
Hate Speech in the Arab Electronic Press and Social Networks

Widad Awane*, El Habib Ben Lahmar, Ayoub El Falaki

Information Technology and Modeling Faculty of Sciences Ben M'sik Hassan II University, B.P 7955, Sidi Othmane,

Casablanca 20023, Morocco

Corresponding Author Email: Awanewidad93@gmail.com

https://doi.org/10.18280/ria.350603 ABSTRACT

Received: 8 October 2021

Accepted: 25 November 2021

Nowadays we are witnessing an open world, characterized by globalization which is

accompanied by a technology through which information circulates without borders,

especially with the widespread use of social networking sites being the most common

communication tool, that gives access through various applications to a large space for the

presentation of multiple ideas, including extremist ideas, and the spread of hate speech.

This paper introduces a system of detection of hate speech in the texts of Arabic read media

and social media, which is based on a combined use of NLP, and machine learning methods.

The training of the detection model is done on a large Dataset of articles, tweets and

comments, collected, balanced and tokenized afterwards using BERT in Arabic. The trained

model detects hate speech in Arabic and various Arabic based dialects, by classifying the

texts into two classes: Neutral and Abusive. The above-mentioned model is evaluated using

precision metrics, recall and f1 score, it has reached an accuracy of 83%.

Keywords:

ArabicBERT, hate speech, ML, NLP, text

classification

1. INTRODUCTION

1.1 Generalities

It is clear that the widespread dissemination of media and

communication as an open space has become a haven for

practicing various forms of discrimination and producing hate

speech mainly invested by the political actor, and this is what

we also notice through reading Arabic content on the Internet,

whether linked to online journalism, citizen journalism or

micro blogging on social networks, networks play an essential

role in the dissemination of hate speech in different types of

violence, physical, symbolic or verbal speech.

Knowing that the usage of social media applications in the

Arab world has exceeded 90% of the population in some

countries [1], the regulation of the content of electronic

journalism in Arabic is an essential step to reduce the spread

of hate speech and stop various forms of cyber violence.

The use of artificial intelligence and machine learning

techniques remain the only means capable of performing such

a complex task.

Generating an automatic hate speech detection system will

allow news agencies and regulatory bodies to specifically

monitor not only the content of print newspapers and

magazines, but also online journalism.

Creating such a system is a considerable challenge for two

reasons, in one hand, the scarcity of text categorization

databases for the detection of hate speech in Arabic, and the

existence of several dialects based on the Arabic language in

another hand, which makes automatic detection even more

difficult.

To deal with these problems we created a large database

through the combination of several other databases of different

dialects that uses the Arabic alphabet, and we called on a

BERT library in Arabic, which was pre-trained on various

dialects, and we used it as a basic model to train and fine-tune

a new BERT model to detect hate speech in Arabic texts.

1.2 Definition of hate speech

Even if there is no precise legal definition of “hate speech”,

it is generally referring to different types of public expression

that propagate, incite, promote or justify hatred, discrimination

or hostility against one person or a group of people, based on

their person, in other words, it is based on religion, ethnicity,

nationality, color, ancestry, sex or any other identity factor.

It is a specific type of cyber bullying that not only targets

individuals but also affects their assets.

Hate speech can be classified into the following categories

[1]:

(1) Gender-based hate speech: This category includes any

form of hostility towards a specific sex or the devaluation of a

person or group based on their gender.

(2) Religious hate speech: It includes any type of religious

discrimination, such as: Islamic sects, anti-Christianity or any

type of religious discrimination.

(3) Racial hate speech: this category includes any type of

ethnic or tribal, regional crimes, (hostility against immigrants

and refugees), any prejudice against a particular tribe or region,

and offensive to the appearance and color of the individual.

1.3 Related work

Several studies and research have been carried out in the

field of classification of Arabic texts, and more specifically in

the automatic detection of hate speech in classical Arabic;

Many of these studies have applied classic machine learning

algorithms for tackling the task of classification including

Support Vector Machine technique, and the Naïve Bayes

classifier (NB) [2], Decision Trees, K-Nearest Neighbor and

Revue d'Intelligence Artificielle
Vol. 35, No. 6, December, 2021, pp. 457-465

Journal homepage: http://iieta.org/journals/ria

457

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.350603&domain=pdf

other types of classifiers [3-17].

In their work, Altowayan and Tao [17], proposed a word

embeddings model for the classification of sentiments for the

Arabic language. Their work generated a language model that

surpassed by little performance, other sentiment analysis

models.

El-Halees [9] presented a three-step algorithm for

classifying Arabic documents through the use of Markov

networks and clustering [18]. This technique outperforms the

algorithms of classical methods, in trials carried out on two

different data sets. In the works [5], we see an introduction of

a method to classify Arabic texts by text integration using the

doc2vec model, which generates better performance compared

to classical algorithms.

