
Qualitative Analysis of State/Event Fault Trees Based on Interface Automata

Gaofeng He1*, Bingfeng Xu2

1 School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

Corresponding Author Email: hegaofeng@njupt.edu.cn

https://doi.org/10.18280/ijsse.110606 ABSTRACT

Received: 22 May 2018

Accepted: 2 October 2019

State/Event Fault Tree (SEFT) can be used for safety modeling and assessment. However,

SEFT does not provide adequate semantics for analyzing the minimal scenarios leading

to system failures. In this paper, we propose a novel qualitative analysis method for SEFT

based on interface automata. Firstly, we propose the concept of guarded interface

automata by adding guards on interface automata transitions. Based on this model, we can

describe the triggers and guards of SEFT simultaneously. Then, a weak bisimilarity

operation is defined to alleviate the state space explosion problem. Based on the proposed

guarded interface automata and the weak bisimilarity operation, the semantics of SEFT

can be precisely determined. After that, a qualitative analysis process is presented on the

basis of the formal semantics of SEFT, and the analyzing result is the minimal cut

sequence set representing the causes of system failures. Finally, a fire protection system

case study is illustrated step by step to demonstrate the effectiveness of our method.

Keywords:

state/event fault trees, minimal cut sequences,

guarded interface automata, weak bisimilarity

1. INTRODUCTION

As safety critical systems are ubiquitous in our daily lives,

failures of these systems will cause pollution of the

environment, property losses, and even casualties [1]. Thus, it

is vital to assess the safety level and detect the key drawbacks

of systems. To this end, safety analysis has been proposed. In

order to perform safety analysis, fault tree analysis [2] is a

widely accepted methodology, and there have been many

methods developed for evaluating fault tree models. Generally,

these methods can be categorized into quantitative and

qualitative analysis [3, 4]. Specifically, qualitative analysis is

used to identify the most critical components of the system.

These critical components’ failures would cause the system to

crash. To perform qualitative analysis, one needs to find out

the Minimal Cut Sequences (MCSs) [5, 6], which form a

minimal set of component events and states in a particular

order that would cause the failure of a system. Based on MCSs,

the most critical components can be identified efficiently.

In this paper, our main concern is the qualitative analysis for

State/Event Fault Tree (SEFT) [7], which is a new kind of fault

tree. Unlike the traditional fault tree [2], SEFT provides more

flexible modeling capabilities for analyzing critical systems by

distinguishing symbols of states and events [7]. The

occurrence of SEFT’s top event is related to the set of basic

events and their sequences. Therefore, SEFT is more suitable

for expressing safety critical scenarios of software-controlled

systems.

As in fault tree analysis, one should first find out the

minimal cut sequences (MCSs) to perform qualitative analysis

for State/Event Fault Tree (SEFT). However, the SEFT’s

component- and state-based natures make this task even harder.

On the one hand, transitions cannot be triggered by states of a

component, which can only allow or inhibit transitions.

Consequently, we must model both triggers and guards when

producing MCSs for SEFT. On the other hand, as lacking well-

defined semantics, it is imperative to formally express the

semantics of SEFT with the help of some formal models. And

the chosen formal model should have component- and state-

based natures. For example, Roth and Liggesmeyer [8] first

translated SEFT to Extended Deterministic and Stochastic

Petri Nets (eDSPNs) and captured the reachability graph based

on eDSPNs. With the reachability graph, the qualitative

analysis is then performed. However, this process requires two

model translation steps (SEFT to eDSPNs and then to

reachability graph) and a lot of manual interventions.

In this work, we present a novel solution for qualitatively

analyzing SEFT. We first propose a new model called Guarded

Interface Automata (GIA). Based on interface automata [9],

GIA adds guards on transitions and can precisely describe the

triggers and guards of transitions. Then, we define the

semantics of SEFT’s logic gates with the help of guarded

interface automata. Next, we provide a parallel composition

and aggregation method to obtain the semantics of SEFT.

Finally, we perform the qualitative analysis with the obtained

semantics and illustrate the process by applying our method.

Our approach only needs one step of model translation (SEFT

to GIA). And the translated models can be almost

automatically composited except that the order of composition

should be determined manually. Therefore, less manual efforts

are needed in our method, and the analyzing efficiency will be

improved.

