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Jellyfish Search Optimizer (JSO) is one of the latest nature inspired optimization 

algorithms. This paper aims to improve the convergence speed of the algorithm. For the 

purpose, it identifies two modifications to form a proposed variant. First, it proposes 

improvement of initial population using Opposition based Learning (OBL). Then it 

introduces a probability-based replacement of passive swarm motion into moves biased 

towards the global best. OBL enables the algorithm to start with an improved set of 

population. Biased moves towards global best improve the exploitation capability of the 

algorithm. The proposed variant has been tested over 30 benchmark functions and the real 

world problem of 10-bar truss structure design optimization. The proposed variant has also 

been compared with other algorithms from the literature for the 10-bar truss structure 

design. The results show that the proposed variant provides fast convergence for benchmark 

functions and accuracy better than many algorithms for truss structure design.  
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1. INTRODUCTION

Optimization algorithms can be classified in several ways. 

On the basis of use of random numbers, there are Deterministic 

and Stochastic Algorithms. Deterministic algorithms provide 

exact optimum solution every time they run but they are not 

applicable to complex non-linear problems. Stochastic 

algorithms are solutions to such problems. Stochastic 

optimization algorithms deploy heuristic search methods. 

Based on the number of search particles deployed, they can be 

Single Solution based or Population based. They are also 

referred as Metaheuristic Algorithms as these algorithms do 

not require any information about the nature of the search 

space and can be implemented on any type of optimization 

problem. Search methods deployed in these algorithms are 

often inspired by one or more natural phenomenon or real life 

process giving them the popular identity as Nature Inspired 

Algorithms. Some salient features of nature inspired 

algorithms are listed below: 

(1) They use random numbers and thus may provide a

different solution every time they execute. 

(2) The solution may not be the exact optimum but in most

cases, it is an acceptable solution. 

(3) Information of the search space is not required. Only the

objective function and feasible ranges of the variables are 

needed. 

(4) Search agents deployed in the feasible space move to

improve their location. 

(5) Location of the global best agent is the output of the

algorithm. 

There is no fixed deterministic rule to move the agents in 

the space, so each algorithm uses algorithm specific methods 

to search better values. These search methods involve very 

high number of evaluations of the objective function and thus 

require computer based calculations. With the advance of 

computing capabilities, these algorithms have been able to 

adopt new sophisticated methods and the number of new 

nature inspired algorithms has increased many folds in the last 

few decades. Few popular latest algorithms are Grey Wolf 

Optimizer [1], Whale Optimization Algorithm [2], Water 

Strider Algorithm [3] and Black Widow Optimization 

Algorithm [4]. 

This paper proposes a modified variant of a recently 

introduced nature inspired algorithm i.e. Jellyfish Search 

Optimizer (JSO) [5]. Two modifications are proposed in the 

basic JSO to form the modified variant.  

One of the modifications is Opposition based Learning 

(OBL). OBL is a learning operator widely used in nature 

inspired optimization algorithms and other computational 

intelligence methods. OBL generates a point that is opposite 

of the given point. The generated point is opposite with respect 

to the upper and lower limits of the variable. An opposite 

member O’ for a point O with upper and lower limits UL and 

LL respectively is denoted in Eq. (1). 

𝑂′ = 𝐿𝐿 + 𝑈𝐿 − 𝑂 (1) 

OBL based learning methods vary on further use of the 

opposite members, but generally a selection is performed 

between O and O’ to select the better one and drop the other 

one. 

The proposed variant is then validated by solving 30 

benchmark functions and the 10-bar truss structure design 

optimization problem. Rest of the article is structured as 

follows: Section 2 explains the basic steps of the working of 

JSO. Section 3 investigates the literature for similar 

modifications done on other algorithms. Section 4 explains the 

modifications and the proposed variant. Section 5 presents the 

experimental results over benchmark functions and discussion. 

