
 

 
 
 

 
 

 
1. INTRODUCTION 
 

Throughout Many industrial and technological applications 
involve boundary layer flow induced by the impulse motion 
of a moving extensible surface. Such applications include 
paper production, crystal growing, metal and polymer 
extrusion etc. Sakiadis [1] has introduced the problem of the 
boundary layer flow over a continuous solid surface that 
moves with a constant speed. Such problem has then been 
generalized by Crane[2] for a stretching sheet. He has 
obtained a closed form exact solution for the velocity 
distribution. Grobka and Bobba [3] have studied the 
characteristics of the heat transfer of a continuous stretching 
surface with variable temperature. For the three-dimensional 
flow, Sajid et al [4] have investigated that problem over a 
stretching surface in a viscous fluid. While Lui and Anderson 
[5] have considered the heat transfer over a bidirectional 
stretching surface. Hayat et al [6] have discussed the 
chemically reactive flow of third grade fluid by an 
exponentially convected stretching sheet. Mushtaq et al [7] 
have introduced a numerical study for rotating flow of 
nanofluids caused by an exponentially stretching sheet. 
Nanofluid was first introduced by Choi [8] to describe the 
case of a fluid with suspended nanoparticles. Nanoparticles 
are nanometer sized particles or nanostructured materials 
engineered on the atomic scales. What is exciting about 
nanofluids is that they have an enhanced thermal conductivity 
and improved heat transfer properties. Even for low volume 

fractions (less than 0.1% ) of nanoparticles, an enhancement 

up to 40%  in thermal conductivity compared to base fluid 

has been found [9].The study of nanofluids is very important 
due to its wide range applications in the industrial processes. 
Nanofluids can be utilized to cool vehicle motors and welding 
equipment and to cool high warmth flux devices, for example, 
high-power microwave tubes and laser diode arrays. Because 
of the importance of nanofluids many researchers have 
studied nanofluids in several works (see [10]-[13]). To 
analyze the problem of nanofluids, it is assumed that the 
nanofluid is a single phase fluids, so a physical property of a 
nanofluid is considered as a function of the properties of both 
constitutes and concentrations. The study of the mechanism 
of the enhancement of heat transfer using nanofluids attracted 
many scientists. The contribution of them can be found in the 
book by Das et al [14]. MHD covers the phenomena of 
electrically conducting fluids, where the velocity field and the 
magnetic field are coupled. MHD is employed in engineering 
to study the magnetic behavior of plasmas in fusion reactors, 
liquid-metal cooling of nuclear reactors and electromagnetic 
casting. The boundary layer flow under the application of a 
magnetic field has been studied by many researchers. 
Chamkha [15] has studied the three-dimensional natural 
convection flow caused by an inclined stretching surface in 
the presence of magnetic field. Mukhopadhyay et al [16] have 
investigated the problem of MHD boundary layer flow over a 
heated stretching sheet where the viscosity is considered to be 
variable. Zhang and Wang [17] have presented an exact self-
similar solution for the problem of MHD boundary layer 
system for power-law fluids. Elbashbeshy et al [18] have 
considered the problem of unsteady laminar flow and heat 
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transfer of an incompressible viscous fluid in the presence of 
thermal radiation, internal heat generation or absorbtion and 
magnetic field over an exponentially stretching surface 
subject to suction with an exponential temperature 
distribution. Recently, Khan et al [19] have studied the 
problem of three dimensional flow of a nanofluid induced by 
an exponentially stretching sheet. They have considered the 
effects of Brownian motion and thermophoretic diffusion of 
nano-particles in the considered mathematical model. Hayat 
et al [20] have discussed the simultaneous effects of 
convective conditions and nanoparticles on peristaltic motion. 
Hayat et al [21] have studied the influence of convective 
conditions in radiative peristaltic flow of pseudoplastic 
nanofluid in a tapered asymmetric channel. The effect of an 
inclined magnetic field on peristaltic flow of Williamson fluid 
in an inclined channel with convective conditions investigated 
by Hayat et al [22]. Abd elmaboud [23] has studied the effect 
of varying magneto-hemodynamics flow in a semi-porous 
vertical channel with heat transfer. Boutra et al [29] have 
studied the problem of free convection enhancement within a 
nanofluid’ filled enclosure with square heaters. Rashad [30] 
has presented a study of unsteady nanofluid flow over an 
inclined stretching surface with convective boundary 
condition and anisotropic slip impact. 