The remainder of the paper is organized as follows. We give

an overview of related work of qualitative analysis for fault

trees in Section 2. In Section 3, the weak bisimilarity operation

of guarded interface automata is defined. In Section 4, we

capture the semantics of SEFT and demonstrate the process of

qualitative analysis. A case study is given step by step in

Section 5. We discuss the proposed method in Section 6 and

conclude and identify some future work in Section 7.

International Journal of Safety and Security Engineering
Vol. 11, No. 6, December, 2021, pp. 663-669

Journal homepage: http://iieta.org/journals/ijsse

663

https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.110606&domain=pdf

2. RELATED WORK

We investigate the qualitative analysis method for

State/Event Fault Tree in this work. Existing work on this topic

is presented in two aspects: fault tree models and extraction of

minimal cut sequences.

Models based on fault trees are widely accepted, which can

show how influential factors contribute to some given hazard

or accident [2]. There are many types of fault trees supporting

dynamic and component-based system modeling, among

many others: Dynamic Fault Tree (DFT) [10] extends the basic

fault tree with dynamic logic gates to describe dependencies

of action sequences. The differences and categorizes of

existing DFT variants are systematically uncovered in the

study [11]. Temporal Fault Tree (TFT) [12] extends the

conventional fault tree with temporal logic, for example, the

Interval Temporal Logic with continuous semantics and

Duration Calculus [13]. State/Event Fault Tree has been first

presented by Kaiser [14]. It provides a visual notation that

combines elements from fault trees and state-based modeling

techniques. Compared to the traditional fault trees, SEFT has

the ability of visual distinction for states and events, which

uses a graphical notation similar to Statecharts. Hence, the

main advantage of SEFT is the usage of familiar symbols both

from fault trees and Statecharts.

The minimum cut set analysis aims to find the failure causal

chain of component systems. Tang and Dugan [5] first

introduced minimal cut sequences for dynamic fault trees.

However, they did not give detailed processes to generate

minimal cut sequences. Liu et al. [15] provided an integrated

method for all cut sequence generation in the dynamic fault

tree. Xing et al. analyzed dynamic fault trees based on

sequential binary decision diagrams [16]. Assaf and Dugan

diagnosed failed systems using the diagnostic decision tree

(DDT) [17]. In these works, the minimal cut sequences are

constructed based on the dynamic fault tree.

Our purpose is to provide a new qualitative analysis method

for SEFT. As described in Section 1, we have to consider both

the component- and state-based natures of SEFT. Kaiser et al.

[7] translated SEFT to eDSPNs (Extended Deterministic and

Stochastic Petri Nets) to investigate the system failure

probabilities. However, their work did not explain how to

generate MCSs for SEFT. They only performed the

quantitative analysis, not the qualitative analysis for SEFT. In

fact, Kaiser [14] claimed that eDSPNs must be composed

manually. This is because eDSPNs cannot possess the notion

of interface. Therefore, it is challenging to perform qualitative

analysis for SEFT based on eDSPNs.

Roth and Liggesmeyer [8] proposed a qualitative analysis

method for SEFT by Kaiser [14]. They first translated SEFT

to eDSPNs according to Kaiser [14] and then captured the

reachability graph based on eDSPNs. The qualitative analysis

is performed based on the reachability graph lastly. During this

process, they need two translation steps. In the first step, as

eDSPNs do not have the notion of interface, it requires manual

intervention to composite the elements’ formal semantic

models. In the second step, the reachability graph is needed to

be manually constructed from SEFT’s eDSPNs semantics

model to mitigate state space explosion. This process requires

two model translation steps and a significant amount of

manual interventions.

In this paper, we design a new automatical and efficient

method for qualitative analysis of SEFT. Our approach’s basic

idea is to use interface automata to define SEFT elements’

precise semantics. Since interface automata automatically

support models’ composition, we can obtain SEFT’s

semantics by compositing its elements’ semantic model and

finding out the MCSs without manual intervention.

3. FORMAL DESCRIPTION OF SEFT’S ELEMENTS

BASED ON GUARDED INTERFACE AUTOMATA

3.1 Informal description of SEFT model

In this section, we introduce the SEFT model informally.