Section 6 shows the proposed variant’s implementation to 
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solve the 10-bar truss design problem. Finally, Section 7 

concludes the paper while providing future direction of the 

work. 

 

 

2. JELLYFISH SEARCH OPTIMIZER 
 

JSO is inspired by the survival behavior exhibited by 

Jellyfish in the waters.  

Like any other population based nature inspired 

optimization algorithm, JSO also has three basic steps of 

Initialization, Generations and Termination. All these steps are 

explained further. 

Step 1: Initialization 

JSO uses logistic map to start with an improved set of 

population. A logistic sequence is generated using Eq. (2). 

 

𝐶𝑗+1 = 4 × 𝐶𝑗(1 − 𝐶𝑗) (2) 

 

where, 𝑗 = 1 𝑡𝑜 𝑁𝐷 indicates dimension of the problem and 

initial value for the sequence 𝐶0 = 𝑟𝑎𝑛𝑑(0,1)  but 𝐶0 ≠
{1|0.75|0.5|0.25} . Eq. (2) will create a sequence of ND 

numbers in the range (0,1). 

Then the members of the population are initialized using Eq. 

(3). 

 

𝑋𝑖,𝑗 = 𝐿𝐿𝑗 + (𝑈𝐿𝑗 − 𝐿𝐿𝑗) × 𝐶𝑗 (3) 

 

where, 𝑖 = 1 𝑡𝑜 𝑁𝑃 the population size. 

Step 2: Generation Loops 

Each generation updates the location of each member by 

moving it in the space. A control function 𝑐(𝑔) controls the 

type of movements. For each member, the value of 𝑐(𝑔) is 

calculated by Eq. (4). 

 

𝑐(𝑔) = |(1 −
𝑔

𝐺𝑚𝑎𝑥

) × (2 × 𝑟𝑎𝑛𝑑 − 1)| (4) 

 

where, 𝑔  is the generation count, 𝐺𝑚𝑎𝑥  is the maximum 

allowed generations and 𝑟𝑎𝑛𝑑 is a random number from (0,1). 

Based upon the value of 𝑐(𝑔), each jellyfish can have two 

types of movements i.e. ocean current movement and swarm 

motion. 

A jellyfish observes ocean current movement if 𝑐(𝑔) ≥  𝐶𝑖𝑛. 

Ocean currents contribute to exploration capabilities of the 

algorithm. 𝐶𝑖𝑛  is the coefficient that controls the degree of 

exploration and exploitation of the algorithm. Eq. (5) 

expresses the ocean current movement. 

 
𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔) 

+𝑟𝑎𝑛𝑑 × (𝑥𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑 × 𝛽 ×
∑ 𝑥𝑘

𝑁𝑃
𝑘=1

𝑁𝑃
)  

(5) 

 

where, 𝑥𝑏𝑒𝑠𝑡  is the member of the population with the best 

objective value and 𝛽 is called the distribution coefficient. 

If a jellyfish is not observing an ocean current movement, 

then it undergoes a swarm motion. Swarm motion provides the 

exploitation power to the algorithm. Swarm motion can be of 

either Active or Passive type. 

If 𝑟𝑎𝑛𝑑 > (1 − 𝑐(𝑔))  then it performs passive motion, 

otherwise active motion. Eq. (6) and Eq. (7) express these 

motions respectively. 

 

𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔) + (𝑈𝐿 − 𝐿𝐿) × 𝛾 × 𝑟𝑎𝑛𝑑  (6) 

where, 𝛾 > 0 is the motion coefficient. Passive swarm motion 

enables a jellyfish to exploit its surroundings for searching 

better locations. 

