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 Safety, availability and reliability are the main concern of many industries. Thus, fault 

detection and isolation of industrial machines, which are in most cases switched systems, 

is a primary task in many companies. The presented paper proposes a new diagnostic 

approach for switched systems using two powerful tools: bond graph and observer. A 

diagnostic layer detects model errors using bond graph, and a smart algorithm identifies 

and locates faults using observer. Although observers serve as fault detectors, they also 

have their own errors caused by convergence delay of calculations; even in the case of no 

sensor defect, the residue does not converge to zero. In this paper, we propose a new 

method to solve this problem by integrating dynamic thresholds in the detection procedure, 

which helped to avoid false alarms and ensure a highly reliable diagnosis. 
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1. INTRODUCTION 

 

In an economic world, where competitiveness and 

competition are the masters of the company's existence, the 

right to make mistakes is intolerable. Thus, the diagnosis has 

taken more height, and the detection of defects has become 

more and more essential [1]. In industry, the main goal of 

maintenance departments is to locate and identify failures by 

developing monitoring approaches that allow to instantly 

follow the evolution of a normal operating mode towards an 

abnormal one [2]. 

Model based fault detection has shown its reliability to 

solve complex diagnosis problems. It is well known that the 

core element of this method is the generation of residues that 

indicate the presence of a default. A huge number of 

approaches have been discussed in the literature. The most 

classical ones are the identification algorithms [3], the parity-

space approaches [4], and the observer-based methods [5, 6], 

which are considered one of the most effective and popular 

methods. 

Model based fault detection doesn’t signify concentrating 

only on supervisory schemes and fault diagnosis but 

considering modeling an essential part for a reliable result. The 

more precise the model, the advanced is the exactitude of 

diagnosis, and the negligible is the incorrect alarm probability 

[7]. For this reason, bond graph is considered most appropriate 

for models’ development. It offers a first layer diagnosis 

model, and it gives the possibility to extract mathematical 

equations in an easier way [8]. 

Industrial systems are known by their complexity. They 

combine two forms of dynamics: continuous evolutions and 

discrete transitions. We mean switched systems [9]. According 

to the classic view, switched systems are a class of hybrid 

dynamical systems involving a set of linear subsystems and a 

rule that indicates the active subsystem [10]. They give a 

perfect description of the complex behavior of dynamical 

systems by integrating the continuous part as well as the 

discrete part. Historically, the vital aim of switched systems 

diagnosis was analyzing the behavior of the system and 

considering, at the same time, the communication between the 

two types of dynamics, and several studies have been carried 

out [5, 11]. However, the conception of dynamic thresholds 

has been neglected. Achieving a high level of precision is only 

possible through dynamic thresholds that vary with the 

evolution of the system. For this reason, we have proposed an 

innovative fault detection and isolation approach based on 

dynamic thresholds to cancel the own error of observers, 

which are usually used as system virtual sensors, and ensure a 

highly reliable diagnosis. 

The paper is ordered as follows: after the introduction, 

section 2 describes the phases of the proposed diagnosis 

approach. Section 3 presents the application of the method on 

an example, where results are discussed and finally, section 4 

concludes the paper. 

 

 

2. FAULT DETECTION AND ISOLATION METHOD 

 

2.1 Bond graph modeling 

 

A bond graph is a collection, of four subgroups, composed 

of eleven different multiport elements [12]: 

 

− Active elements: effort source (Se) and flow source (Sf). 

− Passive elements: inertia (I), capacitance (C) and 

resistance (R). 

− Junction elements: one junction (1), zero junction (0), 

gyrator (GY) and transformer (TF). 

− Detectors: flow detector (Df) and effort detector (De). 

 

Bond graph is habitually used to model continuous systems. 

In order to integrate the discrete part, and propose a hybrid 

bond graph several studies, have been suggested [13-15]. 

The simplest and the suitable kind of hybrid bond graph 

adapted to switched systems is the automaton coupling hybrid 

bond graph. It is a combination of bond graph and automaton 
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[16]. It models the continuous dynamic by bond graph and the 

discrete transition through hybrid automaton [17]. Each 

different continuous evolution characterizes a mode, and a 

logic condition defines the transition from a mode to another 

as shown below in Figure 1. 

