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Due to the simple structure of DC motors, the natural decoupling between torque and 

speed, and its low cost the DC motors have been widely used in electromechanical 

systems, the paper deals with the experimental method of DC motor Coulomb friction 

identification that caused the dead nonlinear zone and proposed a nonlinear model of the 

DC motor, then a sliding mode strategy is developed to control the DC motor in high and 

low speed for bidirectional operation, The experimental implementation using Dspace 

1104 demonstrate that the proposed sliding mode control can achieve favorable tracking 

performance against non-linearities for a DC motor. 
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1. INTRODUCTION

In general, the DC motor is modeled as a linear system [1], 

but to get high control performance the need of nonlinear 

approach is required. The dead zone caused by nonlinear 

Coulomb friction would bring problems to control the DC 

motor especially if the system is rotating in two directions or 

operating at a low speed [2, 3]. 

Nevertheless, the identification of the parameters of the 

DCM (direct current motor) is very important to make the 

speed regulation, but the uncertainty of the measuring devices 

(amperemeter, voltmeter ....) and the bad use of the 

identification techniques pose a real problem in order to 

calculate the PI controller which based on parameters of the 

DCM. Moreover, the conventional controller performance is 
affected by unknown load dynamics, changes of speed 
command, and parameter variations [4, 5] then the choice of 
an efficient control against these problems and robust against 
nonlinear dead zone is mandatory.

Sliding mode control seems in a good position to deal with 

these problems [6-8], it has been used to deal with nonlinear 

systems [9-11]. This type of control has several advantages 

such as robustness, precision, stability, and simplicity. This 

makes it particularly suitable for dealing with systems with 

poorly known models, either because of parameter 

identification problems or because of simplification of the 

system model. 

The paper deals at the first with the experimental method of 

DC motor identification parameters and proposed a nonlinear 

model of the DC motor, then sliding mode control is simulated 

by Matlab Simulink to visualize motor speed. Finally, the 

implementation of sliding mode control (SMC) on DC motor 

(sonelecRME_24245) is made using Dspace 1104 carte. 

Simulation and experimental implementation demonstrate that 

the proposed sliding mode control system can achieve 

favorable tracking performance against uncertainties and 

nonlinearities for a DC motor. 

2. NONLINEAR MODEL OF DC MOTOR

Accurate nonlinear model building is a crucial step in 

practical control problems. The nonlinear model of the DC 

motor is established in two steps, firstly electrical DCM 

parameters identification is done like armature resistance and 

inductance then, mechanical parameters are measured like 

viscous friction coefficient and total moment of inertia, finally 

identification of the Coulomb friction torque is done to model 

the non-linearity of the system [2, 3]. 

The second step is separate excitation DC motor modeling 

(DC_sonelecRME_24245 400 Watt), the DCM mechanical 

part can be modeled as a multi-mass system after electrical 

part modeling then SLM control is used to control this motor. 

2.1 Armature resistance and inductance identification 

To determine the armature resistance Ra, an ohmmeter 

(TTI1604) is used, which displays the value Ra=9.5Ω. the 

electrical circuit is shown in Figure 1. 

Figure 1. Armature resistance measuring 

For inductance measurement, the armature is supplied with 

an AC voltage. the electrical circuit is shown in Figure 2. For 

different voltage armature values Ua, current armature value Ia 

is measured to deduce the value of the inductance through the 

calculation of the average armature impedance Za. Then 

armature inductance is calculated, the proposed circuit is as 

follows: 

( )2 21
0.0747049

2
a a aL Z R Henry

f
= + = (1) 
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Figure 2. Armature inductance measuring 

Table 1 represents the Calculation armature average 

impedance. 

Table 1. Calculation armature average impedance 

Ua(V) 26.31 34.72 41.1 57.5 70.7 

I(A) 1.06 1.4 1.647 2.326 2.881 

Z(Ω) 24.8207547 24.8 24.9544627 24.7205503 24.5400902 

2.2 Viscous friction identification 

To determine viscous friction, first EMF constant K should 

be measured, to determine K it is sufficient to perform a no-

load test. We measure the voltage U and the velocity Ω to plot 

the curve 𝑈 = 𝑓(𝛺). Figure 3 allows us to find the value of the 

constant K. 

