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Nowadays we are witnessing an open world, characterized by globalization which is 

accompanied by a technology through which information circulates without borders, 

especially with the widespread use of social networking sites being the most common 

communication tool, that gives access through various applications to a large space for the 

presentation of multiple ideas, including extremist ideas, and the spread of hate speech. 

This paper introduces a system of detection of hate speech in the texts of Arabic read media 

and social media, which is based on a combined use of NLP, and machine learning methods. 

The training of the detection model is done on a large Dataset of articles, tweets and 

comments, collected, balanced and tokenized afterwards using BERT in Arabic. The trained 

model detects hate speech in Arabic and various Arabic based dialects, by classifying the 

texts into two classes: Neutral and Abusive. The above-mentioned model is evaluated using 

precision metrics, recall and f1 score, it has reached an accuracy of 83%. 
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1. INTRODUCTION

1.1 Generalities 

It is clear that the widespread dissemination of media and 

communication as an open space has become a haven for 

practicing various forms of discrimination and producing hate 

speech mainly invested by the political actor, and this is what 

we also notice through reading Arabic content on the Internet, 

whether linked to online journalism, citizen journalism or 

micro blogging on social networks, networks play an essential 

role in the dissemination of hate speech in different types of 

violence, physical, symbolic or verbal speech.  

Knowing that the usage of social media applications in the 

Arab world has exceeded 90% of the population in some 

countries [1], the regulation of the content of electronic 

journalism in Arabic is an essential step to reduce the spread 

of hate speech and stop various forms of cyber violence. 

The use of artificial intelligence and machine learning 

techniques remain the only means capable of performing such 

a complex task. 

Generating an automatic hate speech detection system will 

allow news agencies and regulatory bodies to specifically 

monitor not only the content of print newspapers and 

magazines, but also online journalism. 

Creating such a system is a considerable challenge for two 

reasons, in one hand, the scarcity of text categorization 

databases for the detection of hate speech in Arabic, and the 

existence of several dialects based on the Arabic language in 

another hand, which makes automatic detection even more 

difficult. 

To deal with these problems we created a large database 

through the combination of several other databases of different 

dialects that uses the Arabic alphabet, and we called on a 

BERT library in Arabic, which was pre-trained on various 

dialects, and we used it as a basic model to train and fine-tune 

a new BERT model to detect hate speech in Arabic texts. 

1.2 Definition of hate speech 

Even if there is no precise legal definition of “hate speech”, 

it is generally referring to different types of public expression 

that propagate, incite, promote or justify hatred, discrimination 

or hostility against one person or a group of people, based on 

their person, in other words, it is based on religion, ethnicity, 

nationality, color, ancestry, sex or any other identity factor.  

It is a specific type of cyber bullying that not only targets 

individuals but also affects their assets. 

Hate speech can be classified into the following categories 

[1]: 

(1) Gender-based hate speech: This category includes any

form of hostility towards a specific sex or the devaluation of a 

person or group based on their gender. 

(2) Religious hate speech: It includes any type of religious

discrimination, such as: Islamic sects, anti-Christianity or any 

type of religious discrimination. 

(3) Racial hate speech: this category includes any type of

ethnic or tribal, regional crimes, (hostility against immigrants 

and refugees), any prejudice against a particular tribe or region, 

and offensive to the appearance and color of the individual. 

1.3 Related work 

Several studies and research have been carried out in the 

field of classification of Arabic texts, and more specifically in 

the automatic detection of hate speech in classical Arabic; 

Many of these studies have applied classic machine learning 

algorithms for tackling the task of classification including 

Support Vector Machine technique, and the Naïve Bayes 

classifier (NB) [2], Decision Trees, K-Nearest Neighbor and 
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other types of classifiers [3-17]. 

In their work, Altowayan and Tao [17], proposed a word 

embeddings model for the classification of sentiments for the 

Arabic language. Their work generated a language model that 

surpassed by little performance, other sentiment analysis 

models. 

El-Halees [9] presented a three-step algorithm for 

classifying Arabic documents through the use of Markov 

networks and clustering [18]. This technique outperforms the 

algorithms of classical methods, in trials carried out on two 

different data sets. In the works [5], we see an introduction of 

a method to classify Arabic texts by text integration using the 

doc2vec model, which generates better performance compared 

to classical algorithms. 