 

𝑥𝑖(𝑔 + 1)= 

{
𝑥𝑖(𝑔) + (𝑥𝑘 − 𝑥𝑖(𝑔)) × 𝑟𝑎𝑛𝑑, 𝑖𝑓 𝑓(𝑥𝑘) ≥ 𝑓(𝑥𝑖(𝑔))

𝑥𝑖(𝑔) + (𝑥𝑖(𝑔) − 𝑥𝑘) × 𝑟𝑎𝑛𝑑                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(7) 

 

where, k is a randomly chosen index between 1 to NP and 𝑓(𝑥) 

denotes the objective function value of x. Active swarm 

motion depicts the movement of a jellyfish towards a better 

jellyfish in the population. Figure 1 shows the logical sequence 

of steps for each member in a generation loop.  

The updated location of a jellyfish is checked for violation 

of limits UL and LL. In case of violation, the location is 

updated to fall inside the limits again. This update is done on 

the opposite side of the limit. If an updated member violates 

the upper limit 𝑈𝐿𝑗 by ∆𝑗 and is located at (𝑈𝐿𝑗 + ∆𝑗) then it 

is updated to a new location at (𝐿𝐿𝑗 + ∆𝑗) in dimension j. 

Step 3: Termination 

A predefined termination condition is checked after each 

generation. In all the experiments of this paper, a maximum 

number of generations ( 𝐺𝑚𝑎𝑥 ) is set as the termination 

condition. 

 

 

3. LITERATURE REVIEW 
 

This paper includes Opposition Based Learning (OBL) to 

improve the convergence speed of JSO. OBL provides an 

improved initial population to start the generation loops [6]. 

This initial advantage most of the times affects the quality of 

the ultimate solution. Literature is rich with the use of OBL as 

a tool to improve nature inspired algorithms. Most of the work 

in the literature suggests that OBL is implemented with one or 

more other tools for enhancement. A part of the literature is 

reviewed and the findings are presented in Table 1. Details of 

the additional tools with the OBL are also indicated. 

 

 
 

Figure 1. Types of movement inside generation loops 
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Table 1. Findings of the literature review 

 
Year Algorithm Implementation Details Reference 

2021 Elephant Herding Optimization 

To overcome the slow convergence of the algorithm due to lack of exploitation 

component, OBL and position update operator from Sine-cosine algorithm are 

implemented. 

[7] 

2021 Class Topper Optimization 
Along OBL, the paper uses fractional order to update positions. This combination 

provides a balance between exploitation and exploration. 
[8] 

2020 Firefly Algorithm 
OBL along with three methods adopted from the working of Dragonfly Algorithm 

are used to modify Firefly Algorithm to avoid local optimum. 
[9] 

2020 Salp Swarm Algorithm 
OBL and a new local search strategy are used to improve Salp Swarm algorithm for 

feature selection. 
[10] 

2020 Crow Search Algorithm 
OBL is used to enhance initial population. A cosine function is used to accelerate 

exploration to avoid local optima. 
[11] 

2019 
Monarch Butterfly 

Optimization Algorithm 

OBL generates an opposite population. Better of the two opposite members is then 

selected to continue. A Random local Perturbation is then used to improve the 

migration operator. 

[12] 

2019 
Multifactorial Evolutionary 

Algorithm 

Integration of OBL and DE is used to improve the convergence of the algorithm. 

Different search territories of DE and OBL along with their complementary nature 

and the simulated binary crossover are the motivation for the algorithm. 

[13] 

2019 Dragonfly Algorithm 

Selection between a member of the population and its opposite member is 

performed throughout the execution to continuously improve the solution. The 

variant has been implemented on multi-level thresholding image segmentation. 

[14] 

2019 Shuffled Complex Evolution 
OBL with an improved competition complex evolution strategy is used to improve 

accuracy, efficiency and population diversity of the algorithm. 
[15] 

2018 
Grasshopper Optimization 

Algorithm 

First phase of the enhancement generates opposites of the initial population. Second 

phase improves half of the population in generation loops using OBL. 
[16] 

 

 

4. PROPOSED MODIFIED JSO (MJSO) 
 

Following are two modifications proposed in the structure 

of basic JSO. 