Figure 3. Curve 𝑈 = 𝑓(𝛺) 

DCM no-load steady-state electrical equation is: 

.

tan

U R I K

y ax b

K 

= + 

= +

=

(2) 

So: 

212.1 122.4
tan 1.57

248.79 192.06
K 

−
= = =

−
(3) 

DCM no-load steady-state mechanical equation is: 

.EMF f v v

KI
C C K I f f=  =  =


(4) 

So: 

1.57 0.296
0.00241962 . / /

192.063
vf N m rad s


= = (5) 

2.3 Total moment inertia identification 

The identification of the parameter J (inertia moment) is 

done when the machine rotates at a nominal speed, then we cut 

the power supply on the armature and measure the speed as a 

function of time Ω=𝑓(𝑡) during the deceleration, then we will 

take the response time. 

Figure 4. Deceleration test curve Ω=f(t) 

Figure 4 represent the deceleration test curve after cutting 

off armature voltage (at 800 ms), DC motor speed decelerates, 

the response of the DC motor is a first-order response so the 

mechanical time constant τmec can be calculated after 

calculating response time ts was taken at 99% of speed 

maximum value: 

( )_ 99% 5* 1000 800 0.08s mec mect ms s = = −  = (6) 

then J is calculated: 

20.0024
0.0302452 .

0.08

v

mec

f
J kg m


= = = (7) 

2.4 Coulomb friction torque identification 

In literature, the non-linear Coulomb friction torque is often 

represented in three different forms, as Coulomb friction is 

expressed as a sign function depending on the rotation speed 

[2-12]. 

Figure 5. Different nonlinear friction models [12] 

Figure 5 shows the different representation types that can be 

made to present Coulomb friction torque which can be written 

[4]: 
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(8) 

Figure 5a represents the nonlinear Coulomb friction for 

systems that operate at high speeds, in this case, Eq. (8.a). 

express the Coulomb friction as a signum function dependent 
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on the rotational speed [6-13]. The signum function (sgn()) is 

defined as [6-13]: 

 

1 0

sgn( ) 0 0

1 0



 







= =

−


 

(9) 

 

Figure 5b represents the nonlinear Coulomb friction for 

more accuracy when the system operation is condensed around 

the zero speed [12, 13] and for systems with very low speeds, 

in this case, Eq. (8.b). express the Coulomb by an exponential 

term in velocity [12, 13]. ∝𝑖  is defined as a constant real 

number and i=0, 1, 2, … 

Figure 5c represents a generalized model for the nonlinear 

friction that contain asymmetrical characteristic [13-15]. 

Where sgn1(ω) and sgn2(ω) are defined as [13]: 

 

1 0 0 0
sgn1( ) sgn 2( )

0 0 1 0

 
 

 

 
  

= = 
 − 

 
(10) 

 

To identify Coulomb friction torque plotting the velocity 

versus current Ω=𝑓(𝑖) is done to plot speed as a function of 

torque Ω=𝑓(C) to calculate  and choose the right non-linear 

representation seen in the Eq. (8.a). 

So Coulomb friction torque can be modeled as 

Cc(ω)=0.2826 sgn(ω). Figures 6 and 7 represent speed as a 

function of current and as a function of torque. 

 

 
 

Figure 6. Curve Ω=f(Ia) 

 

 
 

Figure 7. Curve Ω=f(T) 

2.5 Block diagram representing the non-linear system 

 

The DCM model is based on two equations electrical and 

mechanical Eq. (7), Figure 8 presents the block diagram of the 

non-linear DCM system [5-16]. 
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(11) 

 

 
 

Figure 8. Block diagram representing the non-linear system 

 

 

3. SLIDING MODE CONTROL 

 

Using sliding mode control has grown considerably in the 

last decades. This is mainly due to the property of fast and 

finite-time convergence of errors, as well as the high 

robustness against modeling errors and certain types of 

external disturbances, sliding mode controls proceed in a 

discontinuous manner, which leads to the excitation of all the 

frequencies of the system to be controlled and therefore of 

modes not necessarily taken into account in the modeling. 