SEFT combines modeling elements from fault trees and

statecharts. Differatiating from the fault tree, SEFT introduces

distinct symbols for states and events, so SEFT is a state- and

event-based model. In SEFT, logic gates can show how several

causes relate to their common consequences. They can also

visually build the complex trigger and guard structures, which

are always connected by casual edges. In logic gates, states

cannot trigger transitions, they can only inhibit or allow

transitions. A state condition enabling a transition to occur is

referred to as a guard, and the influenced transition can only

happen as all guard conditions are evaluated to be true.

Therefore, if there is more than one guard condition, they are

ANDed. To reflect the state/event distinction, the input and

output ports of gates are distinguished as state or event ports.

The logic gates of SEFT are shown in Figure 1; there are five

different kinds. The hollow box at the bottom of the logic gates

represents the input port, and the solid box at the top represents

the output port. The letter "S" in the box represents the state

port, and the letter "E" represents the event port.

3.2 The guarded interface automata model

To model the semantics of SEFT, we proposed guarded

interface automata by extending the interface automata [18].

In this section, we formally describe the definition of guarded

interface automata (GIA). Furthermore, we propose a weak

bisimilarity operation to relieve the state space explosion

problem during the GIA composition process.

3.2.1 Definition of GIA

Definition 1 (Guarded Interface Automaton). A GIA is a

tuple P=(VP, 𝑣𝑃
𝐼𝑛𝑖𝑡 , AP, IP, ΓP) where:

• VP is a finite set of states, where each state v∈VP.

• 𝑣𝑃
𝐼𝑛𝑖𝑡∈VP is the initial state.

(e)The PAND

Gate
(c)OR Gate with n

state inputs

(b)AND Gate with One

event and n state inputs

...

AND

S S

S

AND
S

E

E

(a)AND Gate with n

state inputs

OR

S S

S

OR

E

E

E

(d)OR Gate with n

event inputs

PAND

E

E

ES

Figure 1. Logic gates of SEFT

664

• AP is a set of all actions, partitioned into disjoint sets of

input, output, and internal actions, which are denoted by

𝐴𝑃
𝐼 , 𝐴𝑃

𝑂 and 𝐴𝑃
𝐻, respectively.

• IP is a finite set of guards, each guard has the form of [φ],

where φ is the formula defined as φ:=s|φ ∧ φ|φ ∨ φ,

s∈{Guarded states of components in system}.

• ΓP∈VP×AP×IP×VP is a set of transitions.

Figure 2 shows two guarded interface automata P and Q. In

Figure 2(a), the GIA P indicates the assumption that the

transition occurs when the message a is sent. The composable

of GIA is described in Definition 2, and Definition 3 defines

the product of GIA.

c!,[true]

b?,[g
1]

a?,[tr
ue]

b?,[g
1]

a?,[tr
ue]

(b)

a!,[true]
S0 S1P

K0

K1

K3Q

(a)

K2

K4

Figure 2. Examples of guarded interface automata

Definition 2 (Composable): Two guarded interface

automata P and Q are composable if
H

P QA A = ,

I I

P QA A = ,
O O

P QA A = ,
H

Q PA A = .

Definition 3 (GIA Product): If P and Q are composable

guarded interface automata, their product P// the GIA defined

as:

• P Q P QV V V=  .

•
init init()init

P Q P QV V V=  .

•

(A A) \ shared(P,Q),

(A A) \ shared(P,Q),

A A shared(P,Q).

I I I

P Q P Q

O O O

P Q P Q

H H H

P Q P Q

A

A

A

=

=

=

• The set of guards is P Q P QI I I= .

•
1

2

,[g] ,[g]

,[g] ,[g]

,[g],[g]

,[g]

{(s, t) (s , t) | s \ A } {(s, t)

(s, t) | t \ A }

{(s, t) (s , t) | s t

(P,Q)}.

a a

P Q P Q

a a

Q P

aa

a

s a A

t a A

s

t a shared

  = ⎯⎯⎯→ ⎯⎯⎯→  

 ⎯⎯⎯→ ⎯⎯⎯→  

  ⎯⎯⎯→ ⎯⎯⎯→ 

⎯⎯⎯→  

3.2.2 Weak bisimilarity

Automata-based models usually suffer from combinatorial

state explosion. To alleviate the state explosion problem, it is

vital to find out weak bisimilarity relations of states. The weak

bisimilarity of GIA is defined in Definition 4.

