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State/Event Fault Tree (SEFT) can be used for safety modeling and assessment. However, 

SEFT does not provide adequate semantics for analyzing the minimal scenarios leading 

to system failures. In this paper, we propose a novel qualitative analysis method for SEFT 

based on interface automata. Firstly, we propose the concept of guarded interface 

automata by adding guards on interface automata transitions. Based on this model, we can 

describe the triggers and guards of SEFT simultaneously. Then, a weak bisimilarity 

operation is defined to alleviate the state space explosion problem. Based on the proposed 

guarded interface automata and the weak bisimilarity operation, the semantics of SEFT 

can be precisely determined. After that, a qualitative analysis process is presented on the 

basis of the formal semantics of SEFT, and the analyzing result is the minimal cut 

sequence set representing the causes of system failures. Finally, a fire protection system 

case study is illustrated step by step to demonstrate the effectiveness of our method. 
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1. INTRODUCTION

As safety critical systems are ubiquitous in our daily lives, 

failures of these systems will cause pollution of the 

environment, property losses, and even casualties [1]. Thus, it 

is vital to assess the safety level and detect the key drawbacks 

of systems. To this end, safety analysis has been proposed. In 

order to perform safety analysis, fault tree analysis [2] is a 

widely accepted methodology, and there have been many 

methods developed for evaluating fault tree models. Generally, 

these methods can be categorized into quantitative and 

qualitative analysis [3, 4]. Specifically, qualitative analysis is 

used to identify the most critical components of the system. 

These critical components’ failures would cause the system to 

crash. To perform qualitative analysis, one needs to find out 

the Minimal Cut Sequences (MCSs) [5, 6], which form a 

minimal set of component events and states in a particular 

order that would cause the failure of a system. Based on MCSs, 

the most critical components can be identified efficiently. 

In this paper, our main concern is the qualitative analysis for 

State/Event Fault Tree (SEFT) [7], which is a new kind of fault 

tree. Unlike the traditional fault tree [2], SEFT provides more 

flexible modeling capabilities for analyzing critical systems by 

distinguishing symbols of states and events [7]. The 

occurrence of SEFT’s top event is related to the set of basic 

events and their sequences. Therefore, SEFT is more suitable 

for expressing safety critical scenarios of software-controlled 

systems.  

As in fault tree analysis, one should first find out the 

minimal cut sequences (MCSs) to perform qualitative analysis 

for State/Event Fault Tree (SEFT). However, the SEFT’s 

component- and state-based natures make this task even harder. 

On the one hand, transitions cannot be triggered by states of a 

component, which can only allow or inhibit transitions. 

Consequently, we must model both triggers and guards when 

producing MCSs for SEFT. On the other hand, as lacking well-

defined semantics, it is imperative to formally express the 

semantics of SEFT with the help of some formal models. And 

the chosen formal model should have component- and state-

based natures. For example, Roth and Liggesmeyer [8] first 

translated SEFT to Extended Deterministic and Stochastic 

Petri Nets (eDSPNs) and captured the reachability graph based 

on eDSPNs. With the reachability graph, the qualitative 

analysis is then performed. However, this process requires two 

model translation steps (SEFT to eDSPNs and then to 

reachability graph) and a lot of manual interventions. 

In this work, we present a novel solution for qualitatively 

analyzing SEFT. We first propose a new model called Guarded 

Interface Automata (GIA). Based on interface automata [9], 

GIA adds guards on transitions and can precisely describe the 

triggers and guards of transitions. Then, we define the 

semantics of SEFT’s logic gates with the help of guarded 

interface automata. Next, we provide a parallel composition 

and aggregation method to obtain the semantics of SEFT. 

Finally, we perform the qualitative analysis with the obtained 

semantics and illustrate the process by applying our method. 

Our approach only needs one step of model translation (SEFT 

to GIA). And the translated models can be almost 

automatically composited except that the order of composition 

should be determined manually. Therefore, less manual efforts 

are needed in our method, and the analyzing efficiency will be 

improved. 