This control is effective against non-linearity [4-14]. 

 

3.1 Sliding mode control design 

 

Based on the work done by SLOTINE [6] the design of this 

control method to control the DC motor speed and achieve 

favorable tracking performance against non-linearity’s can be 

divided into three main steps: Choice of surface, then 

Establishment of convergence conditions, and finally 

Determination of the control law [6-17]. 

 

3.1.1 Sliding surface choice 

Several forms of the sliding surface have been proposed in 

the literature, each with better performance for a given 

application. The most commonly used surface to obtain the 

sliding regime that guarantees the convergence of the state to 

its reference is defined by [6-9]. 

 

( ) ( )
1r

XS X e X
t



−
 

= + 
 

 
(12) 

 

e(X) Deviation on the variables to be controlled; e(X)=X*-

X. The objective of the control is to keep the surface at zero. 

 

3.1.2 Convergence conditions 

The convergence or attractiveness condition allows the 

dynamics of the system to converge to the sliding surface. It is 

a matter of formulating a scalar Lyapunov function 𝑉(𝑋) ≻ 0 

with finite energy. We define the Lyapunov function as 

follows: 
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( ) ( )21

2
V X S X=  

(13) 

 

So that the function V(X) can decrease, it is sufficient to 

ensure that its derivative is negative. Hence the condition of 

convergence is expressed by ( ) ( ) ( ) 0V X S X S X= . 

 

3.1.3 Law control determination 

The structure of a sliding mode controller consists of two 

parts, one for exact linearization (Ueq) and the other for 

stabilization (Un) [18, 19]. 

 

eq nu u u= +  (14) 

 

ueq: It is obtained with the equivalent control method. It is 

used to keep the variable to be controlled on the sliding surface 

S(x)=0. The equivalent control is deduced, considering that the 

derivative of the surface is zero. derivative of the surface is 

zero. 

un: Discontinuous (discrete) control allows the system to 

reach and stay on the sliding surface.  
 

 

4. SLIDING MODE CONTROL ON DCM 
 

4.1 Speed control 
 

4.1.1 Speed sliding surface choice 

The speed equation is: 

 

.
d K f

I
dt j j


= −   

(15) 

 

Knowing that s(x)=e(x) and 𝑒(𝑥) = 𝛺𝑟𝑒𝑓 − 𝛺𝑚 = 0. 

 

4.1.2 Convergence conditions 

After the surface diversion: 

 

( ) . m
ref

dK f
s x I

j j dt


= −  −  

(16) 

 

4.1.3 Law control determination 

The speed control law can be written U=Ueq+Un then: 

 

. . . ( ( ))m
ref ref gs

dI
U R I K L k sign s x

dt
= +  + +  (17) 

 

4.2 Current control 

 

4.2.1 Current sliding surface choice 

The current equation is: 

 

.
dI U R K

I
dt L L L

= − −   (18) 

 

Knowing that s(x)=e(x) and 𝑒(𝑥) = 𝐼𝑟𝑒𝑓 − 𝐼𝑚 = 0. 

 

4.2.2 convergence conditions 

After the surface diversion,  
 

. 0mdIU R K
s I

L L L dt
= − − − =  (19) 

4.2.3 Law control determination 

The speed control law can be written I=Ieq+In then: 

 

.
( ( ))m

ref gc

dj f j
I k sign s x

K K dt


=  + +  (20) 

 

 

5. SLIDING MODE CONTROL ON DCM 

SIMULATION 

 

Before the implementation of sliding mode control on DCM 

motor, Matlab Simulink is used to simulate this mode of 

control the responses of speed and current are shown in 

Figures 9 and 10. 