 

 
 

Figure 1. Hybrid bond graph 

 

The outputs/inputs are ordered by the flow/effort causality, 

which gives to bond graph the possibility to detect model 

errors and ensures a first layer of diagnosis. 

Each bond graph element has a causality rule that organizes 

the effort and flow in the model. For a detailed review on this 

topic see [18, 19]. 

Inconsistencies of causality rules reveal modeling errors 

that have to be rectified before starting the diagnosis process. 

 

2.2 Fault detection 

 

Considering a switched system that evolves in n different 

modes and has m outputs. The state space represented in Eq. 

(1) gives the linear dynamic of a mode i ∈ [1,n]. 

 

𝑆𝑖: {
�̇�(𝑡) = 𝐴𝑖 . 𝑥(𝑡) + 𝐵𝑖 . 𝑢(𝑡) + 𝐸𝑖𝑥 . 𝑑(𝑡)

𝑦𝑖(𝑡) = 𝐶𝑖 . 𝑥(𝑡) + 𝐷𝑖 . 𝑢(𝑡) + 𝐸𝑖𝑦 . 𝑑(𝑡)
 (1) 

 

The method described in this paper is only concerned with 

sensor faults; therefore, Eix = 0 and the system is presented 

by Eq. (2). 

 

Si: {
ẋ(t) = Ai. x(t) + Bi. u(t)

𝑦𝑖(𝑡) = Ci. x(t) + Di. u(t) + Ei. d(t)
 (2) 

 

where, x(t) ∈ ℝk is the state vector, y(t) ∈ ℝm is the output 

vector, u(t) ℝp is the input vector and d(t) ℝk is the defaults 

vector. 

Ai ∈  ℝk∗k  is the system matrix, Bi ∈  ℝk∗p  is the control 

matrix, Ci ∈  ℝm∗k is the output matrix, Di ∈  ℝm∗p is the 

feedthrough matrix and Ei ∈ ℝm∗k is the sensor defect matrix. 

Each mode is described by Eq. (3). 

 

𝑆𝑖𝑗: {
�̇�(𝑡) = 𝐴𝑖. 𝑥(𝑡) + 𝐵𝑖 . 𝑢(𝑡)

𝑦𝑖𝑗(𝑡) = 𝐶𝑖𝑗 . 𝑥(𝑡) + 𝐷𝑖𝑗 . 𝑢(𝑡) + 𝐸𝑖𝑗 . 𝑑(𝑡)
 (3) 

 

For each output j ∈ [1, m] evolving in a mode i ∈ [1,n], we 

associate an observer. We have chosen Luenberger Observer 

for its simplicity and robustness and it can be represented by 

the mathematical Eq. (4). 

 

𝑂𝑖𝑗 : {
�̌̇�(𝑡) = 𝐴𝑖. �̌�(𝑡) + 𝐵𝑖 . 𝑢(𝑡) + 𝐿𝑖𝑗(𝑦(𝑡) − �̌�(𝑡))

𝑦𝑖�̌�(𝑡) = 𝐶𝑖𝑗 . �̌�(𝑡) + 𝐷𝑖𝑗 . 𝑢(𝑡)
 (4) 

 

𝑒𝑖𝑗(𝑡) in Eq. (5) is the calculated error between the rebuilt 

state �̌�(𝑡) and the system state x (t). 

 

𝑒𝑖𝑗(𝑡) = 𝑥(𝑡) − �̌�(𝑡) (5) 

 

The residue 𝑟𝑖𝑗(𝑡) in Eq. (6) is the calculated error between 

the rebuilt output 𝑦𝑖�̌�(𝑡) and the measured output 𝑦𝑖𝑗(𝑡). 

 

𝑟𝑖𝑗(𝑡) = 𝑦𝑖𝑗(𝑡) − 𝑦𝑖�̌�(𝑡) (6) 

 

Eq. (7) gives the derivative function of 𝑟𝑖𝑗(𝑡) and 𝑒𝑖𝑗(𝑡). 

 

{
�̇�𝑖𝑗(𝑡) = (𝐴𝑖 − 𝐿𝑖𝑗𝐶𝑖𝑗). 𝑒𝑖𝑗(𝑡) − 𝐿𝑖𝑗𝐸𝑖𝑗𝑑(𝑡)

�̇�𝑖𝑗(𝑡) = 𝐶𝑖𝑗 . 𝑒𝑖(𝑡) + 𝐸𝑖𝑗 . 𝑑(𝑡)
 (7) 

 

Observers receive all the outputs/ inputs of the system. 

