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In this paper, the Particle Swarm Optimization algorithm (PSO) is combined with 

Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) to design more 

efficient PD and PID controllers for robotic manipulators. PSO is used to optimize the 

controller parameters Kp (proportional gain), Ki (integral gain) and Kd (derivative gain) to 

achieve better performances. The proposed algorithm is performed in two steps: (1) First, 

PD and PID parameters are offline optimized by the PSO algorithm. (2) Second, the 

obtained optimal parameters are fed in the online control loop. Stability of the proposed 

scheme is established using Lyapunov stability theorem, where we guarantee the global 

stability of the resulting closed-loop system, in the sense that all signals involved are 

uniformly bounded. Computer simulations of a two-link robotic manipulator have been 

performed to study the efficiency of the proposed method. Simulations and comparisons 

with genetic algorithms show that the results are very encouraging and achieve good 

performances. 
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1. INTRODUCTION

In the literature we can find different types of controllers 

like PD; PI and PID where they are designed to stabilize 

dynamical systems. PD is one of the most important 

controllers and it is extensively used in different industry areas. 

PID is a combination of proportional, derivative and integral 

actions. It is an important element for distributed process 

control systems. Modern PID controllers are endowed with 

adaptive systems which can tune their free parameters. Note 

that PID controller acts in a very smooth and progressive 

manner, making sharp changes to consider the small 

deviations to correct rapid perturbations. Note also that PD and 

PID controllers are able to achieve the position control 

objective for robotic systems by calculating the error between 

the measured and the desired variables and minimizing the 

error by adjusting their parameters [1]. 

Optimization is a very important tool in engineering; it is 

the act of obtaining the best result under given circumstances 

such as design, construction or maintenance. The main 

objective of all such tools is the extremization, which is the 

process of finding the minimum or maximum value of a 

function. 

In controller design, parameters tuning is crucial, which 

gives the best performances for the system. There are various 

parameter optimization methods, and it is generally very 

difficult to choose the best ones due to the performance of each 

method being a problem-dependent [2, 3]. 

Among the important optimization methods used in 

parameters optimization we find: least squares method [4], 

gradient descent [5], Genetic Algorithm (GA) [6-9], Particle 

Swarm Optimization (PSO) [8, 10-13], Differential Evolution 

(DE) [7, 14-16], and Gray Wolf Optimization (GWO) [17]. 

Sharma et al. [9] have applied GA algorithm to a two-link 

planar rigid robotic manipulator for optimization of PID 

controller gains. Laamari et al. [12] have proposed an effective 

approach PSO-EKF to optimize the speed and rotor flux of an 

induction motor drive. Mohanty et al. [16] have applied DE 

technique to obtain the PID controller parameters. Tripathi et 

al. [17] have considered the optimization error to estimate the 

best appropriate PID parameters. 

PSO algorithm is an innovative distributed intelligent 

paradigm for solving optimization problems that originally 

took its inspiration from biological examples by swarming, 

flocking and herding phenomena in vertebrates. PSO 

incorporates swarming behaviors observed in flocks of birds, 

schools of fish, or swarms of bees, and even human society, 

from which the idea is emerged [18, 19]. Recently, many 

modified and improved versions of PSO was proposed in the 

literature, such as Simplified Particle Swarm Optimization 

(SPSO) [20], Modified Particle Swarm Optimization (MPSO) 

[21] and Improved Particle Swarm Optimization (IPSO) [22,

23].

In this paper, we introduce a new alternative to tune PD and

PID parameters based on PSO optimization algorithm by

optimizing the objective function defined by Mean Absolute

Error (MAE). Minimizing the MAE is usually considered as a

good performance index designing, and its optimization will

adjust PD and PID parameters Kp, Ki and Kd. Note that

optimization process is constrained in order to guarantee the

stability of the system by using Lyapunov stability method. In

this investigation we propose an alternative for the adaptation

and optimization of Kp, Ki and Kd. For this propose we suggest

to combine PSO with PID and PD in order to improve their

performance.

Inertia weight is a crucial parameter of the PSO algorithm 

which allows controlling its convergence. Two different 

inertia weights are considered in this paper: Constant Inertia 
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Weight (CIW), and Variable Inertia Weight (VIW) which give 

us two strategies PSOCIW and PSOVIW. The aim of this 

investigation is to apply these two strategies for the 

optimization of PID (PD) free parameters to control a robotic 

system.  

