

Optimization of the Convolution Operation to Accelerate Deep Neural Networks in FPGA

Malathi Devendran1, Indumathi Rajendran1, Vijayakumar Ponnusamy2*, Diwakar R. Marur2

1 Kongu Engineering College, Perundurai 638060, Erode, Tamil Nadu, India
2 SRM Institute of Science and Technology, Kattankulathur 603202, Chengalpattu Dist., Tamil Nadu, India

Corresponding Author Email: vijayakp@srmist.edu.in

https://doi.org/10.18280/ria.350610

ABSTRACT

Received: 19 October 2021

Accepted: 10 December 2021

 In recent years, machine learning algorithms related to images have been widely utilized

by Convolution Neural Networks (CNN), and it has a high accuracy for recognition of an

image. As CNN contains large number of computations, hardware accelerator like Field

Programmable Gate Array is employed. Quite 90 % of operations during a CNN involves

convolution. The objective of this work is to scale back the computation time to increase

the peak, width and the pixel intensity levels in the input image. The execution time of a

image processing program is mostly spent on loops. Loop optimization is a process of

accelerating speed and reducing the overheads related to loops. It plays a crucial role in

improving performance and making effective use of multiprocessing capabilities. Loop

unrolling is one of the loop optimization techniques. In our work CNN with four levels of

loop unrolling is used. Due to this delay is reduced compared with conventional Xilinix.

With the assistance of strides and padding the 40 % of computation time has been reduced

and is verified in MATLAB.

Keywords:

Convolutional Neural Networks (CNN),

delay, loop unrolling, padding, stride

1. INTRODUCTION

CNN contains a huge number of computations, so it is

required to accelerate these CNN computations by a hardware

accelerator, like Field Programmable Gate Array (FPGA),

Graphics Processing Unit (GPU), and Application Specific

Integrated Circuit (ASIC) designs. Although, these CNN

accelerator faces a difficult problem because it has the huge

computation time and consumption of power is occurred by

the memory for information access.

In CNN, it has almost exclusively been associated with

computer vision applications because their architecture is

specifically fitted to performing complex visual analyses.

Instead, the standard two-dimensional array in CNN

architecture has the three-dimensional arrangement of neurons

[1].

The convolutional layer is that the first layer of CNN. In the

CNN layer, it has the neurons in each neuron it only processes

the information from a small part of the visual field. Rectified

Layer Unit (ReLU) is the second layer of CNN which is

followed by the convolutional layer. In ReLU layer enables the

CNN to handle complicated information. The third layer is that

the fully connected layer, where the entire inputs are to be

connected to the upcoming layer shown in Figure 1. CNN is

mainly used in machine vision and self-driving vehicles for

object recognition applications.

1.1 Convolution layer Rectified layer unit

The convolution operation in the CNN extracts the features

from the input. In the convolutional layer, it has two levels of

features such as low-level and high-level. In CNN layers

extract the edges, lines and corners are named as low-level

layers feature. Higher levels of features are extracted using

higher levels of layers [2]. The input has the size of N × N ×

D and the kernel has the size of K × K × D. The output is

produced with the help of convolution of input with the kernel.

Each kernel is moved from left to right based on the strides

from the top left corner to the bottom right corner.

Figure 1. Layers in CNN

1.2 Pooling and subsampling layer

Figure 2. Representation of pooling

To reduce the resolution of the feature maps in the CNN, an

additional layer is used. Because it makes the features robust

against noise and distortion of the image. Maximum and

average pooling, two levels were used. In maximum pooling,

Revue d'Intelligence Artificielle
Vol. 35, No. 6, December, 2021, pp. 511-517

Journal homepage: http://iieta.org/journals/ria

511

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.350610&domain=pdf

the maximum number of values has been taken from the

matrix [3, 4]. In average pooling, the average value has been

taken from the input feature image. Here input size is 4x4 and

the subsampling is 2x2 so the input size is divided into four

2x2 matrixes and there is no overlapping matrix shown in

Figure 2.