Obtained outputs y(𝑡)  are compared instantly to rebuilt 

outputs �̌�(t) to generate residual vectors rij. 

Each residue 𝑟𝑖𝑗(𝑡)  calculated is compared to a dynamic 

threshold 𝑚𝑖𝑗(t), which is defined by Eq. (8). 

 

𝑚𝑖𝑗(𝑡) = 𝑝𝑖𝑗(𝑡) + 𝑇𝑖𝑗(𝑡) (8) 

 

Tij is a constant calculated by considering the noise 

measurements and the disturbances modeling errors in the 

system. 

pij(t) is the observer's own error caused by the change of 

modes and calculation delays. It is the residue of observer 

when there is no default. It is defined by Eq. (11) resulting 

from Eq. (9) and Eq. (10). 

 

𝑆𝑖𝑗 : {

�̇�(𝑡) = 𝐴𝑖 . 𝑥(𝑡) + 𝐵𝑖 . 𝑢(𝑡)

𝑦𝑖𝑗(𝑡) = 𝐶𝑖𝑗 . 𝑥(𝑡) + 𝐷𝑖𝑗 . 𝑢(𝑡)

x(0) = x0

 (9) 

 

𝑂𝑖𝑗 : {

�̌̇�(𝑡) = 𝐴𝑖. �̌�(𝑡) + 𝐵𝑖 . 𝑢(𝑡) + 𝐿𝑖𝑗(𝑦(𝑡) − �̌�(𝑡))

𝑦𝑖�̌�(𝑡) = 𝐶𝑖𝑗 . �̌�(𝑡) + 𝐷𝑖𝑗 . 𝑢(𝑡)

�̌�(0) = �̌�0

 (10) 

 

𝑝𝑖𝑗(𝑡) = 𝑦𝑖𝑗(𝑡) − 𝑦𝑖�̌�(𝑡) (11) 

 

As a result, 𝑚𝑖𝑗 is described by Eq. (12). 

 

𝑚𝑖𝑗(𝑡) = 𝑦𝑖𝑗(𝑡) − 𝑦𝑖�̌�(𝑡) + 𝑇𝑖𝑗  (12) 

 

We then adopt the decision logic bellow: 

If ǀrij(t)ǀ> mij(t) 

SCij =0 the output j is faulty 

Else Sij=1 

We then generate the sensors signature 

SCj=∏ 𝑆𝐶𝑖𝑗𝑛
𝑖=1 . 

 

2.3 Mode identification 

 

For an output 𝑦𝑗, the minimal value of the residue 𝑟𝑖𝑗(𝑡) is 

the number of the active mode i. 

Following the algorithm below, the residue 𝑟𝑖𝑗(𝑡) will be 

evaluated to identify the corresponding mode of each output 

SMj: 

for j=1:m 

Min = 𝑟1𝑗(𝑡); 

SMj = 1; 

for j = 2:n 

If 𝑟𝑖𝑗(𝑡) < Min  

Min = 𝑟𝑖𝑗(𝑡);  

SMj = i; 
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end  

end 

end 

SM=(SMj) ∈ ℝm 

If the system functions normally with no errors, then 

SM(t)=C.U. 

where, U is the unit vector, 𝑈𝑇=(1 1 … 1), and C is the active 

mode. 

Else, the 𝑆𝑀d(𝑡) of the defected output is not identical to 

the others 𝑆𝑀j(𝑡). 

The active mode S is the mode of fault free outputs. 

Supposing that we can't have all the sensors generating 

errors at the same time. 

Then, 𝑆 =  
∑ 𝑆𝑀𝑗∗SCj𝑚

𝑗=1  

∑ SCj𝑚
𝑗=1  

. 

Else, the active mode S is faulty.  

 

 

3. APPLICATION EXAMPLE AND SIMULATION 

 

3.1 System description 

 

Figure 2 shows the two tanks system selected for the 

application of the fault detection and isolation approach. 

We consider a two tanks hydraulic system. A pump delivers 

water at the rate q1 that arrives at a first tank T1 of section S1. 

