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The primary purpose of trading in stock markets is to profit from buying and selling listed 

stocks. However, numerous factors can influence the stock prices, such as the company's 

present financial situation, news, rumor, macroeconomics, psychological, economic, 

political, and geopolitical factors. Consequently, tremendous challenges already exist in 

predicting noisy stock prices. This paper proposes a hybrid model integrating the singular 

spectrum analysis (SSA) and the backpropagation neural network (BPNN) to forecast daily 

closing prices in stock markets. The model first decomposes the stock prices into several 

components using the SSA. Then, the extracted components are utilized for training BPNNs 

to forecast future prices. Compared with the BPNN, the hybrid SSA-BPNN model 

demonstrates a better predictive performance, indicating the SSA's ability to extract hidden 

information and reduce the noise effect of the original time series. 
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1. INTRODUCTION

The stock market is a public entity that provides financial 

activities to buy, sell, and issue shares of publicly traded 

companies [1]. A stock is a financial instrument that denotes 

ownership in a company and grants stockholders a portion of 

the company's assets and earnings. The company's stock is 

divided into shares at the initial public offering. Consequently, 

a share represents the smallest ownership unit in a particular 

company [2]. The initial price of a company's stock is 

determined by the company's value, revenues, and financial 

situation at the initial public offering. Afterward, its value 

fluctuates according to the stock's supply and demand. When 

a trader buys any number of shares of a company's stock, the 

expression "entered the market" is frequently used. If the price 

of the purchased stock moves, the actual worth of the 

investment changes. When the stock price increases, the trader 

will be in floating profit. In contrast, when the stock's value 

declines, the trader will be in floating loss. The final profit or 

loss is not realized until the trade is closed. Therefore, a trader 

must understand how stocks should be valued to purchase or 

sell stocks if their current value is less or greater than the fair 

value [2]. 

The stock market presents opportunities for individuals to 

invest in companies. The primary purpose of trading in stock 

markets is to profit from buying and selling listed stocks; 

however, it is considered a high-risk, high-yield investment [3]. 

In the last decade, soft computing models, e.g., artificial neural 

networks (ANN) and support vector machine (SVM) models, 

have shown to be effective tools for financial market 

prediction [4]. According to the works [5, 6], ANN models are 

the most commonly used to forecast various financial markets. 

ANN is a machine learning technique that simulates the human 

brain's structure and operation [7]. ANNs can precisely predict 

and distinguish nonlinear dataset patterns without prior 

knowledge, leading to their broad acceptability and 

adjustability [7-9]. Moreover, ANNs possess learning, 

generalization, and parallel processing features that efficiently 

resolve complex problems [10]. Consequently, ANNs are 

suitable for modeling time series characterized by significant 

fluctuations and discontinuities [11]. Unfortunately, most 

systems arising in practice, such as stock prices, are time-

varying [12, 13] and contain much noise [14, 15], which 

reduces the ANNs' prediction efficiency. Consequently, data 

preprocessing techniques like singular spectrum analysis (SSA) 

are required to reduce the noise and extract interesting 

underlying information from the original time series [16, 17].  

The SSA utilizes the singular value decomposition (SVD) 

to decompose time series and acquire a set of singular values 

that hold information about the original data [18-20]. The 

decomposed components are distinguished as a trend, periodic, 

or noise [21, 22]. Hassani et al. [21] utilized the SSA to predict 

the British pound versus United states dollar daily exchange 

rate. The author concluded that the SSA model outperformed 

random walk models in forecasting exchange rate series. 

Menezes et al. explored the market linkages among the G7 

countries via analyzing the stock market data based on SSA 

[23]. Wen et al. [19] introduced a hybrid model for predicting 

stock prices using SSA and SVM. The authors compared the 

predictive performance of the SSA-SVM to the single SVM 

model and discovered that the hybrid model outperforms the 

SVM prediction. Abdollahzade et al. [22] integrated the neuro-

fuzzy models with SSA optimized by particle swarm to predict 

nonstationary chaotic time series. The proposed model was 

found to perform better in predicting nonlinear time series 

compared to various other methods. Lahmiri suggested a 
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hybrid technique to predict intraday stock prices that combines 

SSA and SVR with particle swarm optimization (PSO) [18]. 