The framework of the proposed method is made of two steps. 

In the first step, which is an offline stage, PSO optimizer will 

find the optimal PD and PID parameters Kp, Ki and Kd. In the 

second step, we take the estimated parameters obtained in step 

one and inject them into the control loop. 

The rest of the paper is organized as follows: The design of 

PD and PID controllers is described in Section 2. Section 3 

presents the principle concepts of PSO algorithm. Simulation 

example is given in Section 4. Finally, conclusions are given 

in Section 5. 

2. PD AND PID CONTROLLERS DESIGN

PD and PID parameters are chosen according to the system 

to be considered. Thus, their optimal values are very necessary 

to guarantee the desired performance. 

The nth degree robot manipulator dynamic is represented by 

the following differential equation [24]. 

( ) ( , ) ( )H q q C q q q g q + + = (1) 

where, ( )H q  an n n  symmetric, positive definite mass 

matrix; ( , )C q q q  is the torques due to centrifugal forces; ( )g q  

is the gravity forces;   is the 1n vector of joint torques 

supplied by the actuators; q  is the 1n  vector of joint 

displacements. 

2.1 Design of PD controller 

PD controller framework is shown in Figure 1, where its 

control action is defined to be: 

( ) ( ) ( )

( )

p d d d

p d

K q q K q q g q

K e K e g q

 = − + − +

= + +
(2) 

where, 
dq is the desired position vector; 

dq the desired 

velocity vector; 
de q q= − the position error vector and

de q q= − is velocity error vector.

Note that 
dq  and 

dq are compared to the actual position q

and the actual velocity q , respectively; and then the 

differences are multiplied by a position gain Kp and a velocity 

gain Kd to generate the control torque (2).  

Figure 1. Structure of PD controller 

Note that an asymptotic tracking of the desired position is 

assured by law (2). Let the following Lyapunov function 

candidate: 

1 1
( )

2 2

T T

pq H q q e K e = + (3) 

Lyapunov function (3) represents the total energy of the 

manipulator and it is always positive or equal to zero due to 

the positiveness of matrices ( )H q  and Kp. The time derivative 

of v  is: 

1
( ) ( )

2

T T T

pq H q q q H q q q K e = + − (4) 

Combining (1) and (4) gives: 

( )( )

( ) ( )( )

( )

1
, ( ) ( )

2

1
( ) ( ) 2 ,

2

( )

T T T

p

T T

p

T

p

q C q q q g q q H q q q K e

q g q K e q H q C q q q

q g q K e

 





= − − + −

= − − + −

= − −

(5) 

where, we have used the fact that 2H C−  is skew symmetric. 

Substituting PD control law (2) into (5) gives: 

0T

dq K q = −  (6) 

The above analysis shows that v decreases as long q  is 

nonzero. In the case of 0 = , (6) then implies that 0q   and 

hence 0q  . Using the dynamical Eq. (1) and the PD control 

(2) we obtain:

( ) ( , ) ( ) ( )p dH q q C q q q g q K e K q g q+ + = − + (7) 

then 0pK e  and because Kp is nonsingular, we have 0e  . 

Therefore, control low (2) applied to the system (1) achieves 

global asymptotic stability and the robot is therefore well-

stabilized by the addition of PD-type control law. 

2.2 Design of PID controller 

A PID torque control for the robot manipulator (1) is shown 

in Figure 2 and given by 

( ) ( )

( ) ( )

( )

p d i d

d d

p i d

K q q K q q dt

K q q g q

K e K e dt K q g q

 = − + −

+ − +

= + − +





(8) 

where, Kp, Ki and Kd are the PID parameters to be tuned to 

achieve an accepted level of performance. 

The kinetic energy of the manipulator is the scalar function 

which is represented in terms of the generalized coordinates 

and their derivatives as 

1
( )

2

TK q H q q= (9) 

836



Figure 2. Structure of PID controller 

The potential energy is expressed in terms of the 

generalized coordinates using the relationship.  

T

cP q r m= (10) 

where, n

cr  ; m

 
denotes the mass.

Defining q = where n denotes the angular 

velocity vector. 