1.3 Rectified layer unit

In ReLU it has the size of the input and output layers are the

same because it implements the function y = max (x, 0). It uses

nonlinear properties so the performance was increased for the

overall network without affecting the other convolutional

layers. The advantage of ReLU is the network trains many

times faster than another network [5]. In ReLU it has the

activation function in a linear manner either a positive value

or zero there is no negative value. If there is any negative value

is present that value will become zero is shown in Figure 3.

Figure 3. Representation of ReLU functionality

1.4 Fully connected layers

The fully connected layer is the final layer of the CNN. The

most important component for recognizing and classifying the

image for computer vision application is done by a fully

connected layer. The process of CNN starts with convolution

and pooling layer and partitioning the image into features.

Finally, the result is given to the fully connected layer for the

final classification decision. The entire inputs are connected to

upcoming layers of the CNN [6].

2. EXISTING METHOD

2.1 Loop rolling

In the loop optimizing technique, loop rolling was used to

perform the convolution operation. Loop optimizing technique

is most important to perform operations in the neural network.

Under the loop optimizing technique loop rolling and loop

unrolling are used. In the loop rolling method, it gives the

larger design space so it affects the processing engine

architecture with the help of memory and data reuse. In

convolution networks, it has four levels of loops [7] So,

different levels of nested convolution loops lead to different

types of parallelization of computations. For example, three

levels nested can result in three parallel computing. The

limitation of loop rolling is it has a high computation time to

perform any operations in different levels of loops. Loop

unrolling is used to reduce the computation time.

2.2 Stride

Stride could be an element of CNNs or Neural Networks

tuned for the compression of pictures and video information.

Stride represents the number of pixels skipping in the

convolution operation. more the strip size, less the

computational complexity but lesser the accuracy. The Stride

size can be selected optimally without compromising the

accuracy and computational complexity. on other hand, it

determines the feature size (which determine the accuracy and

computational complexity) which will be generated in the

convolution operation i.e.

Feature size=((image size-kernel size)/ Stride)+1

Stride could be a parameter of the neural network filter that

modifies the number of movements over the image or video

[8]. As an example, if a neural network stride is ready to one,

the filter can move one constituent unit, at a time. The Scale

affects the encoded output volume, therefore stride is

commonly set to an entire whole number, instead of a fraction

or decimal.

To calculate the output matrix the Eq. (1) is used. Where N

is the input matrix dimension and F is the feature map

dimension or another input matrix dimension, P is the padding

if padding is added in the given input matrix it becomes 1

otherwise it will be 0 and S is the stride:

𝑂 =
𝑁 − 𝐹 + 2𝑃

𝑆
 + 1 (1)

Stride (S) is that the range of pixels that move over the

column and row pixels in input. Once the value S is one then

it tends to shifts the one pixel in a column or row. Once the 𝑆

is two then it tends to shift the two pixels. Figure 4 shows the

calculation of the output matrix. In this figure, N is 4 and F is

2 and there is no padding is applied so P is 0, and stride S is 1.

From Eq. (1) the output matrix 𝑂 will be 3. The calculation of

output value in the first cell is (1 × 1) + (0 × 0) + (1 ×
0) + (1 × 1) = 1 + 0 + 0 + 1 = 2.

Figure 4. Output matrix cell 1 using S = 1

Figure 5 shows the output calculation in second cell using

stride. The calculation of output value in the second cell is

(0 × 1) + (1 × 0) + (1 × 0) + (1 × 1) = 0 + 0 + 0 +
1 = 1 . After applying the stride is 1 in the column, the

dimensions become 3.

Figure 5. Output matrix cell 2 using S = 1

512

The calculation of output value in the first cell in second

row is (1 × 1) + (1 × 0) + (0 × 0) + (1 × 1) = 1 + 0 +
0 + 1 = 2. The limitation is correct level at the output cannot

be achieved. From the example 3x3 output matrix is used

instead of 4x4 because in the input matrix 4x4 some loss of

information is occurred. The purpose of convolution operation

is to carry out edge enhancement. When a 3x3 matrix is used

as a kernel, then the loss of information is very limited

compared to the use of a 4x4 kernel for edge enhancement.