Regarding the automatic detection of hate speech, studies 

are still very few in Arabic compared to English. Abozinadah 

et al. [19-21] can be considered as Pioneers in researching 

offensive speech on Arab social networks. They use the NB 

Ranker on Twitter accounts. 

The same authors developed this early work using the 

Support Vector Machine with a different technique of 

normalizing Arabic text that is directed to the problem of 

misspelled words [19]. In other studies, Abozinadah et al. [21] 

tackled the same issue by the application of a statistical 

learning approach to feature selection and a supporting vector 

machine classifier. 

Other authors [22] take a different approach to find abusive 

speech. Their objective is to compile a long list of profane 

Arabic phrases or words, which can then be used to identify 

offensive language. 

In other work, Mohaouchane et al. [23] measured the results 

of four different types of neural networks on the automatic 

detection of hate language. These models are CNN and LSTM 

bidirectional with or without attention, and CNN-LSTM. They 

discovered that the best retrieval results are achieved with the 

integrated CNN-LSTM while the best accuracy is obtained by 

CNN. While CNN alone is able to learn properties from the 

word n-grams, the CNN-LSTM model is also able to learn 

long-term dependencies thanks to the LSTM layer. 

None of these studies looked at the different Arabic dialects, 

nor did they implement the Transformers method, even if it 

proved its efficiency and excellence in the different tasks of 

NLP. 

The Table 1 summarizes the work carried out in the field of 

abusive language and hate speech detection since 2015 to date. 

Table 1. State of the art: Automatic hate speech detection in Arabic, methods and results 

Author 
Year 

Platform 
Classes 

ML 

Approach 

Features 

Representation 
Algorithm P R F 

Abusive language 

Abozinadah 

and Jones [20] 

2015- 

Twitter 
Abuser, Normal Supervised 

Profile and tweet-based 

features, bag of words, 

N-gram, TF-IDF

Naïve Bayes 0.85 0.85 0.85 

Abozinadah 

and Jones [19] 

2016- 

Twitter 

Abusive, 

Legitimate 

Accounts 

Unsupervised 
Lexicon, bag of words 

(BOW), N-gram 
SVM 0.96 0.96 0.96 

Abozinadah et 

al. [21] 

2017- 

Twitter 

NonAbusive, 

Abusive 
Supervised 

PageRank (PR) 

algorithm, Semantic 

Orientation (SO) 

algorithm, statistical 

SVM 0.96 0.96 
0.9 

6 

Mubarak et al. 

[24] 

2017- 

Twitter, 

Arabic News 

Site 

Obscene, 

Offensive and 

Clean 

Unsupervised 

unigram and bigram, Log 

Odds Ratio (LOR), Seed 

Words lists 

None. Just 

performed 

extrinsic 

evaluation 

0.98 0.45 0.60 

Religious hate speech 

Albadi et al. 

[25] 

2018- 

Twitter 
Hate, Not hate Supervised 

Word embeddings 

(AraVec) 

GRUbased 

RNN 
0.76 0.78 0.77 

Offensive Language 

Safaya et al. 

[26] 

2020-

youtube 

Offensive, Not 

offensive 
Supervised 

Word embeddings 

(AraVec) 

CNN 86.10 82.24 84.05 

Bi-LSTM 83.74 80.97 82.33 

Attention 

BiLSTM 
82.07 81.51 81.70 

Combined 

CNN-LSTM 
83.89 83.46 83.65 

2. METHOD

2.1 The proposed approach 

2.1.1 The BERT method 

In our study, we use BERT, which stands for Bidirectional 

Encoder Representations from Transformers [27]. Compared 

to the word embedding model, BERT can also be described as 

a text representation method, which is a combination of 

various advanced deep learning algorithms, such as Long 

Short Term Memory, and also transformers.  

Work on learning linguistic representations by pre-trained 

models on large unlabeled data sets of text documents began 

from word embeddings such as Word2Vec. This technique 

changed the way NLP tasks were performed. Thanks to the 

pre-trained models, we could obtain incorporations capable of 

creating contextual links between words. 

The main limitation of these techniques was the use of 

superficial language models. 