OBL in initialization 

OBL is implemented as a tool to improve initial population. 

Summary of literature review in Table 1 is evident that OBL 

in initialization step is a proven method of improving 

convergence. After initialization, using Eq. (3), a set of 

opposite members X’ is generated for the initial set of 

population X, temporarily having 2NP members. Best NP 

members are then selected from the set (𝑋 ∪ 𝑋′). Figure 2 

visualizes this update for 2- dimensional Rastrigin function 

with initial population size of 10. Figure 2(a) shows the initial 

population with red circled markers and the opposite member 

generated for each member as green circled markers. Figure 

2(b) shows the best 10 members selected from the union of 

both the populations.  

Improved Passive Swarm Motion 

Ocean currents in JSO are aimed at exploration while 

swarm motion targets exploitation. Coefficient Cin trades off 

the degree of both these capabilities. The time control c(g) of 

Eq. (4) allows exploratory ocean currents during the initial 

phase of the execution. As the execution advances, ocean 

current movements are replaced by swarm motion to increase 

the degree of exploitation. Among swarm motion, active 

swarm motion moves keep on increasing with the generation 

count while passive motion keeps on suppressing. Figure 3 

demonstrates the number of all the three types of moves for a 

typical run of 500 generations in a population of 100 for 

Cin=0.5. Exploitation aims to converge the algorithm. 

The movement of jellyfish in passive swarm motion enables 

it to search its surrounding for better locations. This search is 

unbiased hence has a low probability of finding better values 

and thus contributing least to the whole purpose of exploitation. 

The proposed modification is to add a directional bias to 

passive swarm motion to enhance convergence. The direction 

of this bias is kept towards the global best jellyfish 𝑥𝑏𝑒𝑠𝑡 . 

Passive swarm motion is not removed completely but a 

probability-based method has been deployed to replace some 

passive swarm motion into biased moves towards global best. 

A coefficient called Convergence Bias (CB) is introduced to 

control the magnitude of the bias. Mathematically, the passive 

swarm motion of Eq. (6) is replaced by Eq. (8). Figure 4 

demonstrates both these movements. 
 

𝑥𝑖(𝑔 + 1)= 

{
𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔) + (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) × 𝑟𝑎𝑛𝑑,    𝑖𝑓 𝐶𝐵 > 𝑟𝑎𝑛𝑑

𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔) + (𝑈𝐿 − 𝐿𝐿) × 𝛾 × 𝑟𝑎𝑛𝑑,    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(8) 

 

 
(a) 

 
(b) 

Figure 2. (a) initial population and its opposite population 

(b) best members from the union of both the population sets 
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(a) 

 
(b) 

 
(c) 

 

Figure 3. Number of (a) ocean current (b) active swarm and 

(c) passive swarm movements in a typical run of 500 

generations for NP=100 and Cin=0.5 

 

 
 

Figure 4. Movement of a jellyfish x(g) in passive swarm 

motion and proposed biased move 

 

 

 

5. EXPERIMENTAL RESULT AND ANALYSIS FOR 

BENCHMARK FUNCTIONS 

 
The proposed modified variant (MJSO) has been tested over 

a comprehensive set of 30 diverse benchmark minimization 

test functions [5]. The set includes both unimodal (𝑓1 to 𝑓9) 

and multimodal ( 𝑓10  to 𝑓30 ) functions. Table 2 contains 

experimental environment details and parameter settings. 

Table 2. Experimental environment and parameter settings 

 
Experimental Environment 

Tool MATLAB R2021a 

Processor 
Intel(R) Core(TM) i7-8565U CPU 

@ 1.80GHz 

RAM 16 GB 

Operating System Windows 10 

Parameter Settings 

JSO coefficients 𝐶𝑖𝑛, 𝛾, 𝛽 0.5, 0.1, 3 

Population size (NP) 50 

Maximum generations 

(𝐺𝑚𝑎𝑥) 
500 

𝐶𝐵for MJSO 0.25 

 

Due to the inherent property of randomization of the 

algorithms, all experiments were repeated for 30 runs. Best 

and mean objective function values obtained for 𝑓1  to 𝑓30 

along with the standard deviation are provided in Table 3. 