Definition 4 (Weak bisimilarity): Let P=(VP, 𝑣𝑃
𝐼𝑛𝑖𝑡 , AP, IP, ΓP)

be a guarded interface automaton. Let R be an equivalence

relation on VP. Then R is a weak bisimilarity iff for all (s, t) ∈R,

a∈AP,
,[]a g

s s implies that there is a weak transition
,[]a g

t t

with (s', t') ∈R.

Two guarded interface automata P and Q are weakly

bisimilar, written P≈Q, if they are contained in some weak

bisimilarity B. Weak bisimilarity for a GIA is defined as the

union of all weak bisimilaritys on P:

• ≈Ρ=∪{R|R is a weak bisimilarity on P}.

Our notion of weak bisimilarity for guarded interface

automata is similar to the one for the interactive process [19].

As pointed out in literature [19], weak bisimilarity is

substitutive. Substitutivity ensures that equivalent components

can be exchanged by each other without affecting the behavior

of the composition process. Notably, our notion of weak

bisimilarity enjoys the expected properties: weak bisimilarity

is a congruence with respect to parallel composition.

Let P1 and P2 be two GIA with identical actions and guards,

let P3 be a GIA composable with P1 and P2. We have:

1) P1≈P2 implies P1//P3≈P2//P3,

2) P1≈P2 implies P3//P1≈P3//P2.

As an example, the parallel composition and aggregation

result of GIA P and Q in Figure 2 is shown in Figure 3.

P||Q

b?,[g1] c!,[true]

b?,[g
1]

b?,[g1] a;,[tru
e]

a;,[t
rue]

Aggregation of P||Q(b)

(a) c!,[true]S0,K0

S1,K1

S0,K2

S1,K3 S1,K4

T0 T1 T2

Figure 3. Parallel composition and aggregation result of

Figure 2

Furthermore, we use sequential failure symbol “→” to

express the cut sequence of components’ events. From the

behavior 0 0 1 11 1,[] ,[],[]

0 1 ... n na g a ga g

nv v v− −⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→ , we can

capture the cut sequence as: a0, [g0]→a1, [g1]→an-1, [gn-1].

3.3 Semantics for SEFT’s elements

This subsection provides the GIA semantics for each SEFT

logic gate. The input of event type in a logic gate can be

considered as the trigger event, and the input of state type in a

logic gate can be considered as the guard. ⟦. . . ⟧𝐸𝐿𝑇 is a

function representing the semantics of logic gates. We show

the GIA of the logic gates as follows.

• GIA model of state-AND Gate. Figure 4(a) expresses

the semantics of the n input state-AND Gate, i.e.,

S1=[S2∧... ∧Sn].

• GIA model of event/state-AND Gate. Figure 4(b)

expresses the semantics of the one event input and n state

input AND Gate (including state-AND Gate and

event/state-AND Gate), i.e. function

(/) : n

ELT
event state AND A GIA− → takes the output,

one event input and n state inputs of the logic gate as

parameters. The event/state-AND Gate fires if event

input is triggered and state guards are satisfied.

• GIA model of state-OR Gate. Figure 4(c) expresses the

semantics of the n input state-OR Gate, i.e., S1=[S2∨...
∨Sn].

• GIA model of event-OR Gate. Figure 4(d) expresses the

semantics of the n event inputs OR Gate, i.e. function

(,) : n

ELT
OR n A GIA→ , takes the output and n event

inputs of the logic gate as parameters.

• GIA model of PAND Gate. Figure 4(e) expresses the

semantics of the n inputs PAND Gate, i.e. function

(,) : n

ELT
PAND n A GIA→ , takes the output and n

event inputs of the logic gate as parameters.

665

fn?,[true]

fn?

(a)Guard of state-AND Gate

(d)Guarded interface automaton model of event-OR Gate

AND

SnS2

S1

(e)Guarded interface automaton model of PAND Gate

S S

S

...

S1=[S2 ... Sn]
AND

SnS2

f1

S S

E

...

f2

E

f2?, f1!,[S2 ... Sn]

(b)Guarded interface automaton model of event/state-AND Gate

(c)Guard of state-OR Gate

OR

SnS2

S1

S S

S

...

S1=[S2 ... Sn] OR

fn

f1

E

E

...

f2

E

f2?

f1!
.
.
.

PAND

fn

f1

E

E

...

f2

E

f2?,[true] f1!,[true]...