The remainder of the paper is organized as follows. We give 

an overview of related work of qualitative analysis for fault 

trees in Section 2. In Section 3, the weak bisimilarity operation 

of guarded interface automata is defined. In Section 4, we 

capture the semantics of SEFT and demonstrate the process of 

qualitative analysis. A case study is given step by step in 

Section 5. We discuss the proposed method in Section 6 and 

conclude and identify some future work in Section 7. 
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2. RELATED WORK 

 

We investigate the qualitative analysis method for 

State/Event Fault Tree in this work. Existing work on this topic 

is presented in two aspects: fault tree models and extraction of 

minimal cut sequences. 

Models based on fault trees are widely accepted, which can 

show how influential factors contribute to some given hazard 

or accident [2]. There are many types of fault trees supporting 

dynamic and component-based system modeling, among 

many others: Dynamic Fault Tree (DFT) [10] extends the basic 

fault tree with dynamic logic gates to describe dependencies 

of action sequences. The differences and categorizes of 

existing DFT variants are systematically uncovered in the 

study [11]. Temporal Fault Tree (TFT) [12] extends the 

conventional fault tree with temporal logic, for example, the 

Interval Temporal Logic with continuous semantics and 

Duration Calculus [13]. State/Event Fault Tree has been first 

presented by Kaiser [14]. It provides a visual notation that 

combines elements from fault trees and state-based modeling 

techniques. Compared to the traditional fault trees, SEFT has 

the ability of visual distinction for states and events, which 

uses a graphical notation similar to Statecharts. Hence, the 

main advantage of SEFT is the usage of familiar symbols both 

from fault trees and Statecharts. 

The minimum cut set analysis aims to find the failure causal 

chain of component systems. Tang and Dugan [5] first 

introduced minimal cut sequences for dynamic fault trees. 

However, they did not give detailed processes to generate 

minimal cut sequences. Liu et al. [15] provided an integrated 

method for all cut sequence generation in the dynamic fault 

tree. Xing et al. analyzed dynamic fault trees based on 

sequential binary decision diagrams [16]. Assaf and Dugan 

diagnosed failed systems using the diagnostic decision tree 

(DDT) [17]. In these works, the minimal cut sequences are 

constructed based on the dynamic fault tree. 

Our purpose is to provide a new qualitative analysis method 

for SEFT. As described in Section 1, we have to consider both 

the component- and state-based natures of SEFT. Kaiser et al. 

[7] translated SEFT to eDSPNs (Extended Deterministic and 

Stochastic Petri Nets) to investigate the system failure 

probabilities. However, their work did not explain how to 

generate MCSs for SEFT. They only performed the 

quantitative analysis, not the qualitative analysis for SEFT. In 

fact, Kaiser [14] claimed that eDSPNs must be composed 

manually. This is because eDSPNs cannot possess the notion 

of interface. Therefore, it is challenging to perform qualitative 

analysis for SEFT based on eDSPNs. 

Roth and Liggesmeyer [8] proposed a qualitative analysis 

method for SEFT by Kaiser [14]. They first translated SEFT 

to eDSPNs according to Kaiser [14] and then captured the 

reachability graph based on eDSPNs. The qualitative analysis 

is performed based on the reachability graph lastly. During this 

process, they need two translation steps. In the first step, as 

eDSPNs do not have the notion of interface, it requires manual 

intervention to composite the elements’ formal semantic 

models. In the second step, the reachability graph is needed to 

be manually constructed from SEFT’s eDSPNs semantics 

model to mitigate state space explosion. This process requires 

two model translation steps and a significant amount of 

manual interventions. 

In this paper, we design a new automatical and efficient 

method for qualitative analysis of SEFT. Our approach’s basic 

idea is to use interface automata to define SEFT elements’ 

precise semantics. Since interface automata automatically 

support models’ composition, we can obtain SEFT’s 

semantics by compositing its elements’ semantic model and 

finding out the MCSs without manual intervention. 