Regarding the automatic detection of hate speech, studies

are still very few in Arabic compared to English. Abozinadah

et al. [19-21] can be considered as Pioneers in researching

offensive speech on Arab social networks. They use the NB

Ranker on Twitter accounts.

The same authors developed this early work using the

Support Vector Machine with a different technique of

normalizing Arabic text that is directed to the problem of

misspelled words [19]. In other studies, Abozinadah et al. [21]

tackled the same issue by the application of a statistical

learning approach to feature selection and a supporting vector

machine classifier.

Other authors [22] take a different approach to find abusive

speech. Their objective is to compile a long list of profane

Arabic phrases or words, which can then be used to identify

offensive language.

In other work, Mohaouchane et al. [23] measured the results

of four different types of neural networks on the automatic

detection of hate language. These models are CNN and LSTM

bidirectional with or without attention, and CNN-LSTM. They

discovered that the best retrieval results are achieved with the

integrated CNN-LSTM while the best accuracy is obtained by

CNN. While CNN alone is able to learn properties from the

word n-grams, the CNN-LSTM model is also able to learn

long-term dependencies thanks to the LSTM layer.

None of these studies looked at the different Arabic dialects,

nor did they implement the Transformers method, even if it

proved its efficiency and excellence in the different tasks of

NLP.

The Table 1 summarizes the work carried out in the field of

abusive language and hate speech detection since 2015 to date.

Table 1. State of the art: Automatic hate speech detection in Arabic, methods and results

Author
Year

Platform
Classes

ML

Approach

Features

Representation
Algorithm P R F

Abusive language

Abozinadah

and Jones [20]

2015-

Twitter
Abuser, Normal Supervised

Profile and tweet-based

features, bag of words,

N-gram, TF-IDF

Naïve Bayes 0.85 0.85 0.85

Abozinadah

and Jones [19]

2016-

Twitter

Abusive,

Legitimate

Accounts

Unsupervised
Lexicon, bag of words

(BOW), N-gram
SVM 0.96 0.96 0.96

Abozinadah et

al. [21]

2017-

Twitter

NonAbusive,

Abusive
Supervised

PageRank (PR)

algorithm, Semantic

Orientation (SO)

algorithm, statistical

SVM 0.96 0.96
0.9

6

Mubarak et al.

[24]

2017-

Twitter,

Arabic News

Site

Obscene,

Offensive and

Clean

Unsupervised

unigram and bigram, Log

Odds Ratio (LOR), Seed

Words lists

None. Just

performed

extrinsic

evaluation

0.98 0.45 0.60

Religious hate speech

Albadi et al.

[25]

2018-

Twitter
Hate, Not hate Supervised

Word embeddings

(AraVec)

GRUbased

RNN
0.76 0.78 0.77

Offensive Language

Safaya et al.

[26]

2020-

youtube

Offensive, Not

offensive
Supervised

Word embeddings

(AraVec)

CNN 86.10 82.24 84.05

Bi-LSTM 83.74 80.97 82.33

Attention

BiLSTM
82.07 81.51 81.70

Combined

CNN-LSTM
83.89 83.46 83.65

2. METHOD

2.1 The proposed approach

2.1.1 The BERT method

In our study, we use BERT, which stands for Bidirectional

Encoder Representations from Transformers [27]. Compared

to the word embedding model, BERT can also be described as

a text representation method, which is a combination of

various advanced deep learning algorithms, such as Long

Short Term Memory, and also transformers.

Work on learning linguistic representations by pre-trained

models on large unlabeled data sets of text documents began

from word embeddings such as Word2Vec. This technique

changed the way NLP tasks were performed. Thanks to the

pre-trained models, we could obtain incorporations capable of

creating contextual links between words.

The main limitation of these techniques was the use of

superficial language models.

Thus, the new approach to solving NLP tasks has become a

two-step process: The first performed by training a language

model on a large body of text data set (unlabeled, and

458

unsupervised or semi-supervised), and in our case, we use

ArabicBERT [26]. The second is to refine the large model

obtained to a specific NLP task, so that we can use the

important repository of knowledge acquired by the (supervised)

model, for our task we refine ArabicBERT using a hate speech

labeled dataset to create a text classification model.

The BERT architecture is based on Transformer. We

currently have two variants of this model:

(1) BERT Base: composed of 12 layers (transformer blocks),

12 attention heads, and 110 million parameters.

(2) BERT Large (used in our study): 24 layers (transformer

blocks), 16 attention heads and, 340 million parameters.

As state of the art of natural language processing, we can

cite the OpenAI GPT model [28], and Embeddings from

Language Models (ELMo) [29]. OpenAI GPT is a large-scale,

language model that produces convenient paragraphs in a

given language, it achieves peak performance on many

language modeling benchmarks, and performs reading

comprehension, machine translation, question-answering and

summary, all without the need of a fine tuning training, ELMo

has been proven to be an important model in the context of

natural language processing, it can be trained on a massive

datasets, and then we can use it as a component in other models

that require language support.