The suggested model's performance was validated in six 

intraday stock price series and demonstrated significant 

potential for analyzing and forecasting noisy time series. Xiao 

et al. combined the SSA and SVM to analyze and predict stock 

prices and applied them to the stock price of the Shanghai 

Stock Exchange (SSE) Composite Index [24]. Sulandari et al. 

presented a methodology for time series forecasting based on 

SSA and ANN and concluded that hybrid models 

outperformed single models [25]. 

In this study, a hybrid model integrating SSA and BPNN is 

developed to predict daily closing prices in stock markets. The 

model utilizes the SSA to decompose the stock prices to 

extract hidden information from the original time series and 

reduce the noise effect. For each decomposed component, a 

BPNN is constructed and trained to forecast one day ahead. 

The forecasted components are then aggregated to produce the 

final output. Unlike previous studies, the stock prices are first 

split into training and testing datasets; hence the testing set is 

hidden during the decomposition process. The proposed SSA-

BPNN was validated using experimental data of the largest 

twenty market capital stocks listed in the Nasdaq stock 

exchange. 

 

 

2. RESEARCH METHODS 

 

2.1 Singular spectrum analysis (SSA) 

 

The SSA has various applications, such as denoising signals, 

extracting the underlying trend, and forecasting applications 

[26]. The SSA approach comprises two interrelated stages, i.e., 

decomposition and reconstruction, and each comprises two 

steps [27]. The first stage involves decomposing the time 

series into simple and meaningful signals through embedding 

succeeded by SVD [18]. The second stage includes 

reconstructing the series for forecasting purposes via grouping 

and diagonal averaging [26]. This section summarizes the 

different stages and parameters selection criteria of the SSA.  

 

2.1.1 Decomposition 

The decomposition process is divided into two steps, which 

are embedding and SVD. Embedding is a preliminary step in 

analyzing time series that converts the original one-

dimensional series to a lagged multi-dimensional trajectory 

matrix [27]. For example, let St = [S1, S2, …, SN]T be a time-

series of length N, then the mapped trajectory matrix, with 

dimensions L×K, is defined as [28, 29]: 

 

𝑋 = [𝑋1, 𝑋2, … , 𝑋𝐾 ] = (

𝑆1 𝑆2 ⋯ 𝑆𝐾

𝑆2 𝑆3 ⋯ 𝑆𝐾+1

⋮ ⋮ ⋱ ⋮
𝑆𝐿 𝑆𝐿+1 ⋯ 𝑆𝑁

) (1) 

 

where, L is the window length representing the embedding 

dimension (2 ≤ L ≤ N), and K = N-L+1. The trajectory matrix 

X is a Hankel matrix since the elements along its antidiagonals 

are identical.  

Following the embedding process, the SVD is utilized to 

factorize the trajectory matrix into biorthogonal elementary 

matrices [27]. This process is expressed as [30]: 

 

𝑋 = ∑ 𝑋𝑟

𝑅

𝑟=1

= 𝑈𝛴𝑉𝑇 = ∑ 𝜎𝑟𝑢𝑟𝑣𝑟
𝑇

𝑅

𝑟=1

 (2) 

 

where, 𝑋𝑟  is the rth elementary matrix, U and V form an 

orthonormal system, Σ is a diagonal matrix whose diagonal 

elements, 𝜎𝑟 = √𝜆𝑟 , are the singular values of the lag-

covariance matrix XXT, 𝑢𝑟  denotes the eigenvector 

corresponding to the eigenvalue 𝜆𝑟 , 𝑣𝑟  represents the rth 

principal component, and R is the rank of X. The set 
(𝜎𝑟 , 𝑢𝑟 , 𝑣𝑟)  is known as the rth eigentriple of the trajectory 

matrix. 