 

 

3. FORMAL DESCRIPTION OF SEFT’S ELEMENTS 

BASED ON GUARDED INTERFACE AUTOMATA 

 

3.1 Informal description of SEFT model 

 

In this section, we introduce the SEFT model informally. 

SEFT combines modeling elements from fault trees and 

statecharts. Differatiating from the fault tree, SEFT introduces 

distinct symbols for states and events, so SEFT is a state- and 

event-based model. In SEFT, logic gates can show how several 

causes relate to their common consequences. They can also 

visually build the complex trigger and guard structures, which 

are always connected by casual edges. In logic gates, states 

cannot trigger transitions, they can only inhibit or allow 

transitions. A state condition enabling a transition to occur is 

referred to as a guard, and the influenced transition can only 

happen as all guard conditions are evaluated to be true. 

Therefore, if there is more than one guard condition, they are 

ANDed. To reflect the state/event distinction, the input and 

output ports of gates are distinguished as state or event ports. 

The logic gates of SEFT are shown in Figure 1; there are five 

different kinds. The hollow box at the bottom of the logic gates 

represents the input port, and the solid box at the top represents 

the output port. The letter "S" in the box represents the state 

port, and the letter "E" represents the event port. 

 

3.2 The guarded interface automata model 

 

To model the semantics of SEFT, we proposed guarded 

interface automata by extending the interface automata [18]. 

In this section, we formally describe the definition of guarded 

interface automata (GIA). Furthermore, we propose a weak 

bisimilarity operation to relieve the state space explosion 

problem during the GIA composition process. 

 

3.2.1 Definition of GIA 

Definition 1 (Guarded Interface Automaton). A GIA is a 

tuple P=(VP, 𝑣𝑃
𝐼𝑛𝑖𝑡 , AP, IP, ΓP) where: 

• VP is a finite set of states, where each state v∈VP. 

• 𝑣𝑃
𝐼𝑛𝑖𝑡∈VP is the initial state. 
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Gate
(c)OR Gate with n 

state inputs

(b)AND Gate with One 

event and n state inputs
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S
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S S

S
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E

E

E
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E

E
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Figure 1. Logic gates of SEFT 
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• AP is a set of all actions, partitioned into disjoint sets of 

input, output, and internal actions, which are denoted by 

𝐴𝑃
𝐼 , 𝐴𝑃

𝑂 and 𝐴𝑃
𝐻, respectively. 

• IP is a finite set of guards, each guard has the form of [φ], 

where φ is the formula defined as φ:=s|φ ∧ φ|φ ∨ φ, 

s∈{Guarded states of components in system}. 

• ΓP∈VP×AP×IP×VP is a set of transitions. 

Figure 2 shows two guarded interface automata P and Q. In 

Figure 2(a), the GIA P indicates the assumption that the 

transition occurs when the message a is sent. The composable 

of GIA is described in Definition 2, and Definition 3 defines 

the product of GIA. 

 

c!,[true]

b?,[g
1]

a?,[tr
ue]

b?,[g
1]

a?,[tr
ue]

(b)

a!,[true]
S0 S1P

K0

K1

K3Q

(a)

K2

K4

 

 

Figure 2. Examples of guarded interface automata 

 

Definition 2 (Composable): Two guarded interface 

automata P and Q are composable if 
H

P QA A =  ,

I I

P QA A = , 
O O

P QA A = , 
H

Q PA A = . 

Definition 3 (GIA Product): If P and Q are composable 

guarded interface automata, their product P// the GIA defined 

as: 

• P Q P QV V V=  . 

• 
init init( )init

P Q P QV V V=  . 

• 

(A A ) \ shared(P,Q),

(A A ) \ shared(P,Q),

A A shared(P,Q).

I I I

P Q P Q

O O O

P Q P Q

H H H

P Q P Q

A

A

A

=

=

=

 

• The set of guards is P Q P QI I I= . 