Necessary details about the functions are also included in 

Table 3. The source [5] can be referred for more details. Best 

values among the two algorithms are written in bold text. 

Mean values are used as the primary criteria for further 

analysis. Success Rate (SR) is defined as the percentage of 

functions for which the algorithm performs sole or the joint 

best. SR is calculated by Eq. (9). 

 

𝑆𝑅

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠 𝑏𝑒𝑠𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
×100 

(9) 

 

JSO and MJSO succeed to be the best algorithms for 18 and 

27 functions respectively obtaining SRs of 60% and 90%. For 

unimodal functions, the algorithms succeed for 4 and 8 

functions respectively while for multimodal functions they 

succeed for 14 and 19 functions. Table 3 provides sufficient 

evidence to establish that MJSO outperforms JSO for 

unimodal as well as multimodal functions. Although for 

majority of functions, both algorithms are successful to find 

optimum and hence their difference is not visible in Table 3. 

To visualize convergence speeds, convergence graphs are 

plotted for all such functions 𝑓1, 𝑓3, 𝑓4, 𝑓10, 𝑓11, 𝑓12, 𝑓15, 𝑓18, 

𝑓19 , 𝑓20 , 𝑓21 , 𝑓22 , 𝑓23 , 𝑓24  and 𝑓25  in Figure 5. The figure 

manifests that MJSO provides faster convergence for most of 

the functions that could not be differentiated in Table 3. 

 

 

6. 10-BAR TRUSS DESIGN OPTIMIZATION FOR 

CONTINUOUS DESIGN VARIABLES 
 

Truss structures [17] are a rich class of optimization 

problems to act as benchmarks for algorithms. Literature has a 

good number of algorithms implemented to solve problems 

from the set. The 10-bar truss optimization problem has been 

optimized by Genetic Algorithm [17], Particle Swarm 

Optimization [18, 19], Harmony Search [20, 21], Artificial 

Bee Colony [22] and Teaching Learning based Optimization 

[23]. A truss is a combination of bars connected at a few joints 

and is designed to handle certain limits of deflection and stress. 

Weight of a bar in the truss is a function of its cross section 

area. After fixing the geometry of the truss, cross section areas 

of bars become the variables for the optimization problem. 

Objective of the optimization is to minimize total weight of all 

the bars put together while stress and deflection limits act as 

the constraints. Eq. (10) expresses the objective function. 
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Table 3. Best, mean and standard deviation values of benchmark test functions for JSO and MJSO 

 

Function symbol Function name 
 JSO MJSO 

Dimension Best Mean Std Best Mean Std 

𝑓1 Stepint 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝑓2 Quartic 30 4.68E-05 3.33E-04 1.67E-04 8.99E-05 3.51E-04 1.78E-04 

𝑓3 Beale 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝑓4 Easom 2 -1.00E+00 -1.00E+00 0.00E+00 -1.00E+00 -1.00E+00 0.00E+00 

𝑓5 Colville 4 1.88E-11 1.34E-06 2.26E-06 1.49E-15 2.19E-08 9.35E-08 

𝑓6 Trid6 6 9.54E-20 2.52E-15 9.36E-15 4.36E-25 2.14E-19 9.07E-19 

𝑓7 Powell 24 1.76E-26 7.50E-08 2.97E-07 2.67E-32 5.87E-10 1.90E-09 

𝑓8 Rosenbrock 30 3.85E-04 1.19E-01 2.55E-01 1.44E-04 6.97E-03 1.24E-02 

𝑓9 Dixon-Price 30 6.26E-03 4.51E-02 4.06E-02 1.66E-03 2.92E-02 3.72E-02 

𝑓10 Foxholes 2 9.98E-01 9.98E-01 8.25E-17 9.98E-01 9.98E-01 4.12E-17 

𝑓11 Branin 2 3.98E-01 3.98E-01 0.00E+00 3.98E-01 3.98E-01 0.00E+00 

𝑓12 Booth 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝑓13 Rastrigin 30 1.13E-06 3.61E-02 1.90E-01 1.07E-07 1.22E-04 3.64E-04 