Thus, the new approach to solving NLP tasks has become a 

two-step process: The first performed by training a language 

model on a large body of text data set (unlabeled, and 
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unsupervised or semi-supervised), and in our case, we use 

ArabicBERT [26]. The second is to refine the large model 

obtained to a specific NLP task, so that we can use the 

important repository of knowledge acquired by the (supervised) 

model, for our task we refine ArabicBERT using a hate speech 

labeled dataset to create a text classification model. 

The BERT architecture is based on Transformer. We 

currently have two variants of this model: 

(1) BERT Base: composed of 12 layers (transformer blocks),

12 attention heads, and 110 million parameters. 

(2) BERT Large (used in our study): 24 layers (transformer

blocks), 16 attention heads and, 340 million parameters. 

As state of the art of natural language processing, we can 

cite the OpenAI GPT model [28], and Embeddings from 

Language Models (ELMo) [29]. OpenAI GPT is a large-scale, 

language model that produces convenient paragraphs in a 

given language, it achieves peak performance on many 

language modeling benchmarks, and performs reading 

comprehension, machine translation, question-answering and 

summary, all without the need of a fine tuning training, ELMo 

has been proven to be an important model in the context of 

natural language processing, it can be trained on a massive 

datasets, and then we can use it as a component in other models 

that require language support. 

This model got its understanding of language by training it 

in masked language modeling to predict the next sentence. 

Figure 1. Architecture showing its bidirectional character 

compared to other language processing models 

In Figure 1 we see a visualization of the neural network of 

BERT architecture in comparison with other state-of-the-art 

contextual linguistic pre-training techniques. The arrows show 

the information flow from a layer to another. The green 

squares indicate the end of contextualized representation of 

every input. 

Usually we have modules which are trained to predict the 

next word in a sentence or trained in left to right context, which 

makes them prone to many errors due to loss of significant 

information etc. This is where BERT improves a lot. 

Compared to other NLP methods because it is bidirectional, it 

also combines two techniques, masked language model and 

next sentence prediction. BERT was introduced by Google 

researchers in the year 2018 and has proven its power in being 

at the cutting edge of technology for various natural language 

processing applications. 

2.1.2 BERT in application 

In our work we approach a natural language processing task 

which can be described as a text classification, in which we 

use the Bidirectional Encoder Representations from 

Transformers transfer learning technique, where we train a 

deep learning model on a large labeled dataset of different 

Arabic dialects, the trained model is able to capture the 

sequential information present in the text, and therefore is used 

to perform the classification task on different sources.  

The BERT model we work on as a basis for our fine-tuned 

Arabic hate speech detection model is the arabic-bert-large 

model, that was pre-trained on ~8.2 billion words. For Masked 

Language Modeling and Next Sentence Prediction tasks, in 

our approach we train a new model on a labeled dataset, to 

perform the text classification task. 

The architecture we are using is a Transformer model, as it 

goes beyond traditional RNNs in its ability to take an entire 

input sequence at a time, which is a big improvement that 

allows the model to be accelerated by GPUs.  

Figure 2. Transformer architecture [30] 

As we can see in Figure 2, transformers are ENCODER-

DECODER models with ATTENTION, there are a multitude 

of models based on transformers, the most popular are BERT 

and GPT, and previously we have explained the strengths of 

BERT on GPT regarding processing tasks natural language, 

which is why we use BERT for text classification. 

The BERT encoder is made up of N=6 similar layers. Each 

one composed of two sublayers. The first is a multi-head self-

attention network, and the second is a simple feed-forward 

mechanism, and a linking is used for each of the two Sub-

layers, then normalization is applied. So, the output of every 

sublayer can be written as: 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) (1) 

where, Sublayer(x) the function is implemented by the 

sublayer itself. 

The product of every sublayers in the model, and also of the 

embedding layers, is outputs of kind and measure: 

𝑑𝑚𝑜𝑑𝑒𝑙 = 512 (2) 

The decoder is made of a stack of N=6 equal layers, the 

decoder inserts, after the two sub layers, of any encoder layer, 

a third sub-layer, which performs multi-head attention over the 

output of the encoder stack. The self-attention layer in the 

decoder is changed to stop current positions from affecting the 

next ones. This masking added to the fact that the embeddings 

in the output are different by one position, guaranties that the 
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predictions for a given position i depend only on the already 

known outputs at positions less than i. 