• 
1

2

,[g] ,[g]

,[g] ,[g]

,[g ],[g]

,[g ]

{(s, t) (s , t) | s \ A } {(s, t)

(s, t ) | t \ A }

{(s, t) (s , t ) | s t

(P,Q)}.

a a

P Q P Q

a a

Q P

aa

a

s a A

t a A

s

t a shared

  = ⎯⎯⎯→ ⎯⎯⎯→  

 ⎯⎯⎯→ ⎯⎯⎯→  

  ⎯⎯⎯→ ⎯⎯⎯→ 

⎯⎯⎯→  

 

 

3.2.2 Weak bisimilarity 

Automata-based models usually suffer from combinatorial 

state explosion. To alleviate the state explosion problem, it is 

vital to find out weak bisimilarity relations of states. The weak 

bisimilarity of GIA is defined in Definition 4.  

Definition 4 (Weak bisimilarity): Let P=(VP, 𝑣𝑃
𝐼𝑛𝑖𝑡 , AP, IP, ΓP) 

be a guarded interface automaton. Let R be an equivalence 

relation on VP. Then R is a weak bisimilarity iff for all (s, t) ∈R, 

a∈AP, 
,[ ]a g

s s  implies that there is a weak transition 
,[ ]a g

t t  

with (s', t') ∈R. 

Two guarded interface automata P and Q are weakly 

bisimilar, written P≈Q, if they are contained in some weak 

bisimilarity B. Weak bisimilarity for a GIA is defined as the 

union of all weak bisimilaritys on P: 

• ≈Ρ=∪{R|R is a weak bisimilarity on P}. 

Our notion of weak bisimilarity for guarded interface 

automata is similar to the one for the interactive process [19]. 

As pointed out in literature [19], weak bisimilarity is 

substitutive. Substitutivity ensures that equivalent components 

can be exchanged by each other without affecting the behavior 

of the composition process. Notably, our notion of weak 

bisimilarity enjoys the expected properties: weak bisimilarity 

is a congruence with respect to parallel composition. 

Let P1 and P2 be two GIA with identical actions and guards, 

let P3 be a GIA composable with P1 and P2. We have: 

1) P1≈P2 implies P1//P3≈P2//P3, 

2) P1≈P2 implies P3//P1≈P3//P2. 

As an example, the parallel composition and aggregation 

result of GIA P and Q in Figure 2 is shown in Figure 3. 

 

P||Q

b?,[g1] c!,[true]

b?,[g
1]

b?,[g1] a;,[tru
e]

a;,[t
rue]

Aggregation of P||Q(b)

(a) c!,[true]S0,K0

S1,K1

S0,K2

S1,K3 S1,K4

T0 T1 T2

 

 

Figure 3. Parallel composition and aggregation result of 

Figure 2 

 

Furthermore, we use sequential failure symbol “→” to 

express the cut sequence of components’ events. From the 

behavior 0 0 1 11 1,[ ] ,[ ],[ ]

0 1 ... n na g a ga g

nv v v− −⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯⎯→ , we can 

capture the cut sequence as: a0, [g0]→a1, [g1]→an-1, [gn-1]. 

 

3.3 Semantics for SEFT’s elements 

 

This subsection provides the GIA semantics for each SEFT 

logic gate. The input of event type in a logic gate can be 

considered as the trigger event, and the input of state type in a 

logic gate can be considered as the guard. ⟦. . . ⟧𝐸𝐿𝑇  is a 

function representing the semantics of logic gates. We show 

the GIA of the logic gates as follows. 

• GIA model of state-AND Gate. Figure 4(a) expresses 

the semantics of the n input state-AND Gate, i.e., 

S1=[S2∧... ∧Sn]. 

