Barbara,

CA, USA, pp. 116-137. https://doi.org/10.1007/978-3-

642-14623-7_7

[5] Smart, N.P., Vercauteren, F. (2010). Fully homomorphic

encryption with relatively small key and ciphertext sizes.

Public Key Cryptography (PKC’10), Paris, France, pp.

420-443. https://doi.org/10.1007/978-3-642-13013-7_25

[6] Gentry, C., Halevi, S. (2011). Implementing gentry’s

fully-homomorphic encryption scheme. Advances in

Cryptology – EUROCRYPT 2011, Tallinn, Estonia, pp.

589

129-148. https://doi.org/10.1007/978-3-642-20465-4_9

[7] Lyubashevsky, V., Peikert, C., Regev, O. (2010). On

ideal lattices and learning with errors over rings.

Advances in Cryptology – EUROCRYPT 2010, French

Riviera, pp. 1-23. https://doi.org/10.1007/978-3-642-

13190-5_1

[8] Brakerski, Z., Vaikuntanathan, V. (2011). Fully

homomorphic encryption from ring-LWE and security

for key dependent messages. Advances in Cryptology-

CRYPTO’11, Santa Barbara, CA, USA, pp. 505-524.

https://doi.org/10.1007/978-3-642-22792-9_29

[9] Armknecht, F., Augot, D., Perret, L., Sadeghi, A.R.

(2011). On constructing homomorphic encryption

schemes from coding theory. Cryptography and Coding,

Oxford, UK, pp. 23-40. https://doi.org/10.1007/978-3-

642-25516-8_3

[10] Brakerski, Z., Gentry, C., Vaikuntanathan, V. (2014).

(Leveled) fully homomorphic encryption without

bootstrapping. Proceedings of the 3rd Innovations in

Theoretical Computer Science Conference, New York,

USA, pp. 309-325. https://doi.org/10.1145/2633600

[11] Ducas, L., Micciancio, D. (2015). FHEW: Bootstrapping

homomorphic encryption in less than a second. Advances

in Cryptology -- EUROCRYPT 2015, Sofia, Bulgaria, pp.

617-640. https://doi.org/10.1007/978-3-662-46800-5_24

[12] Challa R., Gunta V. (2016). Reed-muller code based

symmetric key fully homomorphic encryption scheme.

Information Systems Security. Information Systems

Security, Jaipur, India, 499-508.

https://doi.org/10.1007/978-3-319-49806-5_29

[13] Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.

(2010). Fully homomorphic encryption over the integers.

Advances in Cryptology – EUROCRYPT 2010, French

Riviera, pp. 24-43. https://doi.org/10.1007/978-3-642-

13190-5_2

[14] Ramaiah, Y.G., Kumari, G.V. (2012). Towards practical

homomorphic encryption with efficient public key

generation. International Journal on Network Security,

3(4): 10.

[15] Viand, A., Patrick, J., Anwar, H. (2021). SoK: Fully

homomorphic encryption compilers. arXiv preprint

arXiv:2101.07078.

[16] Polyakov, Y., Rohloff, K., Ryan, G.W. (2019).

PALISADE Lattice Cryptography Library User Manual

(v1.6.0), Tech. Rep., Sep. 2019. Available:

https://palisade-crypto.org/documentation.

[17] Cheon, J.H., Kim, A., Kim, M., Song, Y. (2017).

Homomorphic encryption for arithmetic of approximate

numbers. Advances in Cryptology-ASIACRYPT 2017,

Hong Kong, China, pp. 409-437.

https://doi.org/10.1007/978-3-319-70694-8_15

[18] Crypto Experts. (2019). FV-NFLlib. GitHub.

https://github.com/CryptoExperts/FV-NFLlib, accessed

on 1 November 2021.

[19] NuCypher. (2019). A GPU implementation of fully

homomorphic encryption on torus. GitHub.

https://github.com/nucypher/nufhe, accessed on 1

November 2021.

[20] Kiayias, A., Yung, M. (2007). Cryptographic hardness

based on the decoding of Reed-Solomon codes.

Cryptology ePrint Archive, Report 2007/153, 2007.

https://eprint.iacr.org/2007/153.pdf.

[21] McEliece, R.J. (1978). A public-key system based on

algebraic coding theory. The Deep Space Network

Progress Report, 114-116.

[22] Niederreiter, H. (1985). A public-key cryptosystem

based on shift register sequences. Advances in

Cryptology - EUROCRYPT’85, Linz, Austria, pp. 35-39.

https://doi.org/10.1007/3-540-39805-8_4

[23] Courtois, N.T., Finiasz, M., Sendrier, N. (2001). How to

achieve a McEliece-based digital signature scheme.

Advances in Cryptology - ASIACRYPT 2001, Australia,

pp. 157-174. https://doi.org/10.1007/3-540-45682-1_10

[24] Baldi, M., Bodrato, M., Chiaraluce, G.F. (2008). A new

analysis of the McEliece cryptosystem based on QC-

LDPC codes. Security and Cryptography for Networks,

Amalfi, Italy, pp. 246-262. https://doi.org/10.1007/978-

3-540-85855-3_17

[25] Kiayias, A., Yung, M. (2002). Cryptographic hardness

based on the decoding of Reed-Solomon codes.

Automata, Languages and Programming, Málaga, Spain,

pp. 232-243. https://doi.org/10.1007/3-540-45465-9_21

[26] Katz, J., Lindell, Y. (2007). Introduction to Modern

Cryptography, 1st edition, CRC Press.

[27] Macwilliams F.J., Sloane, N.J.A. (1983). The Theory of

Error-Correcting Codes. North-Holland Mathematical

Library. North Holland.

[28] Abbe, E., Shpilka, A., Wigderson, A. (2015). Reed-

Muller codes for random erasures and errors. IEEE

Transactions on Information Theory, 61(10): 5229-5252.

https://doi.org/10.1109/TIT.2015.2462817

[29] Høholdt, T., Van Lint, J.H., Pellikaan, R. (1998).

Algebraic geometry codes. Handbook of Coding Theory,

1(Part 1): 871-961.

[30] Gueye, C.T., Mboup, E.H.M. (2013). Secure

cryptographic scheme based on modified Reed Muller

codes. International Journal of Security and Its

Applications, 7(3): 55-64.

590