This model got its understanding of language by training it

in masked language modeling to predict the next sentence.

Figure 1. Architecture showing its bidirectional character

compared to other language processing models

In Figure 1 we see a visualization of the neural network of

BERT architecture in comparison with other state-of-the-art

contextual linguistic pre-training techniques. The arrows show

the information flow from a layer to another. The green

squares indicate the end of contextualized representation of

every input.

Usually we have modules which are trained to predict the

next word in a sentence or trained in left to right context, which

makes them prone to many errors due to loss of significant

information etc. This is where BERT improves a lot.

Compared to other NLP methods because it is bidirectional, it

also combines two techniques, masked language model and

next sentence prediction. BERT was introduced by Google

researchers in the year 2018 and has proven its power in being

at the cutting edge of technology for various natural language

processing applications.

2.1.2 BERT in application

In our work we approach a natural language processing task

which can be described as a text classification, in which we

use the Bidirectional Encoder Representations from

Transformers transfer learning technique, where we train a

deep learning model on a large labeled dataset of different

Arabic dialects, the trained model is able to capture the

sequential information present in the text, and therefore is used

to perform the classification task on different sources.

The BERT model we work on as a basis for our fine-tuned

Arabic hate speech detection model is the arabic-bert-large

model, that was pre-trained on ~8.2 billion words. For Masked

Language Modeling and Next Sentence Prediction tasks, in

our approach we train a new model on a labeled dataset, to

perform the text classification task.

The architecture we are using is a Transformer model, as it

goes beyond traditional RNNs in its ability to take an entire

input sequence at a time, which is a big improvement that

allows the model to be accelerated by GPUs.

Figure 2. Transformer architecture [30]

As we can see in Figure 2, transformers are ENCODER-

DECODER models with ATTENTION, there are a multitude

of models based on transformers, the most popular are BERT

and GPT, and previously we have explained the strengths of

BERT on GPT regarding processing tasks natural language,

which is why we use BERT for text classification.

The BERT encoder is made up of N=6 similar layers. Each

one composed of two sublayers. The first is a multi-head self-

attention network, and the second is a simple feed-forward

mechanism, and a linking is used for each of the two Sub-

layers, then normalization is applied. So, the output of every

sublayer can be written as:

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) (1)

where, Sublayer(x) the function is implemented by the

sublayer itself.

The product of every sublayers in the model, and also of the

embedding layers, is outputs of kind and measure:

𝑑𝑚𝑜𝑑𝑒𝑙 = 512 (2)

The decoder is made of a stack of N=6 equal layers, the

decoder inserts, after the two sub layers, of any encoder layer,

a third sub-layer, which performs multi-head attention over the

output of the encoder stack. The self-attention layer in the

decoder is changed to stop current positions from affecting the

next ones. This masking added to the fact that the embeddings

in the output are different by one position, guaranties that the

459

predictions for a given position i depend only on the already

known outputs at positions less than i.

Attention is a form of simple arithmetic, it is a function

which takes X as input constituted by query and a set of key-

value pairs, and gives back another Y identical sequence in

length, composed of vectors of the same length as those by X.

The output is computed as a weighted sum of the values,

where the weight assigned to each value is calculated by a

query compatibility function with the corresponding key.

In Bert attention is called "Scaled Dot-Product Attention".

Formally we have a query Q, a key K and a value V and

compute the matrix of outputs as shown in (1) [30]:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) (3)

One of the strong characteristics of the bidirectional

transformer is the multi-head attention mechanism; this unity

works by the attention mechanism several times

simultaneously. Then, the results of independent attention are

serialized and linearly transformed into the expected

dimension. Automatically, multiple attention heads allow you

to attend parts of the sequence differently.

2.2 Materials

2.2.1 Programming language and platform

This article introduces a linguistic model for automatic

detection of hate speech in Arabic, all the programming work,

is done using the programming language Python, version 3.4.9,

on a Windows 10 platform, note that the training of the model

is performed using Google hardware acceleration, with the

runtime type defined as Python 3, and the GPU as hardware

accelerator with the following characteristics: NVIDIA-SMI

455.32.00, Driver Version: 418.67, CUDA Version: 10.1, the

python versions operated on the cloud are: CPython 3.6.9

IPython 5.5.0.

2.2.2 Modules

Carrying out the different stages of training the model

requires the use of various modules that are not included in the

python library, the Table 2, summarizes the used modules,

their versions, elements and parameters.