3. CNN ACCELERATION SYSTEM

3.1 Accelerator

It involves the outsized quantity of knowledge and weights.

The memory is poor for saving information because it required

Gigabytes of memory is needed to store the data. Three levels

of storage hierarchy: 1) memory; 2) buffers; 3) registers which

are illustrated in Figure 6. The design method is to take the

informed memory and it is transferred to the buffer. The output

of buffers is given to array blocks to perform convolution [9,

10]. Once the process is completed the result is transferred to

buffers and it will be transferred to memory which is used to

input as upcoming layers.

Figure 6. CNN accelerator hierarchy

3.2 Levels of convolution loops

Figure 7. Four levels of convolution loops

In CNN algorithms convolution is the important operation

that performs multiply and accumulates for input along with

kernel weights. The pseudocodes for the four-level of

convolutions as shown in Figure 7. There are three loop

optimizing techniques were used to perform convolution in an

efficient manner [11]. Loop unrolling, loop tilling, and loop

interchange. In the hardware accelerator FPGA

implementation, the three-loop optimizing techniques will not

increase the computational overhead because, those

mechanisms are converted into a logic block of the circuit

which will respond immediately once powered up. Loop

unrolling is one of the loop optimization techniques used to

optimize the program execution speed and perform parallel

computation. It reduces the loop overhead and increases the

program efficiency. Loop tilling is to divide the entire input

data into a small level of multiple levels of blocks so it can be

easily stored in buffers. Loop interchange which finds an order

of computations of four levels of loops. In the loop, the

interchange has the intratile loop which is used to find the

order of data movements from buffers to registers. In the

intertile loop find the order of computation from external

memory to buffers [12]. There are four levels of loop unrolling

involved in CNN.

Loop 1 unrolling the convolution is performed for pixels

and weights are totally from the different location but within

the same input matrix and another input, matrix computed

every time. The adder tree is required to add the previous

partial sum outputs shown in Figure 8. Loop 2 unrolling the

convolution is performed for pixels and weights are from the

equal location but different same input matrix and another

input matrix computed in every time shown in Figure 9 [13,

14]. In loop unrolling 3 the pixels are from the different

location in the corresponding input matrix is multiplies with

the unit weight. Here no adder tree is required to reuse the

pixels and for parallel computations shown in Figure 10. In

loop unrolling 4 the identical pixel is multiplied with the pixels

in the same location but different features shown in Figure 11

[15, 16].

Figure 8. Loop 1 for unrolling

S

Figure 9. Loop 2 for unrolling

Figure 10. Loop 3 for unrolling

513

Figure 11. Loop 4 for unrolling

3.3 Strides and padding

Stride (S) is that the range of pixels that move over the

column and row pixels in input. Once the S value is one then

it tends to shifts the one pixel in a column or row. Once the S

is two then it tends to shift the two pixels. Padding may be a

term relevant to CNN because it refers to the number of pixels

added to a picture once it’s being processed by the kernel of a

CNN. The zero value is to be added in the row and column of

the input image if the padding is zero. In normal convolution.

Figure 12. Output matrix after applying padding

The overlap occurs in the middle of stages and the corner of

the input image is used less to perform the convolution along

with the kernel. To reduce the overlap and make efficient use

of edges padding, stride 2 were used. Figure 12 shows the

output matrix after applying zero padding. Here the normal

input matrix dimension is 4x4 after applying the padding the

dimension has changed to 6*6 matrix. From the figure zero's

are added in row and column to get the accurate dimensions.

The brown box is the normal input matrix and the red color

box is the after adding padding.

3.3.1 Calculation for stride is 1 and 2 without padding (S = 1,

S = 2 and P = 0)

Figure 13 shows the output matrix calculation using S = 1

and P = 0, N = 4, F = 2. The calculation of output value in the

first cell is (1 × 1) + (1 × 0) + (0 × 0) + (1 × 1) = 1 +
0 + 0 + 1 = 2. The calculation of output value in the second

cell is (1 × 1) + (1 × 0) + (1 × 0) + (1 × 1) = 1 + 0 +
0 + 1 = 2. Here the stride is 1 the column of the input matrix

is shifted by one. The red color 2x2 matrix is taken first and

multiplies with another 2x2 feature matrix and the output is

displayed in the first cell of the output matrix (red color box).