Much attention has not been given to the problem of the 
three-dimensional incompressible boundary layer flow of a 
nanofluid over a sheet that is stretched exponentially in two 
lateral directions with magnetic field even thought the study 
is very useful in many areas. The objective of this work is to 
study the effect of magnetic field on the three-dimensional 
flow of a nanofluid induced by exponentially stretching 
surface with heat transfer. In this study, the accuracy of the 
presented model is validated by comparing the obtained 
results by a numerical method and the HAM method 
(homotopy analysis method).  
 

 

Figure 1. Sketch of the physical problem 
 
 

2. FORMULATION OF THE PROBLEM 
 

We study the case of a three dimensional incompressible 
boundary layer flow of a nanofluid over a sheet that is 
stretched exponentially in two lateral directions. A magnetic 

field of strength 
0B  is applied normally to the sheet. We 

ignore the induced magnetic field comparing with the applied 
magnetic field as Reynolds number is considered to be small. 

The sheet is considered to be located at = 0z  while the flow 

is confined to the region 0z . The stretching velocities 

along x  and y  directions are 
0( , ) =

x y

L
wU x y U e , and 

0( , ) =
x y

L
wV x y V e  respectively. The temperature of the sheet 

is distributed as 2
0( , ) =



 
x y

L
wT x y T T e , where 

T  is the 

ambient temperature, and A  is the temperature exponent 
parameter. The fluid velocity components are assumed to be 

,u v , and w  along , x y  and z directions respectively. 

The governing equations are:  
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Subject to the boundary conditions: 

 

= ( , ), = ( , ), = 0, = ( , ) at = 0,

= 0, , as , 
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where nf  the viscosity of nanofluid, nf  is the density of 

nanofluid, =
( )




nf

nf

p nf

K

C
 is the nanofluid thermal 

diffusivity,  nf  is the electrical conductivity, and 
0B  is the 

magnetic field. The nanofluid properties are related to the 
fluid properties as follows: 
 

2.5
=

(1 )






f

nf , = (1 )    nf f s , 

( ) = (1 )( ) ( )     p nf p f p sC C C ,  

( 2 ) 2 ( )
=

( 2 ) ( )





  

  

nf s f f s

f s f f s

K K K K K

K K K K K
, 

3 ( 1)

= 1

( 2) ( 1)




 

 


 





  

s

nf f

s sf

f f

. 

 

The index nf  stands for nanofluid, the index f  stands for 

the base fluid, and the index s  stands for solid. 

Some thermo-physical properties of water and the 

nanoparticles Cu , Ag , and 
2 3Al O  are listed in Table (1). 
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Table 1. Thermo-physical properties of nanofluids and base 
fluids. 

  
Property Water Cu  Ag  

2 3Al O  

( / . )pC J kg K  4179 385 235 765 

3( / ) kg m  997.1 8933 10500 3970 

( / . ) W m K  0.613 400 429 40 

7 210 ( / )  m s  1.47 1163.1 1738.6 131.7 

( / ) S m  5.5 
610  59.6 

610  63 
610  35 

610  

 
 Using the dimensionless variables:  
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w e f f g g
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T T T e e z

L

                                (5) 

 
Equation (1) is identically satisfied, while equations (2)-(4) 

are transformed to the form:  
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is the magnetic number,  =




f

f

Pr  is the Prandtle number, 

and 0

0

=
V

U
 is the velocity ratio. 

 
 
 

3.  SOLUTIONS AND RESULTS 
 

The mathematical model is solved by two methods: The 
first one is numerical and the second is homotopy analysis 
method (HAM). Comparisons between the results obtained 
from the two methods are given for some values of 
parameters in tables (3-6). 
 

3.1 Numerical solutions  
 
 Equations (6)-(8) are transformed into the following 
simultaneous system of first order differential equations:  
 

1 2= ,y y  (10) 

  

2 3= ,y y  (11) 

  

 
 

Figure 2. -curve for the function f  and g  at 14th order 

approximation for different values of the magnetic parameter 

M  for Cu -water fluid at 

= 0.4, = 0.1, = 0.1, = 0.7, = 6.2, = 0.8 X Y Pr A . 

 

1 4

3 2 2 5 3 1 4 2= [2 ( ) ( )] ,
 

    
M

y y y y y y y y
H BH
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4 5= ,y y  (13) 

  

5 6= ,y y  (14) 

  

1 4

6 5 2 5 6 1 4 5= [2 ( ) ( )] ,
 

    
M

y y y y y y y y
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7 8= ,y y  (16) 
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8 2 7 5 7 1 8 4 8

3 3

= ( ) ( ),
 
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 

y APr y y y y Pr y y y y  (17) 

 subject to the initial conditions  
 

1 2 4 5 7

3 1 6 2 8 3

(0) = 0, (0) = 1, (0) = 0, (0) = , (0) = 1,

(0) = , (0) = , (0) = ,

y y y y y

y s y s y s
          (18) 

  

where 
1 4= ( ), = ( ) y f y g , and 

7 = ( ) y . 