Attention is a form of simple arithmetic, it is a function 

which takes X as input constituted by query and a set of key-

value pairs, and gives back another Y identical sequence in 

length, composed of vectors of the same length as those by X.  

The output is computed as a weighted sum of the values, 

where the weight assigned to each value is calculated by a 

query compatibility function with the corresponding key. 

In Bert attention is called "Scaled Dot-Product Attention". 

Formally we have a query Q, a key K and a value V and 

compute the matrix of outputs as shown in (1) [30]:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) (3) 

One of the strong characteristics of the bidirectional 

transformer is the multi-head attention mechanism; this unity 

works by the attention mechanism several times 

simultaneously. Then, the results of independent attention are 

serialized and linearly transformed into the expected 

dimension. Automatically, multiple attention heads allow you 

to attend parts of the sequence differently. 

2.2 Materials 

2.2.1 Programming language and platform 

This article introduces a linguistic model for automatic 

detection of hate speech in Arabic, all the programming work, 

is done using the programming language Python, version 3.4.9, 

on a Windows 10 platform, note that the training of the model 

is performed using Google hardware acceleration, with the 

runtime type defined as Python 3, and the GPU as hardware 

accelerator with the following characteristics: NVIDIA-SMI 

455.32.00, Driver Version: 418.67, CUDA Version: 10.1, the 

python versions operated on the cloud are: CPython 3.6.9 

IPython 5.5.0. 

2.2.2 Modules 

Carrying out the different stages of training the model 

requires the use of various modules that are not included in the 

python library, the Table 2, summarizes the used modules, 

their versions, elements and parameters. 

Table 2. Summary of modules and parameters 

Module Version Element Parameters 

NumPy 1.18.5 numpy.random.RandomState np.random.seed(42) 

pandas 1.1.4 pd.value_counts, pd.info, pd.concat Default  

torch 1.7.0+cu101 
nn, optim, torch.utils.data, Dataset, 

DataLoader, torch.nn.functional 

Optimizer = AdamW(model.parameters(), lr=2e-5, 

correct_bias=False) 

total_steps = len(train_data_loader) * 10 

transformers 3.5.1 

BertModel, BertTokenizer, AdamW, 

get_linear_schedule_with_warmup, 

AutoTokenizer, AutoModel 

tokenizer=AutoTokenizer.from_pretrained("asafaya/bert-

large-arabic") 

PyArabic 0.6.10 pyarabic.araby Default 

2.3 Process 

Figure 3. Process flowchart 

The graph in Figure 3 is a description of the different stages 

of the work process, which can be broken down into two main 

parts: the first being the preparation of the refined detection 

model from the collected data, and the second being the use of 

the model in order to detect hate speech in user text. 

In the first phase, we collect and process the data to form a 

database used for model training which is the last part of this 

step. The second phase begins with processing the user's text, 

followed by the application of the model from the first phase, 

for the detection of hate language. 

2.4 Dataset 

In this study we use as shown in Figure 4, a dataset that is a 

combination of three different hate speech datasets: The first 

is L-HSAB Dataset [30], which is the first Levantine Arabic 

hate speech and abusive language dataset constructed from 

Levantine tweets retrieved via the Twitter API (Tweepy). The 

second dataset is a Multi-Platform Arabic News Comment 

Dataset for Offensive Language Detection [22], built using 

comments from different platforms. The third one is a dataset 

of YouTube comments collected in July 2017 [31]. The 

combination resulted in a data set of 38,654 entries made up 

of texts in Classical Arabic, Levantine, and North African 

Dialect. 

The partial choice of the data to be incorporated into our 

database is made manually, after careful verification, of the 

entries and their label, the choice relates to the elements which 

present the unanimity of the judges, and which do not show 

any character of confusion, however the check of the 

completeness of the dataset elements is carried out 

automatically, using the Pandas module. 

After the verification, we carry out a count of the different 

classes of our dataset with the help of Pandas module, from 

which we use the Dataframe.info function to print a concise 

summary of the DataFrame, including the index dtype and 
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columns, non-null values and memory usage. The function 

shows the following results: 28898 entry of the "abusive" class 

and 9756 entry of the "neutral" class, to manage the problem 

of unbalanced data, we carry out an oversampling by 

replacement using the SMOTE module. 