 

2.1.2 Reconstruction 

Reconstruction is the second stage of the SSA, in which the 

time-series is projected onto data-adaptive eigenvectors that 

reduce the dimensionality of the dataset via representing it in 

an optimal subspace [31]. The reconstruction process is 

divided into two steps, which are grouping and diagonal 

averaging. Grouping involves categorizing the elementary 

matrices, Xi, according to their eigentriples into groups. Then 

the matrices inside each group are summed up [26, 27]. Let g 

= {i1, i2, …, ir} be a group of r selected eigentriples; hence, the 

matrix Xg for group g is expressed as: 

 

𝑋𝑔 = 𝑋𝑖1
+ 𝑋𝑖2

+ ⋯ + 𝑋𝑖𝑟
 (3) 

 

The increment of singular entropy due to eigentriple i is 

represented by Eq. (4). The information within the time series 

is considered extracted when ΔE reaches an asymptotic value, 

and the following components are therefore caused by noise. 

 

∆𝐸 = − (
𝜆𝑖

∑ 𝜆𝑟
𝑝
𝑟=1

) 𝑙𝑜𝑔 (
𝜆𝑖

∑ 𝜆𝑟
𝑝
𝑟=1

) (4) 

 

The second step in the reconstruction process is the diagonal 

averaging along the N antidiagonal of the matrix Xg. This 

process transfers the matrix into a time series that will be a 

component of the original series St. The reconstructed time 

series will have a length N. Finally, the correlation coefficient 

between different components is utilized to determine their 

linear dependence. The correlation coefficient, ρ, in terms of 

the covariance of two components 𝑋𝑔1
 and 𝑋𝑔2

 is: 

 

𝜌 =  
𝑐𝑜𝑣(𝑋𝑔1

, 𝑋𝑔2
)

𝜎1 𝜎2

 (5) 

 

where, σ is the component's standard deviations. In this work, 

components with ρ ≥ 0.4 are aggregated. 

 

2.2 Backpropagation neural networks (BPNN) 

 

The artificial neural network comprises simple connected 

processors referred to as neurons, resembling the human 

brain's neurons. The neurons are joined by weighted 

connections that transfer signals between them. A neuron 

receives several input signals via its connections yet only 

produces one output signal. Then, the neuron's output signal is 

transferred via its outgoing connection into multiple branches 

that send identical signals. The outgoing branches terminate at 

other neurons' incoming connections [32]. The neuron's output 
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is determined via an activation function that compares its 

calculated input to a predetermined threshold value. 

There have been several investigations on activation 

functions in the literature, only a few have demonstrated their 

usefulness. For example, step and sign activation functions are 

frequently utilized in decision-making neurons to perform 

classification and pattern recognition tasks. On the other hand, 

the sigmoid function converts an input number between plus 

and minus infinity to a sensible value between zero and one. 

The linear activation function produces an output proportional 

to the neuron's weighted input. Generally, neurons with linear 

activation functions are frequently utilized to approximate 

linear functions [32]. 

A BPNN is a multilayer network with one or more hidden 

layers trained using a backpropagation learning algorithm 

(Figure 1). The network is typically composed of an input 

layer of source neurons, at least a hidden layer of 

computational neurons, and an output layer of computational 

neurons. The input signals are transmitted forward through 

successive layers. Each layer in a multilayer neural network 

serves a distinct purpose. The input layer receives signals from 

the external environment and distributes them to all neurons in 

the hidden layer. Indeed, because the input layer rarely 

contains computing neurons, it does not process input patterns. 

The hidden layer's neurons recognize the characteristics 

concealed in the input signals. Then, the output layer receives 

output signals from the hidden layer and establishes the output 

pattern for the entire network. The backpropagation learning 

algorithm is widely used for ANNs learning and is divided into 

two phases [32]. First, the network input layer is supplied with 

training data. After that, the network propagates the input data 

across each layer till the output layer generates the network's 

output. If this output does not match the required training data 

output, the error is measured and sent backward across the 

network from the output layer to the input layer. Weights are 

tuned in real-time as the error propagates. 