 

Figure 3. -curve for the function   at 14th order 

approximation for different values of the magnetic parameter 

M  for Cu -water fluid at 

= 0.4, = 0.1, = 0.1, = 0.7, = 6.2, = 0.8 X Y Pr A . 

 

The constants 
1 2,s s  and 

3s  are priori unknowns that will 

be determined as a part of the solution. Using Mathematica a 

function 1 2 3[ , , ] = [ (10) (17)]F s s s NDSolve System  is 

defined. Given that 2 5( ), ( ) y y  and 7 ( )y  should tend to 

zero as   tends to  , the values of 1 2,s s  and 3s  are 

determined upon solving the equations 

2 5( ) = 0, ( ) = 0 max maxy y , and 7 ( ) = 0maxy , where a suitable 

value of   is taken and then increased to reach max  where 

the difference between two successive values of any of 1 2,s s  

and 3s  is less then or equal to 610 . Upon obtaining the 

values of 1 2,s s  and 3s  the closed system (10) (17)  is 

solved numerically using the Mathematica function NDSolve 
[24]. To validate this method, a comparison is made between 
the results obtained using this method and the results obtained 
in previous studies(Table (2))in some special cases. From the 
table one can find that the present results are in a good 
agreement with previous ones. 

 
 

Figure 4. -curve for the function f  and g  at 20th order 

approximation for different values of   for Cu -water fluid 

at = 0.5, = 0.1, = 0.1, = 0.7, = 6.2, = 0.4M X Y Pr A . 

 

3.2 The ham solution of the problem 
 

It’s well known that the HAM depends on initial solutions 
for different variables. Moreover, such solutions should 
satisfy the boundary conditions. We choose the initial 

approximations of f , g , and   as follow:  

 

0 = 1 exp( ), f  (19) 

  

0 = 1 exp( ), g  (20) 

  

0 = exp( ),   (21) 

  
and the linear auxiliary operators are  
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d dd d
 and 

2
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d
L
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where the auxiliary operators satisfy the equations: 
 

1 1 2 3( exp( ) exp( ) ) = 0,   L c c c  (22) 

  

2 4 5 6( exp( ) exp( ) ) = 0,   L c c c  (23) 

  

2 7 8( exp( ) exp( )) = 0,  L c c  (24) 

  

where 1 2 3 4 5 6 7, , , , , ,c c c c c c c , and 8c  are constants. The 

equations of deformation for the zeroth-order with a non-zero 

auxiliary parameter , can be set as follow:  
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1 1 0 1(1 )[ ( ( ; )) ( ( ))] = ( ( ; )),   p L f p L f p N f p  (25) 

  

2 2 0 2(1 )[ ( ( ; )) ( ( ))] = ( ( ; )),   p L g p L g p N g p  (26) 

  

3 3 0 3(1 )[ ( ( ; )) ( ( ))] = ( ( ; )).      p L p L p N p  (27) 

 
 

Figure 5. -curve for the function   at 20th order 

approximation for different values of   for Cu -water fluid 

at = 0.5, = 0.1, = 0.1, = 0.7, = 6.2, = 0.4M X Y Pr A . 

 
The boundary conditions take the form  
 

( ; ) = ( ; ) = 0, ( ; ) = 1, ( ; ) = , ( ; ) = 1, at = 0,

( ; ) 0, ( ; ) 0, ( ; ) 0, as .
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As p , varies from 0  to 1 , the functions ( ; )f p , ( ; )g p  

and ( ; )  p  vary from 
0 ( )f , 

0 ( )g  and 
0 ( )   to ( )f , 

( )g  and ( )   respectively. By using Taylor’s theorem 

( ; )f p , ( ; )g p  and ( ; )  p  can be expanded in a power 

series of p  as follows:  
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 The selection of the parameter  is taken in such a way 
that the series (32 - 34) are convergent at =1p  so we have:  
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Differentiating Eqs. (25)-(27) m  times with respect to p  

and then dividing them by !m  and finally setting = 0p , we 

have the following m th-order deformation problem:  
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where,  
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where  
 

0, 1

1, >1= { m

m m  (45) 

 
with the boundary conditions  
 

= = 0, = 0, = 0, = 0,1.5 at = 0,

0, 0, 0,3.7 as .

 

 

 

    

m m m m m

m m m

f g f g

f g
 (46) 

 
With the aid of MATHEMATICA software we obtain the 

solution of these equations.  
 