Figure 4. Dataset verification using pandas, the content is 

equivalent to scores, so there are no missing entries 

2.4.1 Labeling 

After combining the three datasets, the information was 

processed to eliminate non-Arabic and special characters, and 

the various comments were rated as neutral scored 0, or 

abusive scored 1, the result as appears in Figure 5 is an 

unbalanced labeled dataset. 

Figure 5. Labeled dataset before balancing has 28898 hate 

speech texts and 9756 neutral 

2.4.2 Balancing the dataset 

Trying to learn from an imbalanced dataset always favors 

the bigger class, which can lead to misleading results after the 

training. This is a specific problem because we want to 

perform a correct classification between two classes, not 

multi-class. The BERT classification algorithm have a bias 

toward majority classes, since it works in a way to discover the 

rules with high values of accuracy and coverage, whereas 

specific rules that predict minority instances are ignored or 

treated as noise. Consequently, minority instances are 

misclassified, because the classifier is designed to minimize 

the error rate. If we do the classification training on an 

imbalanced dataset, while it will be performing the task, the 

model, will produce general rules and will have a bias toward 

majority instances, and it will ignore the minority ones, which 

means that in this case, the model will consider even texts that 

doesn't include hate speech as if they do. 

Several methods can be used to deal with such problem and 

since we are working on a text (string) database, two best 

solutions are available: 

Down sample: which means reducing the existing items in 

the majority class to match the other class, several techniques 

can be used to apply this method, such as, the random 

undersampling, in which entries will be removed randomly 

from the dataset, without any concern about their importance 

or significance. Another technique is the discerning 

undersampling, in this technique, the elements of the majority 

class are classified according to their importance and the ones 

that are removed correspond to the less important class. 

Oversampling is done by applying a data augmentation. 

There are several techniques to do it, such as Increasing 

significant categories of samples, by applying bidirectional 

translations, or replacing expressions by their synonyms, 

which increases accuracy. 

The second solution is the one we used, since the down 

sample method will cost us a considerable loss of training data 

which could have a negative impact on the results. The 

oversampling is applied by increasing the minority class to 

balance the dataset. The post-processing dataset, as we see in 

Figure 6, consists of a mixture of 57,796 text entries from 

classical Arabic and other different Arabic dialects, and we 

can see examples of it in Figure 7. 

Figure 6. Oversampled dataset details 

Figure 7. Example extracted from the final result of the 

dataset including classical Arabic, Levantine, and North 

African dialects 

The combined Dataset can be downloaded using this 

Google drive file ID: id 

1MCXY5eyI7myKyQQ2ZPpI1RHPZR7Emd2e, or this URL: 

https://drive.google.com/file/d/1MCXY5eyI7myKyQQ2ZPpI

1RHPZR7Emd2e/view?usp=sharing. 

2.4.3 Tokenization 

In order to use the embedded BERT text as input to train our 

hate detection model, we need to tokenize the text of our 

comments. Tokenization refers to breaking down a sentence 

into individual words. 

The Tokenizer applied by BERT code utilizes word-piece 

embedding processes [32] that use a shared learning 

framework from sequence to sequence. It consists of three 

components: layers of encoders, layers of decoders, and an 

attention layer. The task carried by the encoder is converting 

the original sentence into an index of vectors, one for each and 

every symbolized input. The work of the decoder is to generate 

a specific symbol for each input, until it reaches the special 

symbol for the last word in sentence. The link between the 

encoder and the decoder is the attention layer which enables 

the decoder to work on various parts of the input sentence 

while applying the decoder. 