 

 
 

Figure 1. A three-layers BPNN 

 

In this work, the daily closing prices are predicted by 

considering the ten preceding prices; hence there are ten input 

neurons in the input layer. According to Huang and Wang 

(2018), the number of the hidden neurons can be set 

approximately to be 2×n+1, where n is the number of the input 

neurons, and 1 denotes an output neuron [33]. 

Correspondingly, we adopt a 10×21×1 structure of the 

BPNNs, as shown in Figure 1.  

2.3 The hybrid SSA-BPNN model 

 

This paper integrates the SSA and the BPNN to build a 

hybrid forecasting model, i.e., the SSA-BPNN model. First, 

the model utilizes the SSA to decompose the stock prices into 

several components. Then, the decomposed components are 

fed to the BPNNs to forecast one step of future daily prices. 

Finally, the forecasted outputs from the BPNNs are aggregated 

to produce the final prediction. Figure 2 shows a flow chart of 

the hybrid SSA-BPNN model, and the procedures are detailed 

as: 

 

(1) Split the daily closing prices into a training dataset 

(70%) and a testing dataset (30%). 

(2) Decompose the training dataset by the SSA using 

window length, L = 14.  

(3) Calculate the increment of singular entropy, ∆𝐸, of 

various singular values. 

(4) Group elementary matrices when ∆𝐸  reaches an 

asymptotic value. 

(5) Reconstruct time series components. 

(6) Aggregate linearly dependent components (ρ ≥ 0.4). 

(7) Normalize the reconstructed market components.  

(8) Build and train three BPNNs (10×21×1) to predict 

each market component.  

(9) Forecast the future price of each point in the testing 

dataset using the following steps: 

a) Decompose its prior prices as shown in steps 2 - 7. 

b) Forecast one step of each component. 

c) Denormalize and aggregate the forecasted 

components. 

d) Repeat steps (a) to (d) until all the testing points are 

predicted. 

 

 
 

Figure 2. Flow chart of SSA-BPNN model 
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3. RESULTS AND DISCUSSION 
 

The data of the largest twenty market capital stocks listed in 

the Nasdaq stock exchange are utilized to validate the SSA-

BPNN model. The data comprises the daily closing prices 

from January 2nd, 2015, to December 31st, 2019. There are 

1007 trading days for each dataset. For illustration, the SSA 

decomposition process of the AAPL stock prices is detailed. 

The first 70% of the stock prices are chosen as the training set, 

while the remaining 30% comprise the testing dataset. The 

training series is decomposed into 14 elementary matrices, and 

the increment of singular entropy is calculated for each matrix. 

As shown in Figure 3, the increment of singular entropy 

saturates at the eighth order, and the difference in entropy 

between two consecutive orders is lower than 10-5. Therefore, 

elementary matrices from 8 to 14 are combined to form the 

noise term.  

The next step is reconstructing the different matrices and 

calculating the correlation coefficient, as shown in Table 1. 

The correlation coefficient between reconstructed components 

one and two is -0.0013, indicating that they are separable. 

Similarly, components 7 and 8 are separable. In contrast, 

components 2 through 7 have higher correlation coefficients 

and are combined in one component. Figure 4 displays the 

final reconstructed three components, i.e., RC1, RC2, and RC3, 

of the AAPL. RC1 represents the market trend. The medium 

oscillatory component RC2 is considered the market 

fluctuation, while the high oscillatory component RC3 

indicates market noise. 

Each reconstructed component is utilized for training a 

BPNN. Then the trained BPNNs are used to predict the various 

components. Finally, the forecasted components are 

aggregated to produce the forecasted prices. The mean average 

error (MAE), root mean square error (RMSE), and the mean 

absolute percentage error (MAPE) are employed to evaluate 

the prediction performances, as shown in Table 2. 