Let rewrite (1) as: 

 1( ) ( , ) ( )H q C q g q   −= − + − (11) 

The PID control function (8) becomes: 

( ) ( ) ( )p q i q dK q q K q q dt K g q = − + − − + (12) 

Eq. (2) imply that the resulting system is expressed as: 

1( ) ( ( , ) ( )

( ) ( ))

p q

i q d

H q C q K q q

K q q dt K g q

  



−= − − −

− − + +
(13) 

Let the following Lyapunov function candidate, 

( )
1

,
2

1
( )

2

T T

q q

T T

c

q q K q q K

H q q r m

  

 

= +

+ +

(14) 

where, n n

qK  and n n

qK 

 are positive-definite 

matrices. 

The time derivative of v  is: 

( ),

1
( ) ( )

2

T T

q q q

T T

c

q q K q qK q K

H q H q r m

    

   

= + +

+ + +
(15) 

According to Eq. (13) and Eq. (15) and because ( )H q is 

positive definite matrix, therefore it follows at once that 

( ),q  is negative definite.

3. PARTICLE SWARM OPTIMIZATION 

ALGORITHM

Particle Swarm Optimization (PSO) is an evolutionary 

computation technique inspired by social behavior of groups 

like bird flocking, fish schooling or colonies of insects; 

because it is known that a group can effectively achieve an 

objective by using the common information of every element. 

PSO algorithm was first introduced in 1995 by Eberhart and 

Kennedy [25] as an alternative to population based search 

approaches (like genetic algorithms) in order to solve 

optimization problems. 

In this algorithm the elements of the population are called 

particles, and each particle (a bird or a fish) is a candidate for 

the solution. Each particle is considered as a moving point in 

the N-dimensional search space with a certain velocity. The 

velocity of each particle is constantly adjusted according to its 

own experience and the experience of its companions hopping 

to fly towards better solution area. 

In PSO, each state of particle presents a position and 

velocity, which is initialized with a population generation by a 

random process. Note that each particle is described by three 

features: 
i

kx : thi particle vector position at time k . 

i

kv : thi particle velocity at time k , which represents the 

search direction and used to update the position vector. 

( )i

kJ x : fitness or objective, determines the best position of

each particle over time. 

Mathematically, the particle velocities are updates 

according to the following equations: 

1 1 2( ) ( )i i i i g i

k k k k kv wv c rand p x c rand p x+ = + − + − (16) 

where, 1

i

kv + is the new velocity, w the inertia factor, 1c

positive constant (self confidence), 2c positive constant 

(swarm confidence), symbol g  represents the index of best 

particle among all the particles in the population, 
ip thi

particle best position (the best position in the swarm), 
g

kp

particle best global position (best particle among all the 

particles in the population) until time k (so, 
gp  will be the 

last best global position), rand is a random number uniformly 

distributed in  0, 1 .

Particle positions are the updates by velocity (16) as: 

1 1

i i i

k k kx x v+ += + (17) 

The PSO principle consists of, at each time step, regulating 

the velocity and location of each particle toward its 
ip and 

gp

locations according to Eq. (16) and Eq. (17) until a maximum 

change in the fitness function will be smaller than a specified 

tolerance   which gives us the following stopping criteria. 

( ) ( )1

g g

k kJ p J p + −  (18) 

The following algorithm provides a brief summary of the 

PSOVIW algorithm 1. 

Algorithm 1 

Begin Algorithm 

Input: function to optimize, J

      swarm size, N
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      problem dimension, D

Output: *x the best value found 

Initialize: for all particles in problem space 

( )1, ,i i iDx x x= and ( )1, ,i i iDv v v= , 

Evaluate ( )iJ x in D variables and get
ipbest , ( )1, ,i N=

gbest ← 
ipbest

Repeat 

 Calculate VIW using (20) 

 Update 
iv  for all particles using (16) 

 Update 
ix for all particles using (17) 

Evaluate ( )iJ x in D variables and get
ipbest , 

( )1, ,i N=

If ( )iJ x is better than 
ipbest then 

ipbest ← 
ix

      If the 
ipbest is better than gbest then gbest ← 

ipbest

Until stopping criteria (e.g., maximum iteration or error 

tolerance is met) 
*x ← gbest

Return *x  

End Algorithm 

4. PROPOSED METHOD

The PID or PD problematic is that its control is greatly 

affected by the parameters Kp, Ki and Kd. Bad choice for these 

parameters will make the result of tracking divergent or will 

give large errors. To surmount this difficulty and to obtain the 

best performances, Kp, Ki and Kd have to be considered as free 

parameters to be adapted. The tuning of Kp, Ki and Kd will 

affect both the transient time interval and steady-state 

operation of the response.  