[true]

,[true]

,[true]

,[true]

Figure 4. GIA model for logic gates. The left side of the broad arrow indicates the logic gate of SEFT, and the right side

represents the formal representation of the logic gate. Note that the formalized description of state-AND Gate and state-OR Gate

is a guard, and the result of the formal representation of event/state-AND Gate, event-OR Gate, and PAND Gate is a guarded

interface automaton

We have defined the individual GIA models for each SEFT

element. We now can convert any given SEFT into the

corresponding GIA. The method for generating SEFT’s

semantics and minimal cut sequence will be presented in

Section 4.

4. MINIMAL CUT SEQUENCE GENERATION

The technique of compositional aggregation consists of

composing a larger model out of smaller ones and aggregating

submodels after each compositional step. The compositional

aggregation methodology can combine a GIA set into a single

GIA. Hence, we can transform SEFT’s logic gates into a GIA

set and obtain the final semantics of a SEFT model.

4.1 Weak bisimilarity classes partition approach

When defining the semantics of SEFT’s logic gates, the

output of a logic gate is formally described by the output action

of GIA. Since these output actions added to derive semantics

of SEFT are not the events of components, they do not

influence the system behavior. Namely, they become internal

actions and do not affect the qualitative analysis result.

Consequently, these internal actions should be removed to

reduce the state space of the compositional result.

Weak bisimilarity is substitutive with parallel composition,

which lays the foundation for state space reduction.

Substitutivity ensures that equivalent components can be

exchanged by each other. And the exchange does not affect the

behavior of the composite process. Thus, the weak bisimilarity

technique can be used to reduce specific internal actions after

the composition is completed. The state space reduction

process of GIA can be divided into two phases: weak

bisimilarity classes partition and state space aggregation,

where the former one is the crucial part and the state space

aggregation is easy to implement. Therefore, in the following,

we mainly introduce the weak bisimilarity classes partition

method in detail.

Algorithm 1 shows the weak bisimilarity classes partition

process. The basic idea of Algorithm 1 is described as follows.

First of all, the state space of GIA is partitioned into two parts

according to whether the states are stable or not. In this paper,

a state with no outgoing internal or output transitions is

considered stable. Then every equivalence class is further

partitioned by the left actions and guards of GIA. The

algorithm ends when all the actions have been used. Finally,

the state space of GIA is partitioned into several equivalence

classes.

Algorithm 1. Compute weak bisimilarity classes
,[]

.(,(,[]),) :
.

a g

o

true if thereis P C suchthat P PP a g C
false otherwise


   = 


{ , }

(, (,[]),) :

(({{ | (, (,[]),) }})) { }X Part v true false O

IRefine Part a g C

P X P a g C v  =  = −

Input: Guarded interface automaton

(, , , ,)Init

P P P P PP V v A I= 

Output: VP/≈.

Function: Compute weak bisimilarity classes of GIA P.

Substitute specific internal action of GIA with τ.

Part:={VP}; : (,[]) { };P P PSpl A I V= 

repeat

Choose ((a,[g]),C) in Spl;

Old:=Part;

Part:=Irefine (Part,(a,[g]),C);

New:=Part-Old;

Spl:= ({(,[]), }) ((,[]))P PSpl a g C A I New−  ;

Until Spl is empty

Return Part.

666

Minimal cut sequence generation

start

Formally describe all logic gates of SEFTs as GIA to form GIA set

Parallel compose two GIA and put it back to the GIA set

If more than one

GIA are left
yes

end

no

Search behaviors of GIAN from the initial state to the end state to form cut sequences, then

derive cut sequences.

Parallel composition

Pick two GIA of logic gates according to the given order from GIA set

Formalization

Reducing these cut sequences into minimal cut sequences based on components GIA.

Figure 5. MCS generation process of SEFT

The body of Algorithm 1 consists of two parts. To begin

with, the initial operation is performed. The states of GIA are

partitioned into stable states and non-stable states. Also, Spl is

modified, i.e., Spl:=Act×{S}. After that, the main loop of the

algorithm executes. The function of this loop is selecting one

action from Spl and partitioning the existing equivalence

classes. This loop ends when Spl is empty. The time

complexity of this algorithm is O(n3), where n is the number

of states in the GIA.

When the state space partitioning is completed, aggregation

operation can be used to reduce state space of GIA: it

processes every equivalence class respectively by merging the

states to form a new state instead. In this way, we obtain a GIA

model, the state space of which is smaller than before, and the

behavior is weak bisimilar to the initial GIA model. For

example, the aggregation result of Figure 3(a) is depicted in

Figure 3 (b).