• GIA model of event/state-AND Gate. Figure 4(b) 

expresses the semantics of the one event input and n state 

input AND Gate (including state-AND Gate and 

event/state-AND Gate), i.e. function 

( / ) : n

ELT
event state AND A GIA− →  takes the output, 

one event input and n state inputs of the logic gate as 

parameters. The event/state-AND Gate fires if event 

input is triggered and state guards are satisfied. 

• GIA model of state-OR Gate. Figure 4(c) expresses the 

semantics of the n input state-OR Gate, i.e., S1=[S2∨... 
∨Sn]. 

• GIA model of event-OR Gate. Figure 4(d) expresses the 

semantics of the n event inputs OR Gate, i.e. function 

( , ) : n

ELT
OR n A GIA→ , takes the output and n event 

inputs of the logic gate as parameters.  

• GIA model of PAND Gate. Figure 4(e) expresses the 

semantics of the n inputs PAND Gate, i.e. function 

( , ) : n

ELT
PAND n A GIA→ , takes the output and n 

event inputs of the logic gate as parameters. 
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fn?,[true]

fn?

(a)Guard of state-AND Gate
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Figure 4. GIA model for logic gates. The left side of the broad arrow indicates the logic gate of SEFT, and the right side 

represents the formal representation of the logic gate. Note that the formalized description of state-AND Gate and state-OR Gate 

is a guard, and the result of the formal representation of event/state-AND Gate, event-OR Gate, and PAND Gate is a guarded 

interface automaton 

 
We have defined the individual GIA models for each SEFT 

element. We now can convert any given SEFT into the 

corresponding GIA. The method for generating SEFT’s 

semantics and minimal cut sequence will be presented in 

Section 4. 

 

 

4. MINIMAL CUT SEQUENCE GENERATION 

 

The technique of compositional aggregation consists of 

composing a larger model out of smaller ones and aggregating 

submodels after each compositional step. The compositional 

aggregation methodology can combine a GIA set into a single 

GIA. Hence, we can transform SEFT’s logic gates into a GIA 

set and obtain the final semantics of a SEFT model. 

 

4.1 Weak bisimilarity classes partition approach 

 

When defining the semantics of SEFT’s logic gates, the 

output of a logic gate is formally described by the output action 

of GIA. Since these output actions added to derive semantics 

of SEFT are not the events of components, they do not 

influence the system behavior. Namely, they become internal 

actions and do not affect the qualitative analysis result. 

Consequently, these internal actions should be removed to 

reduce the state space of the compositional result. 

Weak bisimilarity is substitutive with parallel composition, 

which lays the foundation for state space reduction. 

Substitutivity ensures that equivalent components can be 

exchanged by each other. And the exchange does not affect the 

behavior of the composite process. Thus, the weak bisimilarity 

technique can be used to reduce specific internal actions after 

the composition is completed. The state space reduction 

process of GIA can be divided into two phases: weak 

bisimilarity classes partition and state space aggregation, 

where the former one is the crucial part and the state space 

aggregation is easy to implement. Therefore, in the following, 

we mainly introduce the weak bisimilarity classes partition 

method in detail. 

Algorithm 1 shows the weak bisimilarity classes partition 

process. The basic idea of Algorithm 1 is described as follows. 

First of all, the state space of GIA is partitioned into two parts 

according to whether the states are stable or not. In this paper, 

a state with no outgoing internal or output transitions is 

considered stable. Then every equivalence class is further 

partitioned by the left actions and guards of GIA. The 

algorithm ends when all the actions have been used. Finally, 

the state space of GIA is partitioned into several equivalence 

classes. 

 

Algorithm 1. Compute weak bisimilarity classes 
,[ ]

.( ,( ,[ ]), ) :
.

a g

o

true if thereis P C suchthat P PP a g C
false otherwise


   = 


 

{ , }

( , ( ,[ ]), ) :

( ( {{ | ( , ( ,[ ]), ) }})) { }X Part v true false O

IRefine Part a g C

P X P a g C v  =  = −
 

Input: Guarded interface automaton 

( , , , , )Init

P P P P PP V v A I=   

Output: VP/≈. 