PID or PD parameters have to be optimized with a very high 

accuracy in order to obtain precise response. This task is very 

difficult due to the probable unknown system dynamics. To 

elucidate this problematic, controller parameter must be 

considered as free parameters to be adjusted. In the literature, 

the considered parameters were first tuned or adjusted by trial 

and error method which was a very hard task which takes 

longue time. In order to surmount this difficulty and to avoid 

trial and error method, PSO with Variable Inertia Weight w , 

in which it will be decreased linearly with the iteration number 

(PSOVIW) technique, was used to tune and optimize the 

controller parameters automatically. 

In this section, we propose a new alternative for the 

adaptation and optimization of Kp, Ki and Kd based on the 

PSOVIW algorithm in order to eliminate the steady-state error, 

reduce the overshoot amplitude and decrease the rise time. For 

this purpose, we suggest to combine PSOVIW optimization 

with PID or PD in order to design an efficient PID (PD) for 

two link robot manipulators. To our knowledge, this work has 

not been done before. The framework of the proposed method 

is made of two steps. In the first step represented in Figure 3, 

we present a PSOVIW-PID (PD) combination working in an 

offline way to optimize the optimal values of Kp, Ki and Kd. In 

the second step, we take the optimized quantities from step one 

and insert them into the online PID (PD) controller of two link 

robot manipulator parameters. 

The structure of the PSOVIW-PID (PD) parameter 

optimization system is illustrated in Figure 3. We consider that 

the input of the system is the vector ( )  1 2

T

d dr t  =  and the

measured response is  1 2

T
y  =  obtained by an angle 

sensor (encoder). Note that the error between r  and y  is set 

to be an input for the PID (PD) as well as the optimized 

parameters Kp, Ki and Kd. Actual tracking errors are used by 

the performance evaluator. The performance evaluator 

estimates the objective function which is a Mean Absolute 

Error (MAE) criterion between the actual output and the 

desired reference input defined in what follows: 

2

,

1 1

1 N

i k

k i

J MAE e
N = =

 
= =  

 
 (19) 

where, 1,2i =  is the number of robot articulations and N  is 

the number of data samples, such that: 

 1 1 1( ) ( )de k k = −  is the output error of the first 

articulation; 

 2 2 2( ) ( )de k k = − is the output error of the second 

articulation. 

Based on MAE values, PSOVIW optimizer will estimate 

the unknown PID (PD) free parameters by updating the 

solutions according to algorithm 1. 

Figure 3. Block diagram of PSO-PID 

The framework of Figure 3 will be repeated until a preset 

number of iterations will be accomplished and then optimal 

values of PID parameters are obtained. Note that the first step 

in the proposed algorithm is carried out in an offline manner. 

This is caused due the fact that PSOVIW requires several 

repetitions to obtain the optimal solutions. For each iteration, 

the whole framework of Figure 3 is executed one time on the 

entire time interval; consequently, this structure has to be 

executed several times which will allow PID free parameters 

to be adjusted in each iteration.  

5. SIMULATION EXAMPLE

To verify the effectiveness of the proposed method, a two 

link robot manipulator with two Revolute joints (RR) shown 

in Figure 4 will be considered. 
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Figure 4. Two link planar RR arm 

The dynamic of the two link robot is defined by Eq. (1) for 

which we will use the following parameters: 

Masse matrix 

( ) 11 12

21 22

h h
H q

h h

 
=  
 

 ( ) 2 2

11 1 2 1 2 2 2 1 2 22 cosh m m a m a m a a = + + +

2

12 21 2 2 2 1 2 2cosh h m a m a a = = +

2

22 2 2h m a=

The parameters im and , ( 1,2)ia i =  are the masses and 

lengths of the robot manipulator. 

Centrifugal and coriolis forces matrix 

( ) 2 1 2 2 2 2 1 2 2 2

2 1 2 1 2

2 sin sin
,

sin 0

m a a m a a
C q q

m a a

   

 

 − −
=  
 

Gravitational forces matrix 

( )
( ) ( )

( )
1 2 1 1 2 2 1 2

2 2 1 2

cos cos

cos

m m ga m ga
g q

m ga

  

 

 + + + 
=  

+ 

with 
29.8 /g m s=  is the acceleration due to gravity.

