
A Modified Jellyfish Search Optimizer with Opposition Based Learning and Biased Passive

Swarm Motion

Jitendra Rajpurohit

School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India

Corresponding Author Email: jiten_rajpurohit@yahoo.com

https://doi.org/10.18280/isi.260608 ABSTRACT

Received: 12 October 2021

Accepted: 3 December 2021

Jellyfish Search Optimizer (JSO) is one of the latest nature inspired optimization

algorithms. This paper aims to improve the convergence speed of the algorithm. For the

purpose, it identifies two modifications to form a proposed variant. First, it proposes

improvement of initial population using Opposition based Learning (OBL). Then it

introduces a probability-based replacement of passive swarm motion into moves biased

towards the global best. OBL enables the algorithm to start with an improved set of

population. Biased moves towards global best improve the exploitation capability of the

algorithm. The proposed variant has been tested over 30 benchmark functions and the real

world problem of 10-bar truss structure design optimization. The proposed variant has also

been compared with other algorithms from the literature for the 10-bar truss structure

design. The results show that the proposed variant provides fast convergence for benchmark

functions and accuracy better than many algorithms for truss structure design.

Keywords:

swarm intelligence, nature inspired

optimization, metaheuristic algorithms

1. INTRODUCTION

Optimization algorithms can be classified in several ways.

On the basis of use of random numbers, there are Deterministic

and Stochastic Algorithms. Deterministic algorithms provide

exact optimum solution every time they run but they are not

applicable to complex non-linear problems. Stochastic

algorithms are solutions to such problems. Stochastic

optimization algorithms deploy heuristic search methods.

Based on the number of search particles deployed, they can be

Single Solution based or Population based. They are also

referred as Metaheuristic Algorithms as these algorithms do

not require any information about the nature of the search

space and can be implemented on any type of optimization

problem. Search methods deployed in these algorithms are

often inspired by one or more natural phenomenon or real life

process giving them the popular identity as Nature Inspired

Algorithms. Some salient features of nature inspired

algorithms are listed below:

(1) They use random numbers and thus may provide a

different solution every time they execute.

(2) The solution may not be the exact optimum but in most

cases, it is an acceptable solution.

(3) Information of the search space is not required. Only the

objective function and feasible ranges of the variables are

needed.

(4) Search agents deployed in the feasible space move to

improve their location.

(5) Location of the global best agent is the output of the

algorithm.

There is no fixed deterministic rule to move the agents in

the space, so each algorithm uses algorithm specific methods

to search better values. These search methods involve very

high number of evaluations of the objective function and thus

require computer based calculations. With the advance of

computing capabilities, these algorithms have been able to

adopt new sophisticated methods and the number of new

nature inspired algorithms has increased many folds in the last

few decades. Few popular latest algorithms are Grey Wolf

Optimizer [1], Whale Optimization Algorithm [2], Water

Strider Algorithm [3] and Black Widow Optimization

Algorithm [4].

This paper proposes a modified variant of a recently

introduced nature inspired algorithm i.e. Jellyfish Search

Optimizer (JSO) [5]. Two modifications are proposed in the

basic JSO to form the modified variant.

One of the modifications is Opposition based Learning

(OBL). OBL is a learning operator widely used in nature

inspired optimization algorithms and other computational

intelligence methods. OBL generates a point that is opposite

of the given point. The generated point is opposite with respect

to the upper and lower limits of the variable. An opposite

member O’ for a point O with upper and lower limits UL and

LL respectively is denoted in Eq. (1).

𝑂′ = 𝐿𝐿 + 𝑈𝐿 − 𝑂 (1)

OBL based learning methods vary on further use of the

opposite members, but generally a selection is performed

between O and O’ to select the better one and drop the other

one.

The proposed variant is then validated by solving 30

benchmark functions and the 10-bar truss structure design

optimization problem. Rest of the article is structured as

follows: Section 2 explains the basic steps of the working of

JSO. Section 3 investigates the literature for similar

modifications done on other algorithms. Section 4 explains the

modifications and the proposed variant. Section 5 presents the

experimental results over benchmark functions and discussion.

Section 6 shows the proposed variant’s implementation to

Ingénierie des Systèmes d’Information
Vol. 26, No. 6, December, 2021, pp. 577-584

Journal homepage: http://iieta.org/journals/isi

577

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260608&domain=pdf

solve the 10-bar truss design problem. Finally, Section 7

concludes the paper while providing future direction of the

work.