After the composition and aggregation of all guarded

interface automata of SEFT logic gates, we can obtain a

guarded interface automaton that represents the semantics of

SEFT, from which we can analyze the MCSs.

4.2 SEFT cut sequences generation process

To analyze cut sequences, we make the initial state of the

guarded interface automaton that represents the semantics of

SEFT as the source state and the top event of SEFT destination

states as the end state. Further, we use the existing depth-first

searching algorithm to search all the behaviors from the source

state to the end state. After that, we induce cut sequences by

combining all the action sequences and the state guards on

transitions of every behavior. Finally, the MCS set of SEFT

can be achieved by reducing the cut sequences to several

minimal cut sequences. The process flow of the method we

proposed is shown in Figure 5.

5. CASE STUDY

A SEFT model of a fire protection system is shown in Figure

6 [20]. The hazard described by this SEFT is that when the

smoke detector and the heat detector detect fire successively,

and the water deluge system fails, then a fire might break out.

The top event represents the failure of the entire system. The

output of logic gate OR2 represents water deluge system

failure, and the output of the logic gate PAND gate represents

that fire detected.

S0

SD1 E

S1

PAND

E

smokedetect

Failure of fire protection system

AND3

OR2

S0

SD2 E

S1

smokedetect

S0

P S

S1
λ

fail

S0

N1 S

S1
μ

block

S

E E
S S

E

OR1

E E

AND1

SE

S0

HD E

S1

heatdetect

S0

TS S

S1

high

AND2

SS

S0

N2 S

S1

block

Fire detected water deluge system fails

Smoke detected

Heat detected Nozzles blockedpump fails

μ

Figure 6. The SEFT model of a fire protection system

667

HD.heatdetect?
S0 S1(2)AND1

SD1.smokedetect?

S0 S1(1)

SD2.smokedetect?

f2!
S2OR1

f3!
S2

[TS.S1]

(3)AND2
2 1 1 2 1. .ANDS N S N S= 

(4) OR2 2 21.OR ANDS P S S= 

S0 S1(5) PAND
f3?

S2

f2? f4!
S3

S0 S1(6) AND3

f1!
S2

f4?

2
[]ORS

[true]

[true] [true]

[true]

[true] [true] [true]

[true]

Figure 7. Guarded interface automata of logic gates

HD.heatdetect?

SD2.smokedetect?

SD1.smokedetect?

f4;

[TS.S1]

HD.heatdetect?

f3!

SD2.smokedetect?

f2;

SD1.smokedetect?

S0

1(1)OR PAND

S1 S2 S3

1 1(3)()OR PAND AND

f4!

SD2.smokedetect?

SD1.smokedetect?

S0 S1 S2 S3

[TS.S1]

1 1 3(5)()OR PAND AND AND

f1!
S0 S1 S2 S4S3

2
[]ORS

f4!
S4

f3!

SD2.smokedetect?

SD1.smokedetect?

S0

1OR PAND

S1 S2 S3

f4!

(2)Aggregation result of

[TS.S1]

HD.heatdetect? f3;

SD2.smokedetect?

SD1.smokedetect?

S0 S1 S2 S3

(4)Aggregation result of 1 1()OR PAND AND

f4!
S4

HD.heatdetect?

SD2.smokedetect?

SD1.smokedetect?

[TS.S1]

f1!
S0 S1 S2 S4S3

2
[]ORS

(6)Aggregation result of 1 1 3()OR PAND AND AND

Figure 8. Parallel composition and aggregation process

We first described logic gates semantics based on GIA, and

the results are shown in Figure 7. After that, the complete

semantics of the SEFT can be generated by composing all the

guarded interface automata expressing the semantics of logic

gates in Figure 7. In this case, the order adopted for GIA

composition is OR1//PAND//AND1//AND3. Figure 8 shows the

composition and aggregation process.

As shown in Figure 8, in every step, two guarded interface

automata are selected to be composited. The result guarded

interface automaton is further processed to reduce internal

action by using the weak bisimilarity operation. After that, it

is composited with other guarded interface automata in the

next steps. The composition process ends when there is only

one GIA left.