Table 2. Summary of modules and parameters

Module Version Element Parameters

NumPy 1.18.5 numpy.random.RandomState np.random.seed(42)

pandas 1.1.4 pd.value_counts, pd.info, pd.concat Default

torch 1.7.0+cu101
nn, optim, torch.utils.data, Dataset,

DataLoader, torch.nn.functional

Optimizer = AdamW(model.parameters(), lr=2e-5,

correct_bias=False)

total_steps = len(train_data_loader) * 10

transformers 3.5.1

BertModel, BertTokenizer, AdamW,

get_linear_schedule_with_warmup,

AutoTokenizer, AutoModel

tokenizer=AutoTokenizer.from_pretrained("asafaya/bert-

large-arabic")

PyArabic 0.6.10 pyarabic.araby Default

2.3 Process

Figure 3. Process flowchart

The graph in Figure 3 is a description of the different stages

of the work process, which can be broken down into two main

parts: the first being the preparation of the refined detection

model from the collected data, and the second being the use of

the model in order to detect hate speech in user text.

In the first phase, we collect and process the data to form a

database used for model training which is the last part of this

step. The second phase begins with processing the user's text,

followed by the application of the model from the first phase,

for the detection of hate language.

2.4 Dataset

In this study we use as shown in Figure 4, a dataset that is a

combination of three different hate speech datasets: The first

is L-HSAB Dataset [30], which is the first Levantine Arabic

hate speech and abusive language dataset constructed from

Levantine tweets retrieved via the Twitter API (Tweepy). The

second dataset is a Multi-Platform Arabic News Comment

Dataset for Offensive Language Detection [22], built using

comments from different platforms. The third one is a dataset

of YouTube comments collected in July 2017 [31]. The

combination resulted in a data set of 38,654 entries made up

of texts in Classical Arabic, Levantine, and North African

Dialect.

The partial choice of the data to be incorporated into our

database is made manually, after careful verification, of the

entries and their label, the choice relates to the elements which

present the unanimity of the judges, and which do not show

any character of confusion, however the check of the

completeness of the dataset elements is carried out

automatically, using the Pandas module.

After the verification, we carry out a count of the different

classes of our dataset with the help of Pandas module, from

which we use the Dataframe.info function to print a concise

summary of the DataFrame, including the index dtype and

460

columns, non-null values and memory usage. The function

shows the following results: 28898 entry of the "abusive" class

and 9756 entry of the "neutral" class, to manage the problem

of unbalanced data, we carry out an oversampling by

replacement using the SMOTE module.

Figure 4. Dataset verification using pandas, the content is

equivalent to scores, so there are no missing entries

2.4.1 Labeling

After combining the three datasets, the information was

processed to eliminate non-Arabic and special characters, and

the various comments were rated as neutral scored 0, or

abusive scored 1, the result as appears in Figure 5 is an

unbalanced labeled dataset.

Figure 5. Labeled dataset before balancing has 28898 hate

speech texts and 9756 neutral

2.4.2 Balancing the dataset

Trying to learn from an imbalanced dataset always favors

the bigger class, which can lead to misleading results after the

training. This is a specific problem because we want to

perform a correct classification between two classes, not

multi-class. The BERT classification algorithm have a bias

toward majority classes, since it works in a way to discover the

rules with high values of accuracy and coverage, whereas

specific rules that predict minority instances are ignored or

treated as noise. Consequently, minority instances are

misclassified, because the classifier is designed to minimize

the error rate. If we do the classification training on an

imbalanced dataset, while it will be performing the task, the

model, will produce general rules and will have a bias toward

majority instances, and it will ignore the minority ones, which

means that in this case, the model will consider even texts that

doesn't include hate speech as if they do.

Several methods can be used to deal with such problem and

since we are working on a text (string) database, two best

solutions are available:

Down sample: which means reducing the existing items in

the majority class to match the other class, several techniques

can be used to apply this method, such as, the random

undersampling, in which entries will be removed randomly

from the dataset, without any concern about their importance

or significance. Another technique is the discerning

undersampling, in this technique, the elements of the majority

class are classified according to their importance and the ones

that are removed correspond to the less important class.

Oversampling is done by applying a data augmentation.

There are several techniques to do it, such as Increasing

significant categories of samples, by applying bidirectional

translations, or replacing expressions by their synonyms,

which increases accuracy.

The second solution is the one we used, since the down

sample method will cost us a considerable loss of training data

which could have a negative impact on the results. The

oversampling is applied by increasing the minority class to

balance the dataset. The post-processing dataset, as we see in

Figure 6, consists of a mixture of 57,796 text entries from

classical Arabic and other different Arabic dialects, and we

can see examples of it in Figure 7.

Figure 6. Oversampled dataset details

Figure 7. Example extracted from the final result of the

dataset including classical Arabic, Levantine, and North

African dialects

The combined Dataset can be downloaded using this

Google drive file ID: id

1MCXY5eyI7myKyQQ2ZPpI1RHPZR7Emd2e, or this URL:

https://drive.google.com/file/d/1MCXY5eyI7myKyQQ2ZPpI

1RHPZR7Emd2e/view?usp=sharing.