 

 
 

Figure 9. DCM Speed response 

 

 
 

Figure 10. DCM current response 

 

Figure 9 shows that the motor speed follows the reference 

speed perfectly, the motor responds quickly to the reference 

speed and reaches the speed of 150 rad/s in 0.7 s with a reduced 

overshoot, then after the application of a resisting torque at 

time t=3s, the engine rejects this disturbance after a small 

oscillation which shows the chattering effect. Figure 10 shows 

the current response which shows a reduced starting current of 

4 A and the chattering effect can be seen after applying the 

resistive torque which also sews an additional current with a 

value of 0.5 A. 

 

 

6. SLIDING MODE CONTROL ON DCM 

IMPLEMENTATION  

 

To implement the sliding mode control, the combination 

between Matlab Simulink to build the SMC control and 

ControlDesk to control the Dspace 1104 is used. The Dspace 

1104 board generates a PWM signal to control the 4-quadrant 

chopper that will drive the DC motor the feedback is done by 

the incremental encode (GI355), Figure 11 represents the 

implementation diagram used.  
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DC motor is excited by its stator at a fixed voltage 125 V 

and supplied by its rotor by variable voltage via the 4-quadrant 

chopper, isolation is assured by Tech isolator that also 

prevents the closing of T1 and T2 or T3 and T4 at the same 

time then it secures the circuit against short circuits, Figure 12 

represents the electrical circuit used to drive the DC motor.  
 

 
 

Figure 11. Implementation sliding mode control diagram on 

DCM 

 

 
 

Figure 12. Four quadrant chopper drive DC motor 

  

To deduce α the duty cycle to control the switches T1,2,3,4 it 

is necessary to calculate the voltage VAB. 

 

A dcV V=  and ( )1B dcV V= −  (21) 

 

As result, 

 

( )
1

2 1 1
2

AB
AB dc

dc

V
V V so

V
 

 
= − = + 

 

 (22) 

 

 

7. SLIDING MODE CONTROL ON DCM 

IMPLEMENTATION RESULT 

 

 
 

Figure 13. DCM speed response 

Figure 13 shows that DCM speed follows the reference 

speed perfectly with a very short response time, the speed 

response is satisfactory in both directions of rotation, but the 

overshot changes according to the speed of rotation, because 

using the same sliding mode gain kg for all speeds. chattering 

effect causes legible oscillation shown in DCM speed response 

close-up view Figure 14. 

 
 

Figure 14. DCM speed response close-up view 
 

 
Figure 15. DCM current response  

 

 
Figure 16. DCM current response close-up view 
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Figure 15 shows that DCM develops a current for each 

speed demand that causes speed short response time, the 

current also changes direction depending on the direction of 

rotation, the same remark for the overshot changes according 

to the current that the machine developed, because using the 

same sliding mode gain Kg. chattering effect causes legible 

oscillation is shown in DCM current response close-up view 

Figure 16, theoretically [6-8] the more you increase the value 

of Kg the smaller the response time (it takes 500 ms for the 

speed to return to normal Figure 14) will be but the more this 

oscillation effect increases. 

 

 

8. CONCLUSION 

 

In this paper, sliding mode Control for DC Motor systems 

with Dead-Zone has been exposed, the dead zone presents the 

non-linearity caused by Coulomb friction torque, the DC motor 

is driven by a four-quadrant chopper.  

From the simulation and implementation results obtained, it 

can be said that the sliding mode control brings high robustness 

against non-linearity and identification uncertainty. 
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NOMENCLATURE 

 

Ra Armature resistance Ω 

La Armature resistance Henry 

Za Armature impedance Ω 

fv Viscous friction N.m/rad/s 

J Total moment Inertia kg.m2 

K EMF constant 

τmec Mechanical Time constant  

Cc Coulomb friction torque 

kgs Speed sliding mode constant  

kgc current sliding mode constant 

Cf viscous friction torque 

CEMF EMF torque 
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