Finally, we obtain a result GIA as Figure 8(6). From this

GIA, it is easy to get cut sequences shown as follows:

1)
21 1(SD .smokedetect D.heatdetect?) [.] []ORH TS S S→  

2)
22 1(SD .smokedetect D.smokedetect?) [.] []ORH TS S S→   .

By substituting all guards in cut sequences by state guard

expressions, we can obtain the minimal cut sequences by

reducing all  symbols. The obtained minimal cut sequences

are listed as the following:

1) 1 1 1(SD .smokedetect D.heatdetect?) [. .]H TS S P S→  

2) 1 1 1 1 2 1(SD .smokedetect D.heatdetect?) [. . .]H TS S N S N S→   

3) 2 1 1(SD .smokedetect D.heatdetect?) [. .]H TS S P S→  

4) 2 1 1 1 2 1(SD .smokedetect D.smokedetect?) [. . .]H TS S N S N S→    .

Based on these minimal cut sequences, we can obtain all

minimal scenarios causing system failures. It is obvious that

HD.smokedetect and TS.S1 are the key events and states

because they exist in every minimal cut sequence.

6. DISCUSSION

The advantage of our method is that it only needs one step

of model translation, and the translated models can be

automatically composited. Hence, the analyzing efficiency

will be significantly improved. For comparison, we use the

SEFTAnalyzer proposed by Roth and Liggesmeyer [8] to

analyze the case system depicted in Figure 6. The

experimental results are listed in Table 1. Compared to

SEFTAnalyzer, the analysis results of our method are the same.

Namely, both methods can find out the cut sequences of SEFT.

For translation steps and manual operations, our approach only

needs one step translation and only needs human interventions

in the translation from SEFT to GIA (i.e., determining the

composition orders manually). While SEFTAnalyzer is more

complicated because it needs two steps of translation and

several human interventions in different phases. For example,

human interventions must be included in the translation from

SEFT and eDSPNs, and in the generation of reachability graph

to form complete SEFT’s semantics in SEFTAnalyzer.

Therefore, the process steps of our method are more

straightforward, and our method is quicker than

SEFTAnalyzer (5 min vs. 15 min). The analyzing time is

obtained by performing a complete analysis for the system

depicted in Figure 6 with our method and SEFTAnalyzer.

The limitation of the proposed method is that the

composition orders must be determined manually. This may

be addressed by matching the models’ inputs and outputs

iteratively. If a model’s output is accurately the input of

another model, these two models can be composited and

become an internal action. By repeating this, the composition

orders may be generated automatically. We left it as our future

work.

Table 1. Comparison of our method with SEFTAnalyzer [8]

Method Translation steps Manual operations Analyzing results Analyzing time

SEFTAnalyzer

Two steps: from SEFT to

eDSPNs, and from eDSPNs to

Reachability graph

composing elements’ eDSPNs

models to form the complete

SEFT’s semantics

the same as our

method
15 min

Our method
Only one step: from SEFT to

GIA

determining the composition

orders

4 minimal cut

sequences
5 min

668

7. CONCLUSIONS

In this paper, we presented a method for qualitatively

analyzing SEFT. We propose the guarded interface automata

to give precise semantics for SEFT’s logic gates. The

semantics of SEFT is given by composing all the logic gates.

During this process, we reduce the state-space of the

compositional result by using aggregation methodology. We

also present a cut sequences generation method. The obtained

minimal cut sequences represent the shortest paths that trigger

the critical event of the corresponding SEFT. As for future

work, we are looking for more benchmark example

State/Event Fault Trees that can be used to further test and

improve our method.

ACKNOWLEDGMENT

This work is supported by National Natural Science

Foundation of China under grants 61802192 and 61702282,

Fundamental Research Funds for the Central Universities,

NUAA, under the grant NJ2020022.

REFERENCES

[1] Laplante, P.A., DeFranco, J.F. (2017). Software

engineering of safety-critical systems: Themes from

practitioners. IEEE Transactions on Reliability, 66(3):

825-836. https://doi.org/10.1109/TR.2017.2731953

[2] Ruijters, E., Stoelinga, M. (2015). Fault tree analysis: A

survey of the state-of-the-art in modeling, analysis and

tools. Computer Science Review, 15: 29-62.

https://doi.org/10.1016/j.cosrev.2015.03.001

[3] Hiraoka, Y., Murakami, T., Yamamoto, K., Furukawa,

Y., Sawada, H. (2016). Method of computer-aided fault

tree analysis for high-reliable and safety design. IEEE

Transactions on Reliability, 65(2): 687-703.

https://doi.org/10.1109/TR.2015.2513050

[4] Kabir, S. (2017). An overview of fault tree analysis and

its application in model based dependability analysis.