Let (X, Y) be a pair of source and target sentences. Let X=x1, 

x2, x3, ..., xM be the sequence of M symbols in the original 

expression and let Y=y1, y2, y3, ..., yN be the sequence of N 

symbols in the output expression. The encoder is in general a 

function of the form shown in (4): 

𝑥1, 𝑥2, . . . , 𝑥𝑀 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑅𝑁𝑁(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑀) (4) 

In this equation x1, x2, ..., xM constitutes a list of vectors of 

determined size. The count of members in the list is similar to 

the number of symbols in the original expression (M in this 

461



example). Using the Conditional Chain Rule the probability of 

the sequence P(Y|X) can be detailed as in (5): 

𝑃(𝑌|𝑋) = 𝑃(𝑌|𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀)

= ∏ 𝑃(𝑦𝑖|𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑖−1;  𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑀)

𝑁

𝑖=1

(5) 

where, y0 is a special "first part of the expression" symbol that 

is preceded by each output expression. During inference, the 

probability of the coming symbol is calculated given the 

encoding of the original phrase and the output phrase decoded 

so far as in (4): 

𝑃(𝑦𝑖|𝑦0, 𝑦1, 𝑦2, 𝑦3. . . , 𝑦𝑖−1;  𝑥1, 𝑥2, 𝑥3, …,) (6) 

To tokenize our Data, we use the AutoTokenizer module 

from the Transformers library, and we set “asafaya/bert-large-

arabic” as Tokenizer [26], this step enables us to convert the 

text into Tokens and the Tokens into Ids that can be used in 

the training process, the Tokenization is done using the 

“encode_plus()” method, with truncation, and maximum 

length set to 512. After storing the tokens, we choose the 

maximum sequence length for the training process, in order to 

reduce the training time, because our dataset does not include 

very long texts. This choice is made after having displayed in 

the form of a bar graph the number of tokens stored for each 

entry, this technique shows us, that the maximum length is 

always less than 100 Tokens in this case. The information that 

we have is used to create a Pytorch Dataset, and we split our 

data into, test data frame 5%, validation data frame 5%, and 

training data frame 90%. 

In Figure 8 we see an example of a tokenized sentence. 

Figure 8. Sentence tokenized with ArabicBERT tokenizer 

Figure 9. Representation of tokens contained in different 

comments 

As BERT works with a fixed length of tokens, having for 

maximum 512, we have stored the tokens of each comment 

and we have represented them in graph, to be able to detect the 

maximum length on which we have set our training. 

As we can see in Figure 9, most of the comments appeared 

to contain less than 80 tokens, but to be on the safe side, we 

chose a maximum length of 100. 

2.4.4 Training 

In this step, we worked with PyTorch deep learning library 

[33], which is an open source machine learning framework 

that accelerates the path from research prototyping to results 

deployment. We used the hyper parameters of the BERT paper 

and we used the AdamW optimizer provided by Hugging Face 

[34] which is a stochastic optimization method that modifies

the typical implementation of the weight decay in Adam,

decoupling the weight decay from the gradient update. L2

Regularization in Adam is usually implemented with the

modification below where wt  is the rate of weight decay at

time t as it is in (7): 

𝑔𝑡 = 𝛻𝑓(𝜃𝑡) + 𝜔𝑡𝜃𝑡 (7) 

While AdamW adjusts the weight decay term to appear in 

the gradient update, as in (8): 

𝜃𝑡+1,𝑖=𝜃𝑡,𝑖– 𝑛 (
1

√�̂�𝑡+∈
. �̂�𝑡 + 𝜔𝑡,𝑖𝜃𝑡,𝑖) (8) 

In our case, AdamW corrects the weights decay, so it is 

similar to the original paper. We also used a linear planner with 

no warm-up steps. 

For fine-tuning, we applied the recommendations of the 

authors of the BERT paper [27], namely: Batch size: 16, 32 

Learning rate (Adam): 5th-5, 3rd-5, 2nd-5. 

For the number of epochs, we proceeded by trial and error, 

having tried several values and our choice ended up being 10 

epochs, since it gave the best results. 

During the training process we create for every fraction of 

the data, a loader, with a batch size equal to 16, immediately 

afterwards we import the BERT model for Arabic, 

"asafaya/bert-large-arabic" [26] from the Transformers library, 

the classifier function using the BERT model is defined, with 

a Dropout layer set at 30%, and a fully-connected output layer, 

the defined function, returns the raw output of the Last layer, 

and we move the classifier to the GPU. We apply a Softmax 

function to the outputs, in aim to have probabilities for the 

trained model.  
We use AdamW optimizer, from the Transformers library, 

to correct the weight decay, with a learning rate set to 2e-5; a 

training loop is defined, by iteration, for 2 Epochs, 4 Epochs, 

8 Epochs, 10 Epochs, 12 Epochs, 14 Epochs, and the best 

results are those of a number of Epochs equal to 10, we store 

the training history, and when the training process finishes, we 

get the trained model, which can be downloaded using this 

Google drive file ID: 1InzP8KVk8C-qLINXa-

tSsGM6PftOsW7j, or this URL: 

https://drive.google.com/file/d/1InzP8KVk8C-qLINXa-

tSsGM6PftOsW7j/view?usp=sharing. 