At the exit of this tank a valve V1 of hydraulic resistance Rh 

lets the fluid passes to a second tank T2, of section S2. Thus, 

the outflow from this tank is allowed by a valve V2 of 

hydraulic resistance Rh. 

In order to facilitate the study, the valve V1 is left open and 

only the valve V2 is acted on. 

We can have two states of the valve V2: closed or opened. 

In mode 1, V2 is closed and q1 is maintained.  

In mode 2, V2 is opened and q1 is stopped. 

The aim is to maintain the liquid level 𝑙1 and 𝑙2 in the two 

tanks T1 and T2 on a well-defined level: {
𝑙1 ≤ 0.6
𝑙2 ≥  0.2

. 

Table 1 presents the numerical values of parameters. 

 

 
 

Figure 2. Two tanks hydraulic system 

 

Table 1. Parameters numerical values 

 
Parameter Description Value 

q1 volumetric flow rate 0.2 𝑚3/𝑠 

Rh Hydraulic resistance of the valve 10 𝑁. 𝑠. 𝑚−5 

S1 Base surface area of the tank1 2 𝑚2 

S2 Base surface area of the tank2 1.5 𝑚2 

g gravitational acceleration 9.8 𝑚. 𝑠−2 

The hybrid automaton in Figure 3 presents the different 

standard states of the system described by mode 1 and mode 2. 

Satisfying the conditions allows jumping from a mode to 

another. 
 

 
Figure 3. Hybrid automaton of the system 

 

3.2 System modeling 

 

To build a bond graph model in integral causality, the 

following suppositions are taking into account: 

-The volumetric flow rate q is the volume of fluid which 

passes per time; it is defined by Eq. (13). 

 

𝑞 =
𝑑𝑉

𝑑𝑡
 (13) 

 

-The volumetric flow rate q1 of the pump is constant. 

-The hydraulic resistance Rh is the resistance resulting from 

a liquid flowing valves or changes in pipe diameter; it is 

defined by Eq. (14). 

 

𝑅 =
𝑄

𝛥𝑃
 (14) 

 

Figure 4 and Figure 5 present the bond graph model in 

integral causality. 

A bond graph model is designed for each mode: 

 

Second mode : 
 

 
 

Figure 4. Bond graph model: mode 2 
 

First mode: 

 

 
 

Figure 5. Bond graph model: mode 1 
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To generate the dynamic model of the system we follow the 

four steps below: 

- Identify the outputs/inputs variables. 

- Extract equations from junctions. 

- Extract equations from passive and active elements. 

- Combine the set of equations to generate the state space. 

The equations Eq. (15), Eq. (16), Eq. (17), Eq. (24) and Eq. 

(25) extracted from the junctions “0” and “1,” of the BG model 

are presented for the two modes below: 

 

Second mode: 

 

{
𝑒1 = 𝑒2 = 𝑒3 = {ℎ1}

𝑓1 = 𝑓2 + 𝑓3
 (15) 

 

{
𝑓3 = 𝑓4 = f5
𝑒3 = 𝑒4 + 𝑒5

 (16) 

 

{
𝑒5 = 𝑒6 = 𝑒7 = {ℎ2}

𝑓5 = 𝑓6 + 𝑓7
 (17) 

 

The constitutive equations in Eq. (18) of the BG elements 

are presented below: 

 

𝑒4 = 𝑅1. 𝑓4;  𝑒6 = 𝑅2. 𝑓6;  𝑓7 = 𝐶2.
𝑑𝑒7

𝑑𝑡
;

𝑓2 = 𝐶1.
𝑑𝑒2

𝑑𝑡
;  𝑅1 = 𝑅2 =

𝑅𝐻

𝑔
;  𝐶1 = 𝑆1; 𝐶2 = 𝑆2

 (18) 

 

The system dynamic model can be described in the form 

below in Eq. (19): 

 

{

𝑑𝑙1

𝑑𝑡
=

𝑞1

𝑠1
+

𝑔

𝑅𝐻 ∗ 𝑆1
(𝑙2 − 𝑙1)

𝑑𝑙2

𝑑𝑡
=

𝑔

𝑅𝐻 ∗ 𝑆2
(𝑙1 − 𝑙2) −

𝑔

𝑅𝐻 ∗ 𝑆2
𝑙2

 (19) 

 

The system can be represented under the state space 

equations below in Eq. (20): 

 

{
�̇� = 𝐴2. 𝑋 + 𝐵2. 𝑢

𝑌 = 𝐶2. 𝑋
 (20) 

 

where, X=(
𝑒2
𝑒7

)=(
𝑙1

 𝑙2 
). 