The green color box indicates the after shifting one column

and then multiplied with another matrix and the result will be

displayed in the output matrix (green color box). The

limitation is e cannot get the correct level at the output. From

the example, a 3x3 output matrix is obtained instead of getting

4x4 because the input matrix is 4x4 so some loss of

information has occurred. Figure 14 shows the output matrix

calculation using S = 2 and P = 0, N = 4, F = 2. Here stride is

2 the column of the input matrix is shifted by two. The red

color 2x2 matrix is taken first and multiply with another 2x2

feature matrix and the output is displayed in the first cell of the

output matrix (red color box). The light green color box

indicates the after shifting one column and then multiplied

with another matrix and the result will be displayed in the

output matrix (light green color box).

Figure 13. Output matrix S = 1 and P = 0

Figure 14. Output matrix S = 2 and P = 0

Figure 15 shows the output matrix calculation using S = 1

and P = 1, N = 4, F = 2 so output is 4. The calculation of output

value in the first cell is (0*1) + (0*0) + (0*0) + (0*1) + (1*1)

+ (0*1) + (0*0) + (1*1) + (1*1) = 0 + 0 + 0 + 0 + 1 + 0 + 0 +0

+ 1 + 1 = 3. Here stride is 1 the column of input matrix is

shifted by one. The red colour 3*3 matrix is taken first and

multiply with another 3*3 feature matrix and the output is

displayed in first cell of the output matrix (red colour box).

The green colour box indicates the after shifting one column

and then multiplied with another matrix and result will

displayed in output matrix (green colour box). Here the input

matrix is 4*4 and it becomes 6*6 after applying padding, so

4*4 output matrix is obtained.

Figure 15. Output matrix S = 1 and P = 1

514

When stride is 2, the column of the input matrix is shifted

by one. The red color 3*3 matrix is taken first and multiplies

with another 3*3 feature matrix and the output is displayed in

the first cell of the output matrix (red color box). The green

color box indicates the after shifting one column and then

multiplied with another matrix and the result will be displayed

in the output matrix (green color box). Here the input matrix

is 4*4 and it becomes 6*6 after applying padding, so a 3*3

output matrix is obtained as shown in Figure 16.

Figure 16. Output matrix S = 2 and P = 1

4. RESULTS AND DISCUSSION

Loop 1 unrolling convolution is performed for pixels and

weights are totally from the different location but within the

same input matrix and another input and the matrix is

computed every time. There are four adders and four

multipliers are needed to perform MAC operation. In loop 2

unrolling the convolution is performed for pixels and weights

are from the equal location but different same input matrix and

another input matrix computed in every time. There are four

adders and four multipliers are needed to perform MAC

operation. In loop unrolling 3 the pixels are from the different

location in the corresponding input matrix is multiplied with

the unit weight. Here no adder tree is required to reuse the

pixels and for parallel computations. In loop unrolling 4 the

identical pixel is multiplied with the pixels in the same

location but different features.

For stride 1 and without padding, the input matrix is 4x4 and

the feature matrix is 2x2 so the output matrix becomes 3x3.

Here parallel multiplication is performed with the help of loop

unrolling. From the output matrix, a 3x3 matrix is obtained

instead of getting 4x4. For stride is 2 the output matrix

becomes 2x2. For stride 1 and with padding, the input matrix

is 4*4 and the feature matrix is 2*2. After zero padding is

added in the input matrix it becomes 6*6 matrix so the output

matrix becomes 4*4. Here parallel multiplication is performed

with same input matrix and another input and the matrix with

the help of loop unrolling. From the output matrix, a 4*4

matrix is obtained from the input 4*4 matrix. If stride is 2

means the output matrix will be 3*3.