2.4.3 Tokenization

In order to use the embedded BERT text as input to train our

hate detection model, we need to tokenize the text of our

comments. Tokenization refers to breaking down a sentence

into individual words.

The Tokenizer applied by BERT code utilizes word-piece

embedding processes [32] that use a shared learning

framework from sequence to sequence. It consists of three

components: layers of encoders, layers of decoders, and an

attention layer. The task carried by the encoder is converting

the original sentence into an index of vectors, one for each and

every symbolized input. The work of the decoder is to generate

a specific symbol for each input, until it reaches the special

symbol for the last word in sentence. The link between the

encoder and the decoder is the attention layer which enables

the decoder to work on various parts of the input sentence

while applying the decoder.

Let (X, Y) be a pair of source and target sentences. Let X=x1,

x2, x3, ..., xM be the sequence of M symbols in the original

expression and let Y=y1, y2, y3, ..., yN be the sequence of N

symbols in the output expression. The encoder is in general a

function of the form shown in (4):

𝑥1, 𝑥2, . . . , 𝑥𝑀 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑅𝑁𝑁(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑀) (4)

In this equation x1, x2, ..., xM constitutes a list of vectors of

determined size. The count of members in the list is similar to

the number of symbols in the original expression (M in this

461

example). Using the Conditional Chain Rule the probability of

the sequence P(Y|X) can be detailed as in (5):

𝑃(𝑌|𝑋) = 𝑃(𝑌|𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑀)

= ∏ 𝑃(𝑦𝑖|𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑖−1; 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑀)

𝑁

𝑖=1

(5)

where, y0 is a special "first part of the expression" symbol that

is preceded by each output expression. During inference, the

probability of the coming symbol is calculated given the

encoding of the original phrase and the output phrase decoded

so far as in (4):

𝑃(𝑦𝑖|𝑦0, 𝑦1, 𝑦2, 𝑦3. . . , 𝑦𝑖−1; 𝑥1, 𝑥2, 𝑥3, …,) (6)

To tokenize our Data, we use the AutoTokenizer module

from the Transformers library, and we set “asafaya/bert-large-

arabic” as Tokenizer [26], this step enables us to convert the

text into Tokens and the Tokens into Ids that can be used in

the training process, the Tokenization is done using the

“encode_plus()” method, with truncation, and maximum

length set to 512. After storing the tokens, we choose the

maximum sequence length for the training process, in order to

reduce the training time, because our dataset does not include

very long texts. This choice is made after having displayed in

the form of a bar graph the number of tokens stored for each

entry, this technique shows us, that the maximum length is

always less than 100 Tokens in this case. The information that

we have is used to create a Pytorch Dataset, and we split our

data into, test data frame 5%, validation data frame 5%, and

training data frame 90%.

In Figure 8 we see an example of a tokenized sentence.

Figure 8. Sentence tokenized with ArabicBERT tokenizer

Figure 9. Representation of tokens contained in different

comments

As BERT works with a fixed length of tokens, having for

maximum 512, we have stored the tokens of each comment

and we have represented them in graph, to be able to detect the

maximum length on which we have set our training.

As we can see in Figure 9, most of the comments appeared

to contain less than 80 tokens, but to be on the safe side, we

chose a maximum length of 100.

2.4.4 Training

In this step, we worked with PyTorch deep learning library

[33], which is an open source machine learning framework

that accelerates the path from research prototyping to results

deployment. We used the hyper parameters of the BERT paper

and we used the AdamW optimizer provided by Hugging Face

[34] which is a stochastic optimization method that modifies

the typical implementation of the weight decay in Adam,

decoupling the weight decay from the gradient update. L2

Regularization in Adam is usually implemented with the

modification below where wt is the rate of weight decay at

time t as it is in (7):

𝑔𝑡 = 𝛻𝑓(𝜃𝑡) + 𝜔𝑡𝜃𝑡 (7)

While AdamW adjusts the weight decay term to appear in

the gradient update, as in (8):

𝜃𝑡+1,𝑖=𝜃𝑡,𝑖– 𝑛 (
1

√�̂�𝑡+∈
. �̂�𝑡 + 𝜔𝑡,𝑖𝜃𝑡,𝑖) (8)

In our case, AdamW corrects the weights decay, so it is

similar to the original paper. We also used a linear planner with

no warm-up steps.

For fine-tuning, we applied the recommendations of the

authors of the BERT paper [27], namely: Batch size: 16, 32

Learning rate (Adam): 5th-5, 3rd-5, 2nd-5.

For the number of epochs, we proceeded by trial and error,

having tried several values and our choice ended up being 10

epochs, since it gave the best results.