 

 
 

Figure 3. Increment of the singular entropy 

 

 
 

Figure 4. AAPL stock prices and decomposed components 

 

Table 1. Correlation coefficients between the eight reconstructed components 

 
Reconstructed Matrix 1 2 3 4 5 6 7 8 

1 1 -0.0013 -0.0112 0.0185 -0.0066 0.0026 -0.0076 0.0007 

2 -0.0013 1 0.6528 0.0479 0.0466 0.0092 0.0277 0.0052 

3 -0.0112 0.6528 1 0.5229 0.1686 0.0553 0.0286 0.0139 

4 0.0185 0.0479 0.5229 1 0.5880 0.1234 0.0683 0.0261 

5 -0.0066 0.0466 0.1686 0.5880 1 0.5473 0.1646 0.0398 

6 0.0026 0.0092 0.0553 0.1234 0.5473 1 0.6298 0.0807 

7 -0.0076 0.0277 0.0286 0.0683 0.1646 0.6298 1 0.2347 

8 0.0007 0.0052 0.0139 0.0261 0.0398 0.0807 0.2347 1 
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Table 2. Forecasting performance of the proposed SSA-BPNN and BPNN for individual stocks 

 

Stock 
MAE RMSE MAPE 

BPNN SSA-BPNN BPNN SSA-BPNN BPNN SSA-BPNN 

AAPL 2.10 0.94 3.63 1.27 3.63 1.82 

MSFT 10.64 3.25 13.98 4.25 7.70 2.44 

GOOG 26.54 17.84 38.35 23.82 2.29 1.56 

GOOGL 16.40 16.13 23.03 21.65 1.43 1.40 

AMZN 36.34 28.45 58.23 40.28 2.13 1.67 

FB 3.01 2.79 4.05 3.70 1.74 1.66 

TSLA 1.64 1.56 2.37 2.17 2.91 2.76 

NVDA 1.21 1.20 1.98 1.72 2.91 2.80 

ASML 5.54 4.78 7.45 6.50 2.61 2.19 

ADI 4.96 1.75 7.47 2.26 4.65 1.71 

PYPL 3.87 3.19 5.24 4.00 3.71 3.04 

ADBE 6.79 4.20 9.07 5.60 2.54 1.57 

CMCSA 0.87 0.46 1.20 0.60 2.04 1.13 

NFLX 7.68 7.45 10.25 9.78 2.47 2.36 

CSCO 0.78 0.72 1.05 0.97 1.57 1.45 

INTC 0.98 0.85 1.29 1.19 1.95 1.70 

PEP 11.89 3.55 15.70 4.58 8.94 2.70 

COST 31.48 9.80 44.51 12.97 11.06 3.61 

AVGO 6.64 5.59 8.39 7.11 2.36 2.05 

TXN 2.71 1.70 3.85 2.32 2.34 1.55 

 

Figure 5 displays a box plot for MAPE of BPNN and SSA-

BPNN models. The SSA-BPNN model has the lowest median 

and mean MAPE for the twenty stocks involved in the analysis. 

Also, the MAPE for 75% of the stocks is lower than 2.8%. 

Moreover, the hybrid model does not have any outliers. 

 

 
 

Figure 5. Box plot of MAPE for BPNN and SSA-BPNN 

models 

 

From the previous analysis, it is evident that the proposed 

hybrid SSA-BPNN outperforms the single BPNN in terms of 

MAE, RMSE, and MAPE when predicting daily closing prices. 

The improved performance of the hybrid SSA-BPNN model 

is attributed to the SSA's ability to extract hidden information 

and reduce the noise effect in the original time series.  

 

 

4. CONCLUSION  

 

This paper proposed a hybrid forecasting model based on 

SSA and BPNN to predict daily closing prices in stock markets. 

The model employs the SSA to decompose the stock prices to 

reduce the noise and extract hidden information from the 

original price series. Also, BPNNs are built and trained to 

predict one day ahead of the different decomposed 

components. The BPNNs' outputs are summed up to produce 

the final forecasted prices. 

The proposed model has been proven as an effective tool for 

predicting stock prices via conducting an empirical study with 

twenty stocks listed in the Nasdaq stock exchange. The 

research results indicated that the proposed SSA-BPNN model 

obtained the lowest MAE, MAPE, and RMSE for all stocks 

involved in the analysis. Furthermore, the model's superior 

forecasting ability is associated with its strength in capturing 

hidden information in financial time series, such as trends and 

volatility. Therefore, the presented approach is a promising 

tool for predicting daily closing prices. 
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