 

Eq. (21) represents the system matrix. 

 

𝐴2 = (
−

𝑔

𝑅𝐻 ∗ 𝑆1

𝑔

𝑅𝐻 ∗ 𝑆1
𝑔

𝑅𝐻 ∗ 𝑆2
−

2𝑔

𝑅𝐻 ∗ 𝑆2

) (21) 

 

Eq. (22) represents the control matrix. 

 

𝐵2 = (
0

0
) (22) 

 

Eq. (23) represents the output matrix. 

 

𝐶2 = (
1 0

0 1
) (23) 

 

 

First mode: 

 

{
𝑒1 = 𝑒2 = 𝑒3 = {ℎ1}

𝑓1 = 𝑓2 + 𝑓3
 (24) 

 

{
𝑓3 = 𝑓4 = f5
𝑒3 = 𝑒4 + 𝑒5

 (25) 

 

Eq. (26) gives the constitutive equations of the BG elements: 

 

𝑒4 = 𝑅1. 𝑓4;  𝑓2 = 𝐶1.
𝑑𝑒2

𝑑𝑡
;  𝑓5 = 𝐶2.

𝑑𝑒5

𝑑𝑡
;

𝑅1 = 𝑅2 =
𝑅𝐻

𝑔
;  𝐶1 = 𝑆1;  𝐶2 = 𝑆2

 (26) 

 

The system dynamic model can be described in the form 

below in Eq. (27). 

 

{

𝑑𝑙1

𝑑𝑡
=

𝑞1

𝑠1
+

𝑔

𝑅𝐻 ∗ 𝑆1
(𝑙2 − 𝑙1)

𝑑𝑙2

𝑑𝑡
=

𝑔

𝑅𝐻 ∗ 𝑆2
𝑙1 −

𝑔

𝑅𝐻 ∗ 𝑆2
𝑙2

 (27) 

 

The system can be represented under the state space 

equations below in Eq. (28). 

 

{
�̇� = 𝐴1. 𝑋 + 𝐵1. 𝑢

𝑌 = 𝐶1. 𝑋
 (28) 

 

where, X=(
𝑒2
𝑒5

)=(
𝑙1

 𝑙2 
). 

 

Eq. (29) represents the system matrix. 

 

𝐴1 = (
−

𝑔

𝑅𝐻 ∗ 𝑆1

𝑔

𝑅𝐻 ∗ 𝑆1
𝑔

𝑅𝐻 ∗ 𝑆2
−

2𝑔

𝑅𝐻 ∗ 𝑆2

) (29) 

 

Eq. (30) represents the control matrix. 

 

𝐵1 = (
0

0
) (30) 

 

Eq. (31) represents the output matrix. 

 

𝐶1 = (
1 0

0 1
) (31) 

 

3.3 Observer-based fault diagnosis 

 

To applicate our method, we have chosen Luenberger 

Observer for its simplicity and robustness. Eq. (32) describes 

its mathematical model. 

 

𝑂𝑖𝑗 : {

�̌̇�(𝑡) = 𝐴𝑖. �̌�(𝑡) + 𝐵𝑖 . 𝑢(𝑡) + 𝐿𝑖𝑗(𝑦(𝑡) − �̌�(𝑡))

𝑦�̌�(𝑡) = 𝐶𝑖𝑗 . �̌�(𝑡) + 𝐷𝑖𝑗 . 𝑢(𝑡)

�̌�(0) = �̌�0

 (32) 

 

In this example, we have a set of four observers: 𝑂𝑖𝑗 , i ∈ {1, 

2}, j ∈ {1, 2}. Each output is linked to an observer. 

To calculate the observer gains we have used the technique 

of pole placement, and the poles are selected as follows in Eq. 

(33). 
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𝑃11 = 𝑃12 = 𝑃21 = 𝑃22 = (
−40 + 𝑖
−40 − 𝑖

) (33) 

 

The observers gains are then calculated in Eq. (34). 