𝑓14 Schwefel 30 -1.16E+04 -8.98E+03 1.44E+03 -1.21E+04 -1.06E+04 1.06E+03 

𝑓15 Michalewicz2 2 -1.80E+00 -1.80E+00 9.03E-16 -1.80E+00 -1.80E+00 9.03E-16 

𝑓16 Michalewicz5 5 -4.69E+00 -4.67E+00 1.93E-02 -4.69E+00 -4.65E+00 5.84E-02 

𝑓17 Michalewicz 10 10 -9.62E+00 -9.50E+00 1.21E-01 -9.66E+00 -9.41E+00 1.83E-01 

𝑓18 Shubert 2 -1.87E+02 -1.87E+02 3.68E-11 -1.87E+02 -1.87E+02 2.11E-14 

𝑓19 GoldStein-Price 2 3.00E+00 3.00E+00 1.35E-15 3.00E+00 3.00E+00 1.49E-15 

𝑓20 Kowalik 4 3.07E-04 3.07E-04 8.52E-09 3.07E-04 3.07E-04 2.48E-17 

𝑓21 Shekel5 4 -1.02E+01 -1.02E+01 1.78E-11 -1.02E+01 -1.02E+01 5.96E-15 

𝑓22 Shekel7 4 -1.04E+01 -1.04E+01 4.66E-16 -1.04E+01 -1.04E+01 6.60E-16 

𝑓23 Shekel10 4 -1.05E+01 -1.05E+01 1.55E-15 -1.05E+01 -1.05E+01 9.90E-16 

𝑓24 Powersum 4 3.89E+00 3.89E+00 2.81E-15 3.89E+00 3.89E+00 1.91E-15 

𝑓25 Hartman6 6 -3.32E+00 -3.32E+00 1.46E-11 -3.32E+00 -3.32E+00 8.08E-16 

𝑓26 Penalized 30 1.45E-11 3.81E-10 6.44E-10 6.35E-12 2.40E-10 4.67E-10 

𝑓27 Penalized2 30 6.80E-11 8.13E-09 1.05E-08 2.74E-11 7.12E-09 2.36E-08 

𝑓28 Fletcher Powell2 2 0.00E+00 1.97E-17 7.59E-17 0.00E+00 5.38E-26 2.37E-25 

𝑓29 Fletcher Powell5 5 2.09E-13 2.39E+01 1.24E+02 1.54E-18 5.95E+00 1.82E+01 

𝑓30 FletcherPowell10 10 1.82E-10 4.04E+01 1.30E+02 5.14E-17 1.41E+01 5.09E+01 

SR 60% 90% 

 

   
(𝑎) 𝑓1 (𝑏)𝑓3 (𝑐)𝑓4 

   
(𝑑)𝑓10 (𝑒)𝑓11 (𝑓)𝑓12 

   
(𝑔)𝑓15 (ℎ)𝑓18 (𝑖)𝑓19 
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(𝑗)𝑓20 (𝑘)𝑓21 (𝑙)𝑓22 

   
(𝑚)𝑓23 (𝑛)𝑓24 (𝑜)𝑓25 

 

Figure 5. (a)-(o) Comparison of convergence speeds of JSO and MJSO for selected functions 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊 = ∑ 𝑐𝑏𝑙𝑏𝑑𝑏

𝑛

𝑏=1

 (10) 

 

Subject to: 

 

𝜎𝐿𝐿 ≤ 𝜎𝑏 ≤ 𝜎𝐻𝐻 (10.1) 