During the training process we create for every fraction of

the data, a loader, with a batch size equal to 16, immediately

afterwards we import the BERT model for Arabic,

"asafaya/bert-large-arabic" [26] from the Transformers library,

the classifier function using the BERT model is defined, with

a Dropout layer set at 30%, and a fully-connected output layer,

the defined function, returns the raw output of the Last layer,

and we move the classifier to the GPU. We apply a Softmax

function to the outputs, in aim to have probabilities for the

trained model.
We use AdamW optimizer, from the Transformers library,

to correct the weight decay, with a learning rate set to 2e-5; a

training loop is defined, by iteration, for 2 Epochs, 4 Epochs,

8 Epochs, 10 Epochs, 12 Epochs, 14 Epochs, and the best

results are those of a number of Epochs equal to 10, we store

the training history, and when the training process finishes, we

get the trained model, which can be downloaded using this

Google drive file ID: 1InzP8KVk8C-qLINXa-

tSsGM6PftOsW7j, or this URL:

https://drive.google.com/file/d/1InzP8KVk8C-qLINXa-

tSsGM6PftOsW7j/view?usp=sharing.

2.4.5 Application

To test the result, we create an automatic system for hate

speech detection, based on the trained model, in different steps,

the araby element is imported from the Pyarabic module, it’s

used to tokenize the input text, and split it into small

paragraphs and sentences, the input text is classified

afterwards using a classifying function with the help of the

model, which returns the name of the class as result for the

input text.

Text that will be automatically detected for hate language

requires specific processing for better performance, this

process is essential for two reasons, first, the diacritics and

lengthening of the text should be removed so that it is similar

to what the training was done on. Second, the text submitted

for detection must correspond to the maximum length of the

462

https://huggingface.co/transformers/main_classes/tokenizer.html#transformers.PreTrainedTokenizer.encode_plus
https://drive.google.com/file/d/1InzP8KVk8C-qLINXa-tSsGM6PftOsW7j/view?usp=sharing
https://drive.google.com/file/d/1InzP8KVk8C-qLINXa-tSsGM6PftOsW7j/view?usp=sharing

content used in the training, which has been set at 100 tokens,

because beyond this length, the detector loses its performance.

This step requires the use of PyArabic [35], an Arabic

language processing library that allows us both to make the

necessary modifications to the input text, as well as its

tokenization for conversion into sentences with length that is

less than the maximum. We try this system on Arabic and

different dialects to test the convenience of the results, found

to be accurate in a relation with the metrics, different examples

are shared in the Results Chapter.

3. RESULTS

The training that we carried out gave rise to an automatic

detection model of general hate speech with a remarkable

precision as we can see in Figure 10.

Figure 10. Trained model precision metrics

To test the trained model in application we used both

extracts from press articles in classical Arabic and in different

dialects as well as comments in electronic journals, these tests

revealed the power of the BERT method and the ability of the

model we fine-tuned, to perform the text classification task

with remarkable precision.

For the final evaluation the texts used are not extracted from

the training dataset, and in these cases the detection was

appropriate, we share some results as examples, in Figures 11-

15.

Figure 11. example 1 of automatic detection of hate speech

in: Moroccan dialect, text taken from an article in an

electronic journal (neutral)

Figure 12. example 2 of automatic hate speech detection in

classical Arabic, text taken from an article in an electronic

journal (hate speech)

Figure 13. example 3 of automatic hate speech detection in

Levantine, text taken from a YouTube comment (hate

speech)

Figure 14. example 4 of automatic hate speech detection in

Moroccan dialect comment (neutral)

4. DISCUSSION

Thanks to the BERT method, we were able to have a general

rate of accuracy in distinguishing hate speech from neutral one

of about 83%, with regard to the detection of hate speech, the

metrics of the model show a superior performance with a

Precision of 0.87, Recall of 0.91, and an F1-Score of 0.89

(Figure 10). In Figure 15 we can see the confusion matrix

showing the superiority of the model in detecting hate speech

than the neutral language, resulting in an overall precision of

83%.

Figure 15. Model performance confusion matrix

Compared to the previous work mentioned in Table 1, the

model we have trained performs a more specific task of

detecting hate speech, and is not interested in abusive language

or offensive, which are more general than the concept of hate

speech and which requires taking into consideration the

context of words and not just their current use, which is why

we have chosen the two-way Transformer method.

The preceding works have taken into account only the

classical Arabic language, or one determined dialect at a time,

but in our case we proceeded through the training of the model

to process the classical Arabic language in addition to several

other dialects, based on the Arabic language.

5. CONCLUSION

In this article we have addressed the problem of automatic

detection of hate speech, in Arabic read media, which is an

essential step in the protection of readers and users of social

media, the results obtained are satisfactory in terms of

accuracy which is 83%, and constitute a considerable

contribution in the matter, since the detection takes into

account not only classical Arabic but also different dialects

such as Levantine and Darija from North Africa.