 

𝐿11 = 102 (
0.789

31.622
) ; 𝐿12 = 102 (

23.914
0.789

) ;

𝐿21 = 102 (
0.782

30.582
) ; 𝐿22 = 102 (

23.914
0.782

)
 (34) 

 

The design of a BG model corresponding to the observer 

equations is the next step, and the OBG is constructed by 

adding the term 𝐿(𝑌 − �̌�) to the bond graph model. 

In Figure 6, the integration of the term 𝐿(𝑌 − �̌�) into the 

dynamic element C, using the modulated effort source MSe, is 

made. The idea is to have a BG model corresponding to the 

observer equation in Eq. (32). 

The symbol “E” represents a BG element to which C is 

linked. 
 

 
 

Figure 6. Element C equivalent 
 

Second mode: 
 

 
 

Figure 7. Bond graph model: observer 2  

First mode: 

 

 
 

Figure 8. Bond graph model: observer 1 

 

Figure 7 and Figure 8 represent respectively the observer 

bond graph model of mode 2 and mode1. 

The components of the vector 𝐿𝑖𝑗 , i ∈ {1, 2}, j ∈ {1, 2} are 

represented by K1 and K2. 

 

3.4 Simulation results 

 

To have reliable results, the system has been simulated 

using the following two powerful software: 20-sim and Matlab. 

Figure 9 represents the normal evolution of the continuous 

and the discrete states. When the conditions are satisfied the 

system jumps from a mode to another. In order to simulate the 

system in all modes the simulation time is fixed at 20s. 

We can observe that each mode is distinguished by its 

proper evolution and the water variation level in the two tanks 

doesn’t exceed the preliminary defined thresholds. 

 

 
 

Figure 9. The hybrid evolution of parameters 
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The proposed method in this article should be tested to 

prove its efficiency. Thus, we will add a sensor fault and show 

the response of the system, which should be able to detect the 

fault and locate the active mode. 

The fault detection approach compares the calculated 

residues to a defined thresholds mij(t) which is the sum of pij(t) 

and Tij. 

Figure 10 shows the evolution of Pij(t) which are the 

residues of the faultless system. We observe clearly that they 

are not equal to zero and observers have their own errors which 

will be eliminated using our method. 

The constant Tij chosen is given below: 

 

𝑇11 = 𝑇12 = 𝑇21 = 𝑇22 = 5. 10−4 

 

Figure 11 presents the sensors signature based on the result 

of the residues evaluation.  

Sensors signatures have identified the default, and the 

detection of the active mode will be the next step. 

The modes signatures of each output are represented in 

Figure 12. 

Based on modes signatures, the proposed algorithm locates 

the active mode, and a comparison between the estimation and 

the real modes is represented in Figure 13. 

We observe clearly that the estimated and the real modes 

are identical. 

 

 
 

Figure 10. Residues 

 

 
 

Figure 11. Sensors signature 

 
 

Figure 12. Mode’s signature 

 

 
 

Figure 13. Real modes VS estimated modes 

 

Applying the proposed approach on the above example has 

shown its efficiency and reliability to detect and locate faults. 

Thanks to the easy application of our diagnosis algorithm, 

it can be deployed and implemented in industry. 

 

 

4. CONCLUSION 

 

In this paper, we have discussed fault detection and isolation 

problem for switched systems, and we have proposed a 

solution consisting of three steps. 

In the first step, the bond graph is used to model the system, 

and the hybrid automaton takes into account the transition 

between modes to allow modeling of the two continuous and 

discrete parts of the switching systems. 

After modeling, the next step is the generation of residues 

ensured by observers. The bond graph is also used in this step 

to ensure the detection of modeling faults. 

The last step aims to cancel the observer's error and analyze 

the residues to detect faults and locate the active mode. 

Most studies have focused on diagnosis schemes, system 

modeling, and residual generation. However, they have 

neglected the importance of thresholds, which play a crucial 

role in making fault existence decisions. Achieving a high 

level of precision is only possible through dynamic thresholds. 

Thus, we have proposed a new diagnosis approach using 

dynamical thresholds. The main gain of this technique is its 

powerful potential to detect sensor faults and avoid false 

alarms. 

This paper has discussed sensor faults. However, the 

extension of the proposed approach to actuator faults is a 

pertinent standpoint to broaden the method and make it more 

efficient. 
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