2. JELLYFISH SEARCH OPTIMIZER

JSO is inspired by the survival behavior exhibited by

Jellyfish in the waters.

Like any other population based nature inspired

optimization algorithm, JSO also has three basic steps of

Initialization, Generations and Termination. All these steps are

explained further.

Step 1: Initialization

JSO uses logistic map to start with an improved set of

population. A logistic sequence is generated using Eq. (2).

𝐶𝑗+1 = 4 × 𝐶𝑗(1 − 𝐶𝑗) (2)

where, 𝑗 = 1 𝑡𝑜 𝑁𝐷 indicates dimension of the problem and

initial value for the sequence 𝐶0 = 𝑟𝑎𝑛𝑑(0,1) but 𝐶0 ≠
{1|0.75|0.5|0.25} . Eq. (2) will create a sequence of ND

numbers in the range (0,1).

Then the members of the population are initialized using Eq.

(3).

𝑋𝑖,𝑗 = 𝐿𝐿𝑗 + (𝑈𝐿𝑗 − 𝐿𝐿𝑗) × 𝐶𝑗 (3)

where, 𝑖 = 1 𝑡𝑜 𝑁𝑃 the population size.

Step 2: Generation Loops

Each generation updates the location of each member by

moving it in the space. A control function 𝑐(𝑔) controls the

type of movements. For each member, the value of 𝑐(𝑔) is

calculated by Eq. (4).

𝑐(𝑔) = |(1 −
𝑔

𝐺𝑚𝑎𝑥

) × (2 × 𝑟𝑎𝑛𝑑 − 1)| (4)

where, 𝑔 is the generation count, 𝐺𝑚𝑎𝑥 is the maximum

allowed generations and 𝑟𝑎𝑛𝑑 is a random number from (0,1).

Based upon the value of 𝑐(𝑔), each jellyfish can have two

types of movements i.e. ocean current movement and swarm

motion.

A jellyfish observes ocean current movement if 𝑐(𝑔) ≥ 𝐶𝑖𝑛.

Ocean currents contribute to exploration capabilities of the

algorithm. 𝐶𝑖𝑛 is the coefficient that controls the degree of

exploration and exploitation of the algorithm. Eq. (5)

expresses the ocean current movement.

𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔)

+𝑟𝑎𝑛𝑑 × (𝑥𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑 × 𝛽 ×
∑ 𝑥𝑘

𝑁𝑃
𝑘=1

𝑁𝑃
)

(5)

where, 𝑥𝑏𝑒𝑠𝑡 is the member of the population with the best

objective value and 𝛽 is called the distribution coefficient.

If a jellyfish is not observing an ocean current movement,

then it undergoes a swarm motion. Swarm motion provides the

exploitation power to the algorithm. Swarm motion can be of

either Active or Passive type.

If 𝑟𝑎𝑛𝑑 > (1 − 𝑐(𝑔)) then it performs passive motion,

otherwise active motion. Eq. (6) and Eq. (7) express these

motions respectively.

𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔) + (𝑈𝐿 − 𝐿𝐿) × 𝛾 × 𝑟𝑎𝑛𝑑 (6)

where, 𝛾 > 0 is the motion coefficient. Passive swarm motion

enables a jellyfish to exploit its surroundings for searching

better locations.

𝑥𝑖(𝑔 + 1)=

{
𝑥𝑖(𝑔) + (𝑥𝑘 − 𝑥𝑖(𝑔)) × 𝑟𝑎𝑛𝑑, 𝑖𝑓 𝑓(𝑥𝑘) ≥ 𝑓(𝑥𝑖(𝑔))

𝑥𝑖(𝑔) + (𝑥𝑖(𝑔) − 𝑥𝑘) × 𝑟𝑎𝑛𝑑 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

where, k is a randomly chosen index between 1 to NP and 𝑓(𝑥)

denotes the objective function value of x. Active swarm

motion depicts the movement of a jellyfish towards a better

jellyfish in the population. Figure 1 shows the logical sequence

of steps for each member in a generation loop.

The updated location of a jellyfish is checked for violation

of limits UL and LL. In case of violation, the location is

updated to fall inside the limits again. This update is done on

the opposite side of the limit. If an updated member violates

the upper limit 𝑈𝐿𝑗 by ∆𝑗 and is located at (𝑈𝐿𝑗 + ∆𝑗) then it

is updated to a new location at (𝐿𝐿𝑗 + ∆𝑗) in dimension j.