That said, the study can be deepened by constituting a

database that can make it possible to form a model capable not

only of detecting hate speech but of categorizing it according

to the different types of hate language that exist, our future

work will focus on a categorized hate speech database.

REFERENCES

[1] Al-Hassan, A., Al-Dossari, H. (2019). Detection of hate

speech in social networks: A survey on multilingual

corpus. In 6th International Conference on Computer

463

Science and Information Technology, 10: 83-100.

http://dx.doi.org/10.5121/csit.2019.90208

[2] Mahmood, A.T., Kamaruddin, S.S., Naser, R.K. (2020).

A combination of lexicon and machine learning

approaches for sentiment analysis on Facebook. Journal

of System and Management Sciences, 10(3): 140-150.

http://dx.doi.org/10.33168/JSMS.2020.0310

[3] Abuaiadah, D., El Sana, J., Abusalah, W. (2014). On the

impact of dataset characteristics on Arabic document

classification. International Journal of Computer

Applications, 101(7): 31-38.

http://dx.doi.org/10.5120/17701-8680

[4] Abu-Errub, A. (2014). Arabic text classification

algorithm using TFIDF and chi square measurements.

International Journal of Computer Applications, 93(6):

40-45. http://dx.doi.org/10.5120/16223-5674

[5] Soliman, A.B., Eissa, K., El-Beltagy, S.R. (2017).

Aravec: A set of Arabic word embedding models for use

in Arabic NLP. Procedia Computer Science, 117: 256-

265. http://dx.doi.org/10.1016/j.procs.2017.10.117

[6] El Mahdaouy, A., Gaussier, E., El Alaoui, S.O. (2016).

Arabic text classification based on word and document

embeddings. In International Conference on Advanced

Intelligent Systems and Informatics, pp. 32-41.

http://dx.doi.org/10.1007/978-3-319-48308-5_4

[7] Mohammad, A.H., Al-Momani, O., Alwada’n, T. (2016).

Arabic text categorization using k-nearest neighbour,

Decision Trees (C4. 5) and Rocchio classifier: A

comparative study. International Journal of Current

Engineering and Technology, 6(2): 477-482.

http://inpressco.com/wp-

content/uploads/2016/03/Paper16477-482.pdf.

[8] Alshammari, R. (2018). Arabic text categorization using

machine learning approaches. International Journal of

Advanced Computer Science and Applications, 9(3):

226-230.

http://dx.doi.org/10.14569/IJACSA.2018.090332

[9] El-Halees, A.M. (2007). Arabic text classification using

maximum entropy. IUG Journal for Natural and

Engineering Studies, 15(1): 157-167.

https://journal.iugaza.edu.ps/index.php/IUGNS/article/v

iew/173.

[10] Jindal, V. (2016). A personalized Markov clustering and

deep learning approach for Arabic text categorization. In

Proceedings of the ACL 2016 Student Research

Workshop, pp. 145-151. http://doi.org/10.18653/v1/P16-

3022

[11] El Kourdi, M., Bensaid, A., Rachidi, T.E. (2004).

Automatic Arabic document categorization based on the

Naïve Bayes algorithm. In proceedings of the Workshop

on Computational Approaches to Arabic Script-based

Languages, pp. 51-58.

http://dx.doi.org/10.3115/1621804.1621819

[12] Gharib, T.F., Habib, M.B., Fayed, Z.T. (2009). Arabic

text classification using support vector machines. Int. J.

Comput. Their Appl., 16(4): 192-199.

http://dx.doi.org/10.7603/s40601-016-0016-9

[13] Kanaan, G., Al-Shalabi, R., Ghwanmeh, S., Al-Ma'adeed,

H. (2009). A comparison of text-classification techniques

applied to Arabic text. Journal of the American Society

for Information Science and Technology, 60(9): 1836-

1844.

[14] Sawaf, H., Zaplo, J., Ney, H. (2001). Statistical

classification methods for Arabic news articles. Natural

Language Processing in ACL2001, Toulouse, France.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.21.634&rep=rep1&type=pdf.

[15] Saad, M.K. (2010). The impact of text preprocessing and

term weighting on Arabic text classification. M.S. thesis,

Islamic Univ.-Gaza, Gaza, Palestine.

http://dx.doi.org/10.13140/2.1.4677.2164

[16] Al-Harbi, S., Almuhareb, A., Al-Thubaity, A.,

Khorsheed, M.S., Al-Rajeh, A. (2008). Automatic

Arabic Text Classification. 9es Journées internationales

d’Analyse statistique des Données Textuelles, pp. 77-83.

https://citeseerx.ist.psu.edu.

[17] Altowayan, A.A., Tao, L. (2016). Word embeddings for

Arabic sentiment analysis. In 2016 IEEE International

Conference on Big Data (Big Data), pp. 3820-3825.