 

𝛿𝐿𝐿 ≤ 𝛿𝑗 ≤ 𝛿𝐻𝐻  (10.2) 

 

𝑐𝐿𝐿 ≤ 𝑐𝑏 ≤ 𝑐𝐻𝐻  (10.3) 

 

where, b denotes the bar identifier and b = 1 to n. Cross section 

area, length and density of the material of bar b are denoted by 

𝑐𝑏 , 𝑙𝑏 , and 𝑑𝑏 respectively. Stress of bar b and deflection at a 

joint j are denoted by 𝜎𝑏  and 𝛿𝑗  while 𝜎𝐿𝐿  and 𝜎𝐻𝐻  represent 

lower and upper limits of the allowed ranges of all the three 

constraints in Eqns. (10.1)-(10.3).  

Stress penalty for a bar b is computed by Eq. (11). 

 

𝜑𝜎
𝑏 = {

0                                        𝑖𝑓 𝜎𝐿𝐿 ≤ 𝜎𝑏 ≤ 𝜎𝐻𝐻

|
(𝜎𝐻𝐻 − 𝜎𝐿𝐿) − 𝜎𝑏

(𝜎𝐻𝐻 − 𝜎𝐿𝐿)
|                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

 

Cumulative stress penalty for a design 𝑑  is calculated by 

Eq. (12). 

 

𝜑𝜎
𝑑 = ∑ 𝜑𝜎

𝑏

𝑛

𝑏=1

 (12) 

 

Deflection penalty in each direction 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 at a joint j is 

calculated by Eq. (13). 

 

𝜑𝛿(𝑥,𝑦,𝑧)
𝑗

=

{
0                             𝑖𝑓 𝛿𝐿𝐿 ≤ 𝛿𝑗(𝑥,𝑦,𝑧) ≤ 𝛿𝐻𝐻

|
(𝛿𝐻𝐻−𝛿𝐿𝐿)−𝛿𝑗(𝑥,𝑦,𝑧)

(𝛿𝐻𝐻−𝛿𝐿𝐿)
|                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(13) 

 

Cumulative deflection penalty for a design 𝑑  of the 

structure with 𝑚 joints is given by Eq. (14). 

 

𝜑𝛿
𝑑 = ∑ (𝜑𝜎𝑥

𝑚𝑚
𝑗=1 + 𝜑𝜎𝑦

𝑚 + 𝜑𝜎𝑧
𝑚 )  (14) 

 

Cumulative penalty for a design 𝑑 is expressed as given in 

Eq. (15). 

 

𝑃𝑑 = (1 + 𝜑𝜎
𝑑 + 𝜑𝛿

𝑑)𝜀  (15) 

 

where, 𝜀  is the penalty exponent. The penalized objective 

function for minimum weight for a design d now becomes as 

expressed in Eq. (16). 

 

𝐹𝑑 = 𝑊 × 𝑃𝑑   (16) 

 

10-bar truss is a cantilever truss with 6 joints. Figure 6 

shows geometry of a 10-bar truss structure. The figure shows 

10 bars A-J each of length 360 inches. The cross section area 

for each bar is between 0.1 in2 and 35 in2. The material density 

(weight/volume) and elasticity are 0.1 lb/in3 and 107 psi 

respectively. Maximum allowed stress violation for a bar is 

±25 ksi and maximum allowed deflection at a joint is ±2 in. 