Step 3: Termination

A predefined termination condition is checked after each

generation. In all the experiments of this paper, a maximum

number of generations (𝐺𝑚𝑎𝑥) is set as the termination

condition.

3. LITERATURE REVIEW

This paper includes Opposition Based Learning (OBL) to

improve the convergence speed of JSO. OBL provides an

improved initial population to start the generation loops [6].

This initial advantage most of the times affects the quality of

the ultimate solution. Literature is rich with the use of OBL as

a tool to improve nature inspired algorithms. Most of the work

in the literature suggests that OBL is implemented with one or

more other tools for enhancement. A part of the literature is

reviewed and the findings are presented in Table 1. Details of

the additional tools with the OBL are also indicated.

Figure 1. Types of movement inside generation loops

578

Table 1. Findings of the literature review

Year Algorithm Implementation Details Reference

2021 Elephant Herding Optimization

To overcome the slow convergence of the algorithm due to lack of exploitation

component, OBL and position update operator from Sine-cosine algorithm are

implemented.

[7]

2021 Class Topper Optimization
Along OBL, the paper uses fractional order to update positions. This combination

provides a balance between exploitation and exploration.
[8]

2020 Firefly Algorithm
OBL along with three methods adopted from the working of Dragonfly Algorithm

are used to modify Firefly Algorithm to avoid local optimum.
[9]

2020 Salp Swarm Algorithm
OBL and a new local search strategy are used to improve Salp Swarm algorithm for

feature selection.
[10]

2020 Crow Search Algorithm
OBL is used to enhance initial population. A cosine function is used to accelerate

exploration to avoid local optima.
[11]

2019
Monarch Butterfly

Optimization Algorithm

OBL generates an opposite population. Better of the two opposite members is then

selected to continue. A Random local Perturbation is then used to improve the

migration operator.

[12]

2019
Multifactorial Evolutionary

Algorithm

Integration of OBL and DE is used to improve the convergence of the algorithm.

Different search territories of DE and OBL along with their complementary nature

and the simulated binary crossover are the motivation for the algorithm.

[13]

2019 Dragonfly Algorithm

Selection between a member of the population and its opposite member is

performed throughout the execution to continuously improve the solution. The

variant has been implemented on multi-level thresholding image segmentation.

[14]

2019 Shuffled Complex Evolution
OBL with an improved competition complex evolution strategy is used to improve

accuracy, efficiency and population diversity of the algorithm.
[15]

2018
Grasshopper Optimization

Algorithm

First phase of the enhancement generates opposites of the initial population. Second

phase improves half of the population in generation loops using OBL.
[16]

4. PROPOSED MODIFIED JSO (MJSO)

Following are two modifications proposed in the structure

of basic JSO.

OBL in initialization

OBL is implemented as a tool to improve initial population.

Summary of literature review in Table 1 is evident that OBL

in initialization step is a proven method of improving

convergence. After initialization, using Eq. (3), a set of

opposite members X’ is generated for the initial set of

population X, temporarily having 2NP members. Best NP

members are then selected from the set (𝑋 ∪ 𝑋′). Figure 2

visualizes this update for 2- dimensional Rastrigin function

with initial population size of 10. Figure 2(a) shows the initial

population with red circled markers and the opposite member

generated for each member as green circled markers. Figure

2(b) shows the best 10 members selected from the union of

both the populations.

Improved Passive Swarm Motion

Ocean currents in JSO are aimed at exploration while

swarm motion targets exploitation. Coefficient Cin trades off

the degree of both these capabilities. The time control c(g) of

Eq. (4) allows exploratory ocean currents during the initial

phase of the execution. As the execution advances, ocean

current movements are replaced by swarm motion to increase

the degree of exploitation. Among swarm motion, active

swarm motion moves keep on increasing with the generation

count while passive motion keeps on suppressing. Figure 3

demonstrates the number of all the three types of moves for a

typical run of 500 generations in a population of 100 for

Cin=0.5. Exploitation aims to converge the algorithm.

The movement of jellyfish in passive swarm motion enables

it to search its surrounding for better locations. This search is

unbiased hence has a low probability of finding better values

and thus contributing least to the whole purpose of exploitation.

The proposed modification is to add a directional bias to

passive swarm motion to enhance convergence. The direction

of this bias is kept towards the global best jellyfish 𝑥𝑏𝑒𝑠𝑡 .