[18] Sandeep Bidwai, S.B. (2021). A comparative study of

Markov chain and deep learning predictive models in

spectrum sensing. Journal of System and Management

Sciences. http://dx.doi.org/124-

140.10.33168/JSMS.2021.0108

[19] Abozinadah, E.A., Jones Jr, J.H. (2017). A statistical

learning approach to detect abusive twitter accounts. In

Proceedings of the International Conference on Compute

and Data Analysis, pp. 6-13.

http://dx.doi.org/10.1145/3093241.3093281

[20] Abozinadah, E.A., Jones, J. (2016). Improved micro-

blog classification for detecting abusive Arabic Twitter

accounts. International Journal of Data Mining &

Knowledge Management Process (IJDKP), 6(6): 17-28.

[21] Abozinadah, E.A., Mbaziira, A.V., Jones, J. (2015).

Detection of abusive accounts with Arabic tweets. Int. J.

Knowl. Eng.-IACSIT, 1(2): 113-119.

http://dx.doi.org/10.7763/IJKE.2015.V1.19

[22] Chowdhury, S.A., Mubarak, H., Abdelali, A., Jung, S.G.,

Jansen, B.J., Salminen, J. (2020). A multi-platform

Arabic news comment dataset for offensive language

detection. In Proceedings of the 12th Language

Resources and Evaluation Conference, pp. 6203-6212.

https://aclanthology.org/2020.lrec-1.761

[23] Mohaouchane, H., Mourhir, A., Nikolov, N.S. (2019).

Detecting offensive language on arabic social media

using deep learning. In 2019 Sixth International

Conference on Social Networks Analysis, Management

and Security (SNAMS), Granada, Spain, pp. 466-471.

http://dx.doi.org/10.1109/SNAMS.2019.8931839

[24] Mubarak, H., Darwish, K., Magdy, W. (2017). Abusive

language detection on Arabic social media. In

Proceedings of the First Workshop on Abusive Language

Online, pp. 52-56. http://dx.doi.org/10.18653/v1/W17-

3008.

[25] Albadi, N., Kurdi, M., Mishra, S. (2018). Are they our

brothers? Analysis and detection of religious hate speech

in the Arabic Twittersphere. In 2018 IEEE/ACM

International Conference on Advances in Social

Networks Analysis and Mining (ASONAM), Barcelona,

Spain, pp. 69-76.

http://dx.doi.org/10.1109/ASONAM.2018.8508247

[26] Safaya, A., Abdullatif, M., Yuret, D. (2020). KUISAIL

at SemEval-2020 task 12: BERT-CNN for offensive

speech identification in social media. In Proceedings of

the Fourteenth Workshop on Semantic Evaluation, pp.

2054-2059. https://arxiv.org/abs/2007.13184.

[27] Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2018).

Bert: Pre-training of deep bidirectional transformers for

464

language understanding. arXiv preprint

arXiv:1810.04805. https://arxiv.org/pdf/1810.04805.

[28] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.

(2018). Improving language understanding by generative

pre-training. https://s3-us-west-

2.amazonaws.com/openai-assets/research-covers/

languageunsupervised/language_understanding_paper.p

df.

[29] Peters, M.E., Neumanaa, M., Iyyer, M., et al. (2018).

Deep Contextualized Word Representations.

Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies, 1: 2227-

2237. http://dx.doi.org/10.18653/v1/N18-1202

[30] Mulki, H., Haddad, H., Ali, C.B., Alshabani, H. (2019).

L-hsab: A Levantine twitter dataset for hate speech and

abusive language. In Proceedings of the Third Workshop

on Abusive Language Online, pp. 111-118.

http://dx.doi.org/10.18653/v1/W19-3512

[31] Alakrot, A., Murray, L., Nikolov, N.S. (2018). Dataset

construction for the detection of anti-social behaviour in

online communication in Arabic. Procedia Computer

Science, 142: 174-181.

http://dx.doi.org/10.1016/j.procs.2018.10.473

[32] Wang, H.F., Wu, H., He, Z., Huang, L., Church, K.

(2021). Progress in machine translation. Engineering.

http://dx.doi.org/10.1016/j.eng.2021.03.023

[33] Paszke, A., Gross, S., Massa, F., et al. (2019). Pytorch:

An imperative style, high-performance deep learning

library. Advances in Neural Information Processing

Systems, 32: 8026-8037.

https://arxiv.org/abs/1912.01703.

[34] Loshchilov, I., Hutter, F. (2018). Fixing weight decay

regularization in Adam.

https://openreview.net/forum?id=rk6qdGgCZ

[35] Zerrouki, T. (2010). An Arabic language library for

Python. Pyarabic. https://pypi.org/project/PyArabic/.

465