Function: Compute weak bisimilarity classes of GIA P. 

Substitute specific internal action of GIA with τ. 

Part:={VP}; : ( ,[ ]) { };P P PSpl A I V=   

repeat 

Choose ((a,[g]),C) in Spl; 

Old:=Part; 

Part:=Irefine (Part,(a,[g]),C); 

New:=Part-Old; 

Spl:= ( {( ,[ ]), }) (( ,[ ]) )P PSpl a g C A I New−  ; 

Until Spl is empty 

Return Part. 
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Minimal cut sequence generation

start

Formally describe all  logic gates of SEFTs as GIA to form GIA set

Parallel compose two GIA and put it back to the  GIA set

If more than one 

GIA are left
yes

end 

no

Search behaviors of GIAN from the initial state to the end state to form cut sequences, then 

derive  cut sequences.

Parallel composition

Pick two GIA of logic gates according to the given order from GIA set

Formalization

Reducing these cut sequences into minimal cut sequences based on components GIA. 

 
 

Figure 5. MCS generation process of SEFT 

 

The body of Algorithm 1 consists of two parts. To begin 

with, the initial operation is performed. The states of GIA are 

partitioned into stable states and non-stable states. Also, Spl is 

modified, i.e., Spl:=Act×{S}. After that, the main loop of the 

algorithm executes. The function of this loop is selecting one 

action from Spl and partitioning the existing equivalence 

classes. This loop ends when Spl is empty. The time 

complexity of this algorithm is O(n3), where n is the number 

of states in the GIA. 

When the state space partitioning is completed, aggregation 

operation can be used to reduce state space of GIA: it 

processes every equivalence class respectively by merging the 

states to form a new state instead. In this way, we obtain a GIA 

model, the state space of which is smaller than before, and the 

behavior is weak bisimilar to the initial GIA model. For 

example, the aggregation result of Figure 3(a) is depicted in 

Figure 3 (b). 

After the composition and aggregation of all guarded 

interface automata of SEFT logic gates, we can obtain a 

guarded interface automaton that represents the semantics of 

SEFT, from which we can analyze the MCSs. 

 

4.2 SEFT cut sequences generation process 

 

To analyze cut sequences, we make the initial state of the 

guarded interface automaton that represents the semantics of 

SEFT as the source state and the top event of SEFT destination 

states as the end state. Further, we use the existing depth-first 

searching algorithm to search all the behaviors from the source 

state to the end state. After that, we induce cut sequences by 

combining all the action sequences and the state guards on 

transitions of every behavior. Finally, the MCS set of SEFT 

can be achieved by reducing the cut sequences to several 

minimal cut sequences. The process flow of the method we 

proposed is shown in Figure 5. 

 

 

5. CASE STUDY 

 

A SEFT model of a fire protection system is shown in Figure 

6 [20]. The hazard described by this SEFT is that when the 

smoke detector and the heat detector detect fire successively, 

and the water deluge system fails, then a fire might break out. 

The top event represents the failure of the entire system. The 

output of logic gate OR2 represents water deluge system 

failure, and the output of the logic gate PAND gate represents 

that fire detected. 
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Figure 6. The SEFT model of a fire protection system 
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Figure 7. Guarded interface automata of logic gates 
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Figure 8. Parallel composition and aggregation process 

 
We first described logic gates semantics based on GIA, and 

the results are shown in Figure 7. After that, the complete 

semantics of the SEFT can be generated by composing all the 

guarded interface automata expressing the semantics of logic 

gates in Figure 7. In this case, the order adopted for GIA 

composition is OR1//PAND//AND1//AND3. Figure 8 shows the 

composition and aggregation process.  

As shown in Figure 8, in every step, two guarded interface 

automata are selected to be composited. The result guarded 

interface automaton is further processed to reduce internal 

action by using the weak bisimilarity operation. After that, it 

is composited with other guarded interface automata in the 

next steps. The composition process ends when there is only 

one GIA left. 