Edge enhancement mechanism is taken for testing and

giving visual illustration for the proposed method of loop

unrolled convolution operation using MATLAB Tool. Figure

17 (a) is the input image is converted into a greyscale image

and then by using the edge detection algorithm edges are

detected and then pixels are extracted from the given edge

detection image. Figure 17 (b) to (f) provides the outcome

various image operations on input image. By using the stride

as 2 and padding the blocks are detected. The output image

with the size of 256 x 256 is shown in Figure 17 (g) and the

input image shown in Figure 17 (h) is of size 256 x 256. The

output image has a higher pixel intensity level with respect to

the input image, due to edge enhancement operation carried

out on input image.

(a) Input image (b) Gray scale image

(c) After edge detection
(d)Edge enhanced Gray

image

(e) Difference image (f) Padded difference image

(g) Output image (h) input image

Figure 17. (a - f) Input image under various image

processing operations and (h and g) for input and output

comparison

4.1 Comparison of time and performance using MATLAB

The computation time loop rolling and loop unrolling is

discussed. For the given application, loop rolling takes 239.51

seconds to operate. In loop unrolling it takes 81.86 seconds.

Thus, loop unrolling takes less time compared with the loop

rolling method. This in turn reduced the power by 40 % with

the help of the loop unrolling method. There are several ways

to measure power reduction due to the loop unrolling method.

The Xilinx power estimator tool is used to extract the power

consumption in Convolution operation without unrolling and

with unrolling. These results are compared the 40% reduction

is computed.

Table 1 shows the input and output data analysis in terms of

standard deviation and pixel intensity. From the input and

515

output, the height and width get increased so deviation has

changed in output data deviation. There is no change in pixel

image data. In the entropy, output images have a high entropy

level that means pixel intensity values are high and it has a low

standard deviation.

Table 1. Performance analysis of unrolling

Parameter Input Image Output Image

Deviation 0.3760 0.3778

Max. Pixel Image Data 0.6265 0.6265

Entropy 7.785 7.7329

Standard Deviation 0.2789 0.2632

4.2 Comparison of delay using XILINX

Stride 1 has the 18.025 ns delay for computing the

convolution operation using stride is 1 and with zero padding

for input image size 256x256. For stride is 2 with zero padding

has the 18.008 ns delay for computing the convolution

operation using stride is 2 and with zero padding. From the

comparison of delay stride is 2 has the lowest delay compared

with stride is 1. Delay has been reduced from 18.025 ns to

18.008 ns.

5. CONCLUSION

In the loop optimization process, loop unrolling is used to

optimize the program execution speed. It also increases the

program efficiency. The execution time of a scientific program

is mostly spent on loops to scale back the loop overhead and

computation time loop unrolling was used. There are four

levels of loop unrolling technique and it reduces the loop

overhead in the loop optimizing technique. In loop unrolling it

can be executed in a parallel manner. By employing loop

unrolling, delay is reduced from 18.025 ns to 18.008 ns. The

computation time is reduced by 40 % compared with loop

rolling. Output image has a low standard deviation and high

pixel intensity for the image. This work can be extended to

analyze performance of loop unrolling techniques in FPGA

based on delay and time required for training a CNN using

different stride values and padding.

REFERENCES

[1] Ma, Y.F., Cao, S., Vrudhula, S., Seo, J. (2018).

Optimizing the convolution operation to accelerate deep

neural networks on FPGA. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 26: 1354-1367.

https://doi.org/10.1109/TVLSI.2018.2815603

[2] Bosi, B., Bois, G., Savaria, Y. (2017). Reconfigurable

pipelined 2-D convolvers for fast digital signal

processing. IEEE Transaction of Very Large Scale

Integration (VLSI) Syst., 7(3): 299-308.

https://doi.org/10.1109/92.784091

[3] Chen, Y., Krishna, T., Emer, J.S., Sze, V. (2017). Eyeriss:

An energy-efficient reconfigurable accelerator for deep

convolutional neural networks. IEEE Journal of Solid-

State Circuits, 51(1): 127-138.

https://doi.org/10.1109/JSSC.2016.2616357

[4] Zhang, C., Li, P., Sun, G.Y., et al. (2015). Optimizing

FPGA-based accelerator design for deep convolutional

neural networks, ACM/SIGDA International

Symposium of Field Program Gate Arrays (FPGA), pp.