 
 

Figure 6. Variation of temperature profiles with  , where 

=1, =1, = 0.01, = 2, = 0.01X Y A M , and = 6.2Pr . 

 

 
 

Figure 7. Variation of the velocity x  components with  , 

where = 1, = 1X Y , = 0.01 , = 2A , = 0.01M  and 

= 6.2Pr . 

4. CONVERGENCE REGION 
 

Figures ( 2 )-( 5 ) show the values that the auxiliary 

parameter  take in order to get convergent solutions for the 
fluid velocities and temperature. From such figures one can 
conclude the following: 

• For different values of the magnetic number M , 
convergent solutions for the velocities are obtained if 

0.4 0.28    . While all other parameters are fixed. 

• Convergent solution for temperature is obtained when 

0.4 0.22     for different values of the magnetic number 

M . While all other parameters are fixed. 
• For the volume fraction, convergent solutions for the 

velocities and temperature are obtained if  and  respectively. 
While all other parameters are fixed. 

The results obtained by this method is compared with the 
numerical results for some values of parameters and found to 
be in a good agreements as shown in tables (3-6). 

 

 
 

Figure 8. Variation of the velocity y  components with  , 

where =1, =1, =0.01, =2, =0.01X Y A M , and = 6.2Pr . 

 

 
 

Figure 9. Variation of the velocity x   components with M , 

where =0.1, =0.1, =0.03, =2, =0.7X Y A  , and =6.2Pr . 

 
 

5. DISCUSSIONS 
 

Here we consider one type of nanofluids that is Cu-water. 
The effect of the velocity ratio  on the fluid temperature is 
exhibited in figure (6). It can be observed that the fluid 
temperature decreases with the increase of. The variation of 
the velocity x- component  with  is shown in figure (7), while 
figure (8) shows the variation of the velocity y-component  
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with. One can see that the increase of  results in an increase in  
but a decrease in. This behavior can be understood in view of 
the effect of  on the stretching of the surface. That is the 
augmentation of  indicates a larger stretching rate in y-
direction which results in increasing  and deceasing. 
 

 
 

Figure 10. Variation of the velocity y  components withM , 

where =0.1, =0.1, =0.03, =2, =0.7X Y A  , and =6.2Pr . 

 

 
 

Figure 11. Variation of temperature profiles with M , where 

= 0.1, = 0.1X Y , =0.03 , =2A , =0.7  and = 6.2Pr . 

 

 
 

Figure 12. Variation of temperature profiles with  , where 

=1, =1X Y , = 0.01M , =0.5A , =0.7  and =6.2Pr . 

 
 
 

Figures (9) and (10) exhibit the effect of the magnetic 
parameter  of  and  respectively. It can be noted that the fluid 
velocity decreases with the increase of. The increase of  
elevates the Lorentz force in the boundary layer. In fact 
Lorentz force opposes the flow and this results in reducing 
the fluid motion. As a result of reducing the fluid velocity due 
to increasing, the fluid temperature of the boundary layer 
increases with the increase of  as shown in Figure (11).  
 

 
 

Figure 13. Variation of the velocity x   components with , 

where =1, =1X Y , = 0.01M , =0.5A , =0.7  and =6.2Pr . 

 

 
 

Figure 14. Variation of the velocity y  components with  , 

where =1, =1X Y , = 0.01M , =0.5A , =0.7  and =6.2Pr  

 

 
 

Figure 15.  Variation of temperature profiles with A , where 

=1, =1X Y , = 0.01M , =0.02 , =0.7  and =6.2Pr . 
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Figure 16. Variations in wall shear stresses and entrainment 
velocity with. 

 
From the results shown in table, one can see that the wall 

heat flux increases with the increase of the nano-particle 
volume fraction. From figure (12) we find that the fluid 
temperature increases with the increase of  and however it is 
greater than that of the corresponding case of pure fluid (). 
Such results can be justified as follows: The immersing of 
nano-particles into pure fluid improves the thermal 
conductivity of the fluid and the enhancement of  increases 
the frictional forces inside the fluid and that between the fluid 
and the surface. The nano-particles decelerate the fluid 

motion and consequently the values of  and  decrease with the 
increase of  as shown in figures (13) and (14) respectively. 

The expansion coefficient  has a considerable effect on the 
fluid temperature as shown in Figure (15). The fluid 
temperature decreases with the increase of the value of. In 
Figure (16) we can see that the sheer stress in both of  and  
directions decrease with the increase of. Consequently the 
entrainment velocity  increases with the increase of.  
 