 
For simulation purposes we take 1 2 1m m kg= =  and 

1 2 1a a m= = . Since the dynamic of the considered system is 

two dimensional, therefore the joint variable and the 

generalized force vector will be defined by  1 2

T
q  =  and 

 1 2

T
  = , respectively, with 1 and 2 are the torques 

supplied by the actuators. Note that all of our codes are written 

in Matlab language in M-files with sampling period 
310 s−

.

For comparison purposes, the optimization performances are 

evaluated using the MAE criterion.  

In fact, it is not simple to deduce exact values for Kp, Ki and 

Kd giving the best performances. This will be solved in what 

follows by using our PSO-PD and PSO-PID which will allow 

us to obtain better results with higher precision than the 

classical trial and error method. It should be noted that the 

convergence of the PSO method to the optimal solution 

depends on the parameters 1c , 2c and w . According to our 

tests, 1c and 2c  best values lie in the interval [0.5, 1.05]; and

 0.3,1w . 

In this paper, two strategies are used for the computation of 

the inertia weight w to evaluate the performance of 

parameters. The inertia weight w is introduced into the 

equation to balance between the capacities of the global search 

and the local search, as it is one of the important factors for the 

PSO’s convergence which directly affects the percentage of 

previous velocities on the current velocity at the current time 

step for both strategies: (1) PSO with Constant Inertia Weight 

(PSOCIW), in which it will be fixed at 0.9 (see Figure 5), this 

high value of w  will force the particles to fly with a 

significant influence of the previous velocity. Note that this 

method is characterized by an increase in the convergence 

speed of the PSO algorithm and a large inertia weight factor 

provides PSO a global optimum. (2) PSO with Variable Inertia 

Weight (PSOVIW) was introduced in PSO’s equations in 

order to improve the performance of PSO (according to Eq. 

(20)), in which it will be decreased linearly with the iteration 

number (see Figure 5) to a small  value. With this low value of 

w , current velocity will contribute more to the particle’s 

trajectory and provides PSO a local optimum, in contrast to the 

first  strategy. For high values of inertia weight, the global 

search capability is powerful but the local search capability is 

powerless. Likewise, when inertia weight is lower, the local 

search capability is powerful, and the global search capability 

is powerless. This balancing improves the performance of PSO. 

max min

maxk

w w
w w k

N

−
= − (20) 

where, max 1w =  and min 0.3w =  are the initial and final values 

of the inertia weight, respectively, and N  is the maximum 

number of iterations used in PSO. 

Note that, in this case, excellent results will be obtained as 

will be shown later. 

The PSO Parameters of the two strategies PSOCIW and 

PSOVIW are summarized in Tables 1 and 2. 

The best fitness functions (MAEs) and their corresponding 

optimized controllers gain parameters (Kp, Ki and Kd) obtained 

by our proposed approaches (combination PSO-PD and PSO-

PID) (see Figure 3) are reported in Table 3 and Table 4, 

respectively. 

Figure 5. CIW and VIW of PSO algorithm 

839



Table 1. Parameters of the PSOCIW algorithm 

Designation Variable Value 

Number of particles in a group N 20 

Number of Iterations I 40, 50, 60, 100 

Inertia weight factor w 0.9 

Acceleration constants c1, c2 0.5 

Optimization results show that the method is able to find the 

optimal solution and reduce the error efficiently within 100 

iterations. We note that the best value of MAE which 

corresponds to the best estimate of PD and PID gain 

parameters are given in case 8 of Table 3 and case 7 of Table 

4, respectively. 

Table 2. Parameters of the PSOVIW algorithm 

Designation Variable Value 

Number of particles in a group N 20 

Number of Iterations I 40, 50, 60, 100 

Minimum inertia weight factor wmin 0.3 

Maximum inertia weight factor wmax 1 

Acceleration constants c1, c2 1.05 

Table 3. Optimized parameters and their performances in the joint space for PD controller using PSO 

Optimization method Case I Kp1 Kd1 Kp2 Kd2 MAE 

PSOCIW 

1 

2 

3 

4 

40 

50 

60 

100 

553.5999 

556.1911 

558.1911 

558.1911 

88.3948 

87.0808 

87.0808 

87.0808 

376.4420 

369.5691 

369.5691 

369.5691 

37.3761 

31.2962 

31.2962 

31.2962 

1.0737e-05 

9.7914e-06 

1.3111e-06 

1.3111e-06 

PSOVIW 

5 

6 

7 

8 

40 

50 

60 

100 

521.1328 

597.0536 

816.1067 

663.2064 

51.3526 

62.0977 

89.9357 

113.7360 

544.2311 

560.3582 

418.7053 

695.1595 

75.9123 

67.0380 

43.7568 

105.5423 

6.6234e-06 

1.5341e-06 

6.0632e-10 

1.5916e-14 

Table 4. Optimized parameters and their performances in the joint space for PID controller using PSO 