Passive swarm motion is not removed completely but a

probability-based method has been deployed to replace some

passive swarm motion into biased moves towards global best.

A coefficient called Convergence Bias (CB) is introduced to

control the magnitude of the bias. Mathematically, the passive

swarm motion of Eq. (6) is replaced by Eq. (8). Figure 4

demonstrates both these movements.

𝑥𝑖(𝑔 + 1)=

{
𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔) + (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) × 𝑟𝑎𝑛𝑑, 𝑖𝑓 𝐶𝐵 > 𝑟𝑎𝑛𝑑

𝑥𝑖(𝑔 + 1) = 𝑥𝑖(𝑔) + (𝑈𝐿 − 𝐿𝐿) × 𝛾 × 𝑟𝑎𝑛𝑑, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

(a)

(b)

Figure 2. (a) initial population and its opposite population

(b) best members from the union of both the population sets

579

(a)

(b)

(c)

Figure 3. Number of (a) ocean current (b) active swarm and

(c) passive swarm movements in a typical run of 500

generations for NP=100 and Cin=0.5

Figure 4. Movement of a jellyfish x(g) in passive swarm

motion and proposed biased move

5. EXPERIMENTAL RESULT AND ANALYSIS FOR

BENCHMARK FUNCTIONS

The proposed modified variant (MJSO) has been tested over

a comprehensive set of 30 diverse benchmark minimization

test functions [5]. The set includes both unimodal (𝑓1 to 𝑓9)

and multimodal (𝑓10 to 𝑓30) functions. Table 2 contains

experimental environment details and parameter settings.

Table 2. Experimental environment and parameter settings

Experimental Environment

Tool MATLAB R2021a

Processor
Intel(R) Core(TM) i7-8565U CPU

@ 1.80GHz

RAM 16 GB

Operating System Windows 10

Parameter Settings

JSO coefficients 𝐶𝑖𝑛, 𝛾, 𝛽 0.5, 0.1, 3

Population size (NP) 50

Maximum generations

(𝐺𝑚𝑎𝑥)
500

𝐶𝐵for MJSO 0.25

Due to the inherent property of randomization of the

algorithms, all experiments were repeated for 30 runs. Best

and mean objective function values obtained for 𝑓1 to 𝑓30

along with the standard deviation are provided in Table 3.

Necessary details about the functions are also included in

Table 3. The source [5] can be referred for more details. Best

values among the two algorithms are written in bold text.

Mean values are used as the primary criteria for further

analysis. Success Rate (SR) is defined as the percentage of

functions for which the algorithm performs sole or the joint

best. SR is calculated by Eq. (9).

𝑆𝑅

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠 𝑏𝑒𝑠𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
×100

(9)

JSO and MJSO succeed to be the best algorithms for 18 and

27 functions respectively obtaining SRs of 60% and 90%. For

unimodal functions, the algorithms succeed for 4 and 8

functions respectively while for multimodal functions they

succeed for 14 and 19 functions. Table 3 provides sufficient

evidence to establish that MJSO outperforms JSO for

unimodal as well as multimodal functions. Although for

majority of functions, both algorithms are successful to find

optimum and hence their difference is not visible in Table 3.

To visualize convergence speeds, convergence graphs are

plotted for all such functions 𝑓1, 𝑓3, 𝑓4, 𝑓10, 𝑓11, 𝑓12, 𝑓15, 𝑓18,

𝑓19 , 𝑓20 , 𝑓21 , 𝑓22 , 𝑓23 , 𝑓24 and 𝑓25 in Figure 5. The figure

manifests that MJSO provides faster convergence for most of

the functions that could not be differentiated in Table 3.

6. 10-BAR TRUSS DESIGN OPTIMIZATION FOR

CONTINUOUS DESIGN VARIABLES

Truss structures [17] are a rich class of optimization

problems to act as benchmarks for algorithms. Literature has a

good number of algorithms implemented to solve problems

from the set. The 10-bar truss optimization problem has been

optimized by Genetic Algorithm [17], Particle Swarm

Optimization [18, 19], Harmony Search [20, 21], Artificial

Bee Colony [22] and Teaching Learning based Optimization

[23]. A truss is a combination of bars connected at a few joints

and is designed to handle certain limits of deflection and stress.

Weight of a bar in the truss is a function of its cross section

area. After fixing the geometry of the truss, cross section areas

of bars become the variables for the optimization problem.

Objective of the optimization is to minimize total weight of all

the bars put together while stress and deflection limits act as

the constraints. Eq. (10) expresses the objective function.