 

6.  CONCLUDING REMARKS 
 

The problem of three-dimensional MHD flow over an 
exponentially stretching surface is studied using a numerical 
method as well as a HAM method. The followings are 
concluded:   

• The obtained results for some parameters show that the 
two methods used in this article are in a good agreement.  

• The fluid temperature decreases with the increase of the 
velocity ratio as well as the expansion coefficient.  

• The fluid temperature increases with the increase of the 
nanofluid volume fraction as well as the magnetic parameter.  

• Both of the fluid velocity components decreases with the 
increase of the magnetic parameter as well as the 
nanoparticles fractional volume.  

• The increase of the velocity ratio increases the 
component of the velocity but decreases the  component of 
the velocity.  

 

Table 2. Comparison between numerical results obtained and previous published results in the case of 2D( = 0g ) at 

= = = = 0 X Y M , and = 1A  

 
 Present Results Ref [25] Abs. Error Ref [26] Abs. Error Ref [27] Abs. Error 

0.72 0.76728     0.76728 0.00000 

1 0.95478 0.95478 0.00000 0.95480 0.00002 0.95478 0.00000 

2 147146   1.47150 0.00004 1.47145 0.00001 

3 1.86907 1.86910 0.00003 1.86910 0.00003 1.86905 0.00002 

5 2.50013   2.50010 0.00003 2.50012 0.00002 

10 3.66037   3.66040 0.00003 3.66036 0.00001 

 

Table 3. Comparison between HAM and numerical values for Cu water  at 

= 6.2, = 0.01, = 0.4, = 0.2, = 0.1, = 0.1Pr M A X Y  

 
 HAM NUM Abs. Error 

          

0.9 
-1.9084 -1.7172 -1.3288 -1.9251 -1.7326 -1.3123 0.0167 0.0154 0.0165 

0.7 
-1.8062 -1.2628 -1.2572 -1.8212 -1.2748 -1.2412 0.0150 0.0120 0.0160 

0.3 
-1.5824 -0.4701 -1.1004 -1.5933 -0.4780 -1.0851 0.0109 0.0079 0.0153 

 

Table 4. Comparison between HAM and numerical values for Cu water  at 

= 6.2, = 0.01, = 0.4, = 0.7, = 0.1, = 0.1 Pr M X Y  

 
 HAM NUM Abs. Error 

A          

0.3 -1.8062 -1.2628 -1.3383 -1.8052 -1.2636 -1.3383 0.0010 0.0008 0.0000 

0.5 -1.8062 -1.2628 -1.4935 -1.8052 -1.2636 -1.4941 0.0010 0.0008 0.0006 

0.8 -1.8062 -1.2628 -1.7109 -1.8052 -1.2636 -1.7112 0.0010 0.0008 0.0003 
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Table 5. Comparison between HAM and numerical values for Cu water  at = 6.2, = 0.3, = 0.4, = 0.7, = 0.1, = 0.1 Pr A X Y  

 

 HAM NUM Abs. Error 

M          

0 -1.8043 -1.2614 -1.3388 -1.8051 -1.2636 -1.3387 0.0008 0.0022 0.0001 

0.5 -1.8973 -1.3272 -1.3154 -1.8994 -1.3296 -1.3155 0.0021 0.0024 0.0001 

1 -1.9856 -1.3891 -1.2936 -1.3921 -1.2937 -1.7112 0.0031 0.0030 0.0001 

 

Table 6. Comparison between HAM and numerical values for Cu water  at 

= 6.2, = 0.3, = 0.1, = 0.9, = 0.1, = 0.1Pr A M X Y  

 
 HAM NUM Abs. Error 

          

0.2 -2.1980 -1.9796 -1.9645 -2.1715 -1.9543 -1.9603 0.0265 0.0253 0.0042 

0.3 -2.1120 -1.9012 -1.6577 2.1000 -1.8909 -1.6559 0.0120 0.0103 0.0018 

0.4 -1.9287 -1.7359 -1.4111 -1.9266 -1.7340 -1.4108 0.0021 0.0019 0.0003 
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NOMENCLATURE 
  

, ,x y z    Cartesian coordinate  

,w wU V    the stretching velocities  

wT   the temperature of the sheet  

T   the ambient temperature  

, ,u v w  The fluid velocity component along , ,x y z  

respectively  

A  the temperature exponent parameter  

nf  the viscosity of nanofluid 

nf
 the density of nanofluid 

nf
 the nanofluid thermal diffusivity  

 nf
 the electrical conductivity  

0B  the magnetic field 

M    the magnetic number  

Pr    the Prandtle number 

    the velocity ratio 

0 0 0, ,f g  the initial approximations 

 auxiliary parameter  
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