Optimization 

method 
Case I Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 MAE 

PSOCIW 

1 

2 

3 

4 

40 

50 

60 

100 

575.8960 

575.8960 

575.8960 

577.0524 

392.3983 

392.3983 

392.3983 

356.7020 

112.5328 

112.5328 

112.5328 

105.4120 

392.4810 

392.4810 

392.4810 

344.7770 

462.4569 

462.4569 

462.4569 

432.3530 

9.5001 

9.5001 

9.5001 

10.1167 

1.8169e-04 

1.8169e-04 

1.8169e-04 

1.3856e-05 

PSOVIW 

5 

6 

7 

8 

40 

50 

60 

100 

417.6209 

509.3163 

435.5346 

426.8821 

123.9084 

181.1770 

100.8813 

124.1054 

71.2909 

65.0094 

56.4018 

76.5055 

644.9327 

775.7143 

621.7791 

641.5470 

625.4555 

661.6406 

517.8345 

546.7384 

79.8841 

73.8510 

59.1068 

83.0836 

3.7550e-18 

3.0524e-18 

3.7466e-19 

1.1656e-18 

Figure 6. Evolution of the fitness function relative to PD 

(case of 8 iterations in Table 3) 

Figure 7. Evolution of the fitness function relative to PID 

(case of 8 iterations in Table 4) 

(a) Constant desired trajectory

(b) Sinusoidal desired trajectory

Figure 8. PD Positions tracking with the best optimized 

parameters 
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Figure 9. Tracking position error 1e of the first articulation 

Figure 10. Input control action 1u of the first articulation

Same interpretation for PID controller (see Figure 11) in 

which we visualize also an excellent perturbation rejection.  

Note that the perturbation was applied at 5t s=  with 

amplitude 5N. The corresponding tracking error and control 

action relative to the first articulation of the robot are presented 

in Figures 12 and 13 where we denote perfect performances.  

(a) Constant desired trajectory

(b) Sinusoidal desired trajectory

Figure 11. PID Positions tracking and perturbation rejection 

with the best optimized parameters 

Figure 12. Tracking position error 1e of the first articulation 

Figure 13. Input control action 1u of the first articulation

The convergence of the fitness functions is shown in Figures 

6 and 7 for PD and PID controllers; respectively. We notice that 

the MAE is decreased at most after 10 iterations, which 

confirms the convergence and the stability of the optimization 

process.  

Simulation results for the PD controller are given in Figure 

8 where we show that the performances of PSOVIW are better 

than PSOCIW for both cases: constant desired trajectory 

(Figure 8 (a)) and sinusoidal desired trajectory (Figure 8 (b)). 

We also present in Figures 9 and 10 the corresponding tracking 

error and control action of the first articulation. Remark that the 

tracking error converges exponentially to zero. 

To validate the proposed approach, we will present in what 

follows a short comparative study in which we compare the 

introduced method with Genetic Algorithm.  

Genetic Algorithm will play now the same role as PSO, 

which means that we replace in Figure 3 the PSO block by a 

GA block. For this purpose, GA will estimate and optimize the 

controller parameters in two steps as in the case of PSO.  

The parameters of GA are chosen as shown in Table 5 where 

we have selected different generations I=40, 50, 60, 100 with 

the following parameters: population size N=20, mutation 

probability M=0.2 and crossover probability C= 0.5. 

GA fitness functions evolution are presented in Figures 14 

and 15 for PD and PID controllers; respectively. We notice 

that the MAE converges in 20 iterations max, contrary to the 

PSO case which converges in 10 iterations max (see Figures 6, 

7, 14 and 15) which confirm that PSO is faster than GA. Note 

also that both PSO methods (PSOCIW and PSOVIW) give 

more accurate results compared to GA method (See Tables 3, 

6 and Tables 4, 7). 