Finally, we obtain a result GIA as Figure 8(6). From this 

GIA, it is easy to get cut sequences shown as follows: 

1) 
21 1(SD .smokedetect D.heatdetect?) [ . ] [ ]ORH TS S S→    

2) 
22 1(SD .smokedetect D.smokedetect?) [ . ] [ ]ORH TS S S→   .  

By substituting all guards in cut sequences by state guard 

expressions, we can obtain the minimal cut sequences by 

reducing all  symbols. The obtained minimal cut sequences 

are listed as the following: 

1) 1 1 1(SD .smokedetect D.heatdetect?) [ . . ]H TS S P S→    

2) 1 1 1 1 2 1(SD .smokedetect D.heatdetect?) [ . . . ]H TS S N S N S→     

3) 2 1 1(SD .smokedetect D.heatdetect?) [ . . ]H TS S P S→    

4) 2 1 1 1 2 1(SD .smokedetect D.smokedetect?) [ . . . ]H TS S N S N S→    . 

Based on these minimal cut sequences, we can obtain all 

minimal scenarios causing system failures. It is obvious that 

HD.smokedetect and TS.S1 are the key events and states 

because they exist in every minimal cut sequence. 

 

 

6. DISCUSSION 

 

The advantage of our method is that it only needs one step 

of model translation, and the translated models can be 

automatically composited. Hence, the analyzing efficiency 

will be significantly improved. For comparison, we use the 

SEFTAnalyzer proposed by Roth and Liggesmeyer [8] to 

analyze the case system depicted in Figure 6. The 

experimental results are listed in Table 1. Compared to 

SEFTAnalyzer, the analysis results of our method are the same. 

Namely, both methods can find out the cut sequences of SEFT. 

For translation steps and manual operations, our approach only 

needs one step translation and only needs human interventions 

in the translation from SEFT to GIA (i.e., determining the 

composition orders manually). While SEFTAnalyzer is more 

complicated because it needs two steps of translation and 

several human interventions in different phases. For example, 

human interventions must be included in the translation from 

SEFT and eDSPNs, and in the generation of reachability graph 

to form complete SEFT’s semantics in SEFTAnalyzer. 

Therefore, the process steps of our method are more 

straightforward, and our method is quicker than 

SEFTAnalyzer (5 min vs. 15 min). The analyzing time is 

obtained by performing a complete analysis for the system 

depicted in Figure 6 with our method and SEFTAnalyzer. 

The limitation of the proposed method is that the 

composition orders must be determined manually. This may 

be addressed by matching the models’ inputs and outputs 

iteratively. If a model’s output is accurately the input of 

another model, these two models can be composited and 

become an internal action. By repeating this, the composition 

orders may be generated automatically. We left it as our future 

work. 

 

Table 1. Comparison of our method with SEFTAnalyzer [8] 

 

Method Translation steps Manual operations Analyzing results Analyzing time 

SEFTAnalyzer 

Two steps: from SEFT to 

eDSPNs, and from eDSPNs to 

Reachability graph 

composing elements’ eDSPNs 

models to form the complete 

SEFT’s semantics 

the same as our 

method 
15 min 

Our method 
Only one step: from SEFT to 

GIA 

determining the composition 

orders 

4 minimal cut 

sequences 
5 min 
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7. CONCLUSIONS 

 

In this paper, we presented a method for qualitatively 

analyzing SEFT. We propose the guarded interface automata 

to give precise semantics for SEFT’s logic gates. The 

semantics of SEFT is given by composing all the logic gates. 

During this process, we reduce the state-space of the 

compositional result by using aggregation methodology. We 

also present a cut sequences generation method. The obtained 

minimal cut sequences represent the shortest paths that trigger 

the critical event of the corresponding SEFT. As for future 

work, we are looking for more benchmark example 

State/Event Fault Trees that can be used to further test and 

improve our method. 
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