161-170. https://doi.org/10.1145/2684746.2689060

[5] Desoli, G., Chawla, N., Boesch, T., et al. (2017). A 2.9

TOPS/W deep convolutional neural network SoC in FD-

SOI 28nm for intelligent embedded systems. In Solid-

State Circuits Conference, pp. 14-34.

[6] Guan, Y.J., Liang, H., Xu, N.Y. et al. (2017). FP-DNN:

An automated framework for mapping deep neural

networks onto FPGAs with RTL-HLS hybrid templates.

2017 IEEE 25th Annual International Symposium on

Field-Programmable Custom Computing Machines

(FCCM), pp. 152-159.

https://doi.org/10.1109/FCCM.2017.25

[7] Chen. Y.H., Emer, J.S., Sze, V. (2016). Eyeriss: A spatial

architecture for energy-efficient dataflow for

convolutional neural networks. ACM/IEEE International

Symposium of Computer Architecture (ISCA), pp. 367-

379. https://doi.org/10.1109/ISCA.2016.40

[8] Li, H.M., Fan, X.T., Jiao, L., Cao, W., Zhou, X.G., Wang,

L.L. (2016). A high performance FPGA-based

accelerator for large scale convolutional neural networks.

IEEE International Conference of Field-Program. Logic

Application (FPL), pp. 1-9.

https://doi.org/10.1109/FPL.2016.7577308

[9] Ma, Y.F., Cao, Y., Vrudhula, S., Seo, J. (2017).

Optimizing loop operation and dataflow in FPGA

acceleration of deep convolutional neural networks.

ACM/SIGDA International Journal of Field-Program.

Gate Arrays (FPGA), pp. 45-54.

https://doi.org/10.1145/3020078.3021736

[10] Ma, Y.F., Cao, Y., Vrudhula, S., Seo, J. (2017) An

automatic RTL compiler for high-throughput FPGA

implementation of diverse deep convolutional neural

networks. IEEE Conference of Field-Program, pp. 1-8.

https://doi.org/10.23919/FPL.2017.8056824

[11] Du. L., Du, Y., Li, Y.F., et al. (2018). A reconfigurable

streaming deep convolutional neural network accelerator

for Internet of Things. In IEEE Transactions of Circuits

System I, 65(1): 198-208.

https://doi.org/10.1109/TCSI.2017.2735490

[12] Zhang, C., Wu, D., Sun, J.Y., Sun, G.Y., Luo, G.J., Cong,

J. (2016) Energy-efficient CNN implementation on a

deeply pipelined FPGA cluster. Proceedings of the 2016

International Symposium on Low Power Electronics and

Design, 67: 326-331.

https://doi.org/10.1145/2934583.2934644

[13] Motamedi, M., Gysel, P., Akella, V., Ghiasi, S. (2016).

Design space exploration of FPGA-based deep

convolutional neural networks. 2016 21st Asia and South

Pacific Design Automation Conference (ASP-DAC), 78:

575-580.

https://doi.org/10.1109/ASPDAC.2016.7428073

[14] Rahman. A., Lee. J., Choi. K. (2016). Efficient FPGA

acceleration of convolutional neural networks using

logical-3D compute array. In IEEE Design, Automation

and Test in Europe Conference (DATE), 48: 1393-1398.

[15] Han, S., Liu, X.Y., Mao, H.Z., Pu, J., Pedram, A.,

Horowitz, M.A., Dally, W.J. (2016). EIE: Efficient

inference engine on compressed deep neural network.

2016 ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA), 56: 243-248.

https://doi.org/10.1109/ISCA.2016.30

516

[16] Chandra. V., Dasika. G., Mohanty. A., Suda. N., (2016).

Throughput-optimized Open CL-based FPGA

accelerator for large-scale convolutional neural networks.

Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays

(FPGA), 24: 16-25.

https://doi.org/10.1145/2847263.2847276

517