By this short comparative study, we confirm the 

effectiveness of the proposed method and its superiority in 

speed convergence high resolution (see Figures 16-21).  
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Table 5. Parameters of the genetic algorithm 

Designation Variable Value 

Population size N 20 

Generations I 40,50,60,100 

Mutation probability M 0.2 

Crossover probability C 0.5 

Table 6. Optimized parameters and their performances in the joint space for PD controller using GA 

Optimization method Case I Kp1 Kd1 Kp2 Kd2 MAE 

GA 

1 

2 

3 

4 

40 

50 

60 

100 

64.6040 

76.2287 

52.9399 

89.0021 

28.6951 

30.2603 

23.6698 

30.7783 

46.9204 

74.9499 

79.5247 

49.2828 

10.1212 

13.9796 

14.4101 

1.3190 

1.8757e-04 

6.3897e-05 

9.3264e-05 

9.9626e-05 

Table 7. Optimized parameters and their performances in the joint space for PID controller using GA 

Optimization method Case I Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 MAE 

GA 

1 

2 

3 

4 

40 

50 

60 

100 

45.9883 

77.2967 

77.6165 

110.8116 

3.7957 

7.7502 

7.5343 

15.3839 

23.2161 

30.5331 

32.2968 

33.3837 

44.7578 

64.3610 

87.5616 

75.5687 

10.5608 

49.7162 

19.1396 

22.9882 

2.2023 

5.1843 

3.1810 

3.9823 

1.0940e-03 

3.3240e-03 

8.7338e-04 

1.5665e-04 

Figure 14. Evolution of the fitness relative to PD (case 4 

iterations in Table 6) 

Figure 15. Evolution of the fitness relative to PID (case 4 

iterations in Table 7) 

(a) Constant desired trajectory

(b) Sinusoidal desired trajectory

Figure 16. PD Positions tracking with the best optimized 

parameters 

Figure 17. Tracking position error 1e of the first articulation 

Figure 18. Input control action 1u of the first articulation
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(a) Constant desired trajectory

(b) Sinusoidal desired trajectory

Figure 19. PID Positions tracking and perturbation rejection 

with the best optimized parameters 

Figure 20. Tracking position error 1e of the first articulation 

Figure 21. Input control action 1u of the first articulation 

To confirm the efficiency of the proposed control, we 

present in the following a statistical comparison between the 

best obtained results of PSOVIW and GA for PID case. As a 

statistical analysis tool, we are going to use the error bars for 

the optimized parameters to evaluate the accuracy of the 

control quality. This technique is a graphical representation of 

the variability of the optimized parameters (on graphs) to 

indicate the uncertainty and provides a general idea of the 

tracking precision. If the bars are large, this means we have 

bad optimization (high variability or high uncertainty), 

contrary, if the bars are narrow, then the optimization quality 

is better (less uncertainty).  

We present in Figures 22 and 23 error bars comparison 

between the PSOVIW and GA of the first and the second joints 

of the robot using the best parameters given in the last line in 

Table 4 for PSOVIW case and the best parameters given in the 

last line in Table 7 for GA case. For this purpose, we introduce 

state random noise ( )n t with variance one and mean value zero 

i.e., ( ) (0,1)n t N  . Figures 22 and 23 suggest clearly that

widths of the error bars for the PSOVIW method are the 

narrowest and more centered compared to the GA case. Error 

bars in Figures 22 and 23 confirm the efficiency of PSOVIW 

method compared to GA method where we notice that 

PSOVIW tracking variance is tighter and well centered.  

Figure 22. Error bar comparison of tracking variability of the 

first joint 

Figure 23. Error bar comparison of tracking variability of the 

second joint 

6. CONCLUSIONS

In this paper, we proposed a metaheuristic optimization 

method using Particle Swarm Optimization for the adjustment 

of PD and PID gains. Two PSO approaches were used: 

PSOCIW and PSOVIW. In this technique, the algorithms were 

combined with PID and PD controllers for the purpose of 

improving controller effectiveness. The approaches were 

designed to estimate offline controller parameters. After that, 

optimal estimated parameters were injected in the online 

control loop. The introduced algorithms were validated on the 
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control of a two link robot manipulator. Simulation results 

show that the method gives an excellent performance. Also, 

the effectiveness of the approach was confirmed by a short 

comparative study in which we found that it outperforms the 

Genetic Algorithm technique for this type of applications, 

where the resulting estimates are more precise and the 

optimization is faster than GA. Furthermore, we concluded 

that the PSOVIW approach, which used variable inertia weight, 

performed better results than GA and PSOCIW. 
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