 

 
 

Figure 6. Geometry of 10-bar truss structure 

 

The experiments for 10-bar truss design optimization were 

conducted for JSO and MJSO for 1000 generations and with 

all other parameter settings of Table 2. Table 4 contains the 

results. The table displays the best weight 𝑊𝑏𝑒𝑠𝑡  obtained and 
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the cross section areas of all the 10 bars for 𝑊𝑏𝑒𝑠𝑡  for JSO and 

MJSO. It also contains average weight 𝑊𝑎𝑣𝑔 , standard 

deviation of weights 𝑊𝑠𝑡𝑑  and the number of objective 

function evaluation NFE. The table also inherits the results for 

the same problem from the literature as reported in the 

reference [23]. It can be observed that on the criterion of 𝑊𝑏𝑒𝑠𝑡  

MJSO outperforms GA, HPSO, SAHS and TLBO. Average 

weight is given for only three algorithms in the literature and 

MJSO outperforms PSO. 

A comparative convergence graph containing average 

values of penalized weights for JSO and MJSO is shown in 

Figure 7. It is evident from the figure that MJSO continuously 

provides better values than JSO making it a variant that is 

capable of providing better results at every stage of execution. 

 
 

Figure 7. Convergence graph for penalized weight of 10-bar 

truss design for JSO and MJSO 

 

Table 4. Comparative results for 10-bar truss design optimization for JSO, MJSO and literature 
 

Variable A B C D E F G 

Cross section area 

JSO 30.5030 0.1005 23.1995 15.1241 0.1000 0.5468 21.2243 

MJSO 30.5821 0.1000 23.0505 15.1876 0.1000 0.5528 21.0851 

GA [17] 28.920 0.100 24.070 13.960 0.100 0.560 21.950 

PSO [18] 29.999 0.100 23.268 15.129 0.100 0.554 21.232 

HS [20] 30.150 0.102 22.710 15.270 0.102 0.544 21.560 

HPSO [19] 30.704 0.100 23.167 15.183 0.100 0.551 20.978 

ABC [22] 30.548 0.100 23.180 15.218 0.100 0.551 21.058 

SAHS [21] 30.394 0.100 23.098 15.491 0.100 0.529 21.189 

TLBO [23] 30.6684 0.1000 23.1584 15.2226 0.1000 0.5421 21.0255 

Variable H I J 𝑾𝒃𝒆𝒔𝒕 𝑾𝒂𝒗𝒈 𝑾𝒔𝒕𝒅 NFE(×103) 

Cross section area 

JSO 7.4820 0.1000 21.4063 5061.0814 5065.1659 7.0011 50 

MJSO 7.4775 0.1000 21.5475 5060.9112 5064.9284 6.5316 50 

GA [17] 7.690 0.100 22.090 5,076.31 - - 15 

PSO [18] 7.454 0.100 21.670 5,059.85 5067.51 17.509 10.19 

HS [20] 7.541 0.100 21.450 5,057.88 - - 20 

HPSO [19] 7.460 0.100 21.508 5,060.92 - - 12.5 

ABC [22] 7.463 0.100 21.501 5,060.88 - - 500 

SAHS [21] 7.488 0.100 21.342 5,061.42 5061.95 0.71 7.081 

TLBO [23] 7.4654 0.1000 21.4660 5,060.973 5064.808 6.3707 13.767 

 

 

7. CONCLUSION AND FUTURE WORK 
 

The experiments conducted for JSO and the proposed 

MJSO are sufficient to establish that MJSO outperforms JSO 

for unimodal, multimodal and truss design optimization. 

Opposition based learning is a proven tool to improve the 

efficiency of population based algorithms. Any bias towards 

global best is expected to improve convergence for unimodal 

functions but the proposed variant identifies passive swarm 

motion that can be replaced for biased movements without 

affecting the convergence for multimodal functions as well. 

Furthermore, few directions for future work are suggested 

below: 

(1) To check and possibly improve the performance of JSO 

on multi-objective problems. 

(2) The proposed work tests biased moves in the passive 

swarm motion step of JSO. Similar bias can be tested in active 

swarm motion and the ocean current. 

(3) JSO can be hybridized with other nature-inspired 

algorithms to develop a hybrid variant that is more efficient. 

(4) Novel real world optimization problems can be 

identified and JSO can be modified to efficiently solve specific 

problems.  
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