2.4.5 Application 

To test the result, we create an automatic system for hate 

speech detection, based on the trained model, in different steps, 

the araby element is imported from the Pyarabic module, it’s 

used to tokenize the input text, and split it into small 

paragraphs and sentences, the input text is classified 

afterwards using a classifying function with the help of the 

model, which returns the name of the class as result for the 

input text.  

Text that will be automatically detected for hate language 

requires specific processing for better performance, this 

process is essential for two reasons, first, the diacritics and 

lengthening of the text should be removed so that it is similar 

to what the training was done on. Second, the text submitted 

for detection must correspond to the maximum length of the 
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content used in the training, which has been set at 100 tokens, 

because beyond this length, the detector loses its performance. 

This step requires the use of PyArabic [35], an Arabic 

language processing library that allows us both to make the 

necessary modifications to the input text, as well as its 

tokenization for conversion into sentences with length that is 

less than the maximum. We try this system on Arabic and 

different dialects to test the convenience of the results, found 

to be accurate in a relation with the metrics, different examples 

are shared in the Results Chapter. 

3. RESULTS

The training that we carried out gave rise to an automatic 

detection model of general hate speech with a remarkable 

precision as we can see in Figure 10. 

Figure 10. Trained model precision metrics 

To test the trained model in application we used both 

extracts from press articles in classical Arabic and in different 

dialects as well as comments in electronic journals, these tests 

revealed the power of the BERT method and the ability of the 

model we fine-tuned, to perform the text classification task 

with remarkable precision. 

For the final evaluation the texts used are not extracted from 

the training dataset, and in these cases the detection was 

appropriate, we share some results as examples, in Figures 11-

15. 

Figure 11. example 1 of automatic detection of hate speech 

in: Moroccan dialect, text taken from an article in an 

electronic journal (neutral) 

Figure 12. example 2 of automatic hate speech detection in 

classical Arabic, text taken from an article in an electronic 

journal (hate speech) 

Figure 13. example 3 of automatic hate speech detection in 

Levantine, text taken from a YouTube comment (hate 

speech) 

Figure 14. example 4 of automatic hate speech detection in 

Moroccan dialect comment (neutral) 

4. DISCUSSION

Thanks to the BERT method, we were able to have a general 

rate of accuracy in distinguishing hate speech from neutral one 

of about 83%, with regard to the detection of hate speech, the 

metrics of the model show a superior performance with a 

Precision of 0.87, Recall of 0.91, and an F1-Score of 0.89 

(Figure 10). In Figure 15 we can see the confusion matrix 

showing the superiority of the model in detecting hate speech 

than the neutral language, resulting in an overall precision of 

83%. 

Figure 15. Model performance confusion matrix 

Compared to the previous work mentioned in Table 1, the 

model we have trained performs a more specific task of 

detecting hate speech, and is not interested in abusive language 

or offensive, which are more general than the concept of hate 

speech and which requires taking into consideration the 

context of words and not just their current use, which is why 

we have chosen the two-way Transformer method. 

The preceding works have taken into account only the 

classical Arabic language, or one determined dialect at a time, 

but in our case we proceeded through the training of the model 

to process the classical Arabic language in addition to several 

other dialects, based on the Arabic language. 

5. CONCLUSION

In this article we have addressed the problem of automatic 

detection of hate speech, in Arabic read media, which is an 

essential step in the protection of readers and users of social 

media, the results obtained are satisfactory in terms of 

accuracy which is 83%, and constitute a considerable 

contribution in the matter, since the detection takes into 

account not only classical Arabic but also different dialects 

such as Levantine and Darija from North Africa. 

That said, the study can be deepened by constituting a 

database that can make it possible to form a model capable not 

only of detecting hate speech but of categorizing it according 

to the different types of hate language that exist, our future 

work will focus on a categorized hate speech database. 
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