Expert Systems with Applications, 77: 114-135.

https://doi.org/10.1016/j.eswa.2017.01.058

[5] Tang, Z., Dugan, J.B. (2004). Minimal cut set/sequence

generation for dynamic fault trees. In Annual

Symposium Reliability and Maintainability, 2004-

RAMS, Los Angeles, CA, USA, pp. 207-213.

https://doi.org/10.1109/RAMS.2004.1285449

[6] Chaux, P.Y., Roussel, J.M., Lesage, J.J., Deleuze, G.,

Bouissou, M. (2013). Towards a unified definition of

minimal cut sequences. IFAC Proceedings Volumes,

46(22): 1-6. https://doi.org/10.3182/20130904-3-UK-

4041.00013

[7] Kaiser, B., Gramlich, C., Förster, M. (2007). State/event

fault trees—A safety analysis model for software-

controlled systems. Reliability Engineering & System

Safety, 92(11): 1521-1537.

https://doi.org/10.1016/j.ress.2006.10.010

[8] Roth, M., Liggesmeyer, P. (2013). Qualitative analysis of

state/event fault trees for supporting the certification

process of software-intensive systems. In 2013 IEEE

International Symposium on Software Reliability

Engineering Workshops (ISSREW), Pasadena, CA, USA,

pp. 353-358.

https://doi.org/10.1109/ISSREW.2013.6688920

[9] De Alfaro, L., Henzinger, T.A. (2001). Interface

automata. ACM SIGSOFT Software Engineering Notes,

26(5): 109-120. https://doi.org/10.1145/503271.503226

[10] Čepin, M., Mavko, B. (2002). A dynamic fault tree.

Reliability Engineering & System Safety, 75(1): 83-91.

https://doi.org/10.1016/S0951-8320(01)00121-1

[11] Junges, S., Guck, D., Katoen, J.P., Stoelinga, M. (2016).

Uncovering dynamic fault trees. In 2016 46th Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), Toulouse, France, pp.

299-310. https://doi.org/10.1109/DSN.2016.35

[12] Schellhorn, G., Thums, A., Reif, W. (2002). Formal fault

tree semantics. In Proceedings of The Sixth World

Conference on Integrated Design & Process Technology,

Pasadena, CA, pp. 1-8.

[13] Palshikar, G.K. (2002). Temporal fault trees. Information

and Software Technology, 44(3): 137-150.

https://doi.org/10.1016/S0950-5849(01)00223-3

[14] Kaiser, B. (2006). State event fault trees: A safety and

reliability analysis technique for software controlled

systems. Ph.D. dissertation, University Kaiserslautern.

[15] Liu, D., Xing, W., Zhang, C., Li, R., Li, H. (2007). Cut

sequence set generation for fault tree analysis. In

International Conference on Embedded Software and

Systems, pp. 592-603. https://doi.org/10.1007/978-3-

540-72685-2_55

[16] Xing, L., Shrestha, A., Dai, Y. (2011). Exact

combinatorial reliability analysis of dynamic systems

with sequence-dependent failures. Reliability

Engineering & System Safety, 96(10): 1375-1385.

https://doi.org/10.1016/j.ress.2011.05.007

[17] Assaf, T., Dugan, J.B. (2004). Diagnostic expert systems

from dynamic fault trees. In Annual Symposium

Reliability and Maintainability, 2004-RAMS, Los

Angeles, CA, USA, pp. 444-450.

https://doi.org/10.1109/RAMS.2004.1285489

[18] Xu, B., Huang, Z., Hu, J., Wei, O., Zhou, Y. (2013).

Minimal cut sequence generation for state/event fault

trees. In Proceedings of the 2013 Middleware Doctoral

Symposium, pp. 1-6.

https://doi.org/10.1145/2541534.2541592

[19] Hermanns, H. (2002). Interactive Markov chains: And

the quest for quantified quality. Berlin, Heidelberg:

Springer-Verlag.

[20] Andrews, J.D. (2013). Tutorial. www.fault-tree.net,

November 2013.

669