580

Table 3. Best, mean and standard deviation values of benchmark test functions for JSO and MJSO

Function symbol Function name
 JSO MJSO

Dimension Best Mean Std Best Mean Std

𝑓1 Stepint 5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

𝑓2 Quartic 30 4.68E-05 3.33E-04 1.67E-04 8.99E-05 3.51E-04 1.78E-04

𝑓3 Beale 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

𝑓4 Easom 2 -1.00E+00 -1.00E+00 0.00E+00 -1.00E+00 -1.00E+00 0.00E+00

𝑓5 Colville 4 1.88E-11 1.34E-06 2.26E-06 1.49E-15 2.19E-08 9.35E-08

𝑓6 Trid6 6 9.54E-20 2.52E-15 9.36E-15 4.36E-25 2.14E-19 9.07E-19

𝑓7 Powell 24 1.76E-26 7.50E-08 2.97E-07 2.67E-32 5.87E-10 1.90E-09

𝑓8 Rosenbrock 30 3.85E-04 1.19E-01 2.55E-01 1.44E-04 6.97E-03 1.24E-02

𝑓9 Dixon-Price 30 6.26E-03 4.51E-02 4.06E-02 1.66E-03 2.92E-02 3.72E-02

𝑓10 Foxholes 2 9.98E-01 9.98E-01 8.25E-17 9.98E-01 9.98E-01 4.12E-17

𝑓11 Branin 2 3.98E-01 3.98E-01 0.00E+00 3.98E-01 3.98E-01 0.00E+00

𝑓12 Booth 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

𝑓13 Rastrigin 30 1.13E-06 3.61E-02 1.90E-01 1.07E-07 1.22E-04 3.64E-04

𝑓14 Schwefel 30 -1.16E+04 -8.98E+03 1.44E+03 -1.21E+04 -1.06E+04 1.06E+03

𝑓15 Michalewicz2 2 -1.80E+00 -1.80E+00 9.03E-16 -1.80E+00 -1.80E+00 9.03E-16

𝑓16 Michalewicz5 5 -4.69E+00 -4.67E+00 1.93E-02 -4.69E+00 -4.65E+00 5.84E-02

𝑓17 Michalewicz 10 10 -9.62E+00 -9.50E+00 1.21E-01 -9.66E+00 -9.41E+00 1.83E-01

𝑓18 Shubert 2 -1.87E+02 -1.87E+02 3.68E-11 -1.87E+02 -1.87E+02 2.11E-14

𝑓19 GoldStein-Price 2 3.00E+00 3.00E+00 1.35E-15 3.00E+00 3.00E+00 1.49E-15

𝑓20 Kowalik 4 3.07E-04 3.07E-04 8.52E-09 3.07E-04 3.07E-04 2.48E-17

𝑓21 Shekel5 4 -1.02E+01 -1.02E+01 1.78E-11 -1.02E+01 -1.02E+01 5.96E-15

𝑓22 Shekel7 4 -1.04E+01 -1.04E+01 4.66E-16 -1.04E+01 -1.04E+01 6.60E-16

𝑓23 Shekel10 4 -1.05E+01 -1.05E+01 1.55E-15 -1.05E+01 -1.05E+01 9.90E-16

𝑓24 Powersum 4 3.89E+00 3.89E+00 2.81E-15 3.89E+00 3.89E+00 1.91E-15

𝑓25 Hartman6 6 -3.32E+00 -3.32E+00 1.46E-11 -3.32E+00 -3.32E+00 8.08E-16

𝑓26 Penalized 30 1.45E-11 3.81E-10 6.44E-10 6.35E-12 2.40E-10 4.67E-10

𝑓27 Penalized2 30 6.80E-11 8.13E-09 1.05E-08 2.74E-11 7.12E-09 2.36E-08

𝑓28 Fletcher Powell2 2 0.00E+00 1.97E-17 7.59E-17 0.00E+00 5.38E-26 2.37E-25

𝑓29 Fletcher Powell5 5 2.09E-13 2.39E+01 1.24E+02 1.54E-18 5.95E+00 1.82E+01

𝑓30 FletcherPowell10 10 1.82E-10 4.04E+01 1.30E+02 5.14E-17 1.41E+01 5.09E+01

SR 60% 90%

(𝑎) 𝑓1 (𝑏)𝑓3 (𝑐)𝑓4

(𝑑)𝑓10 (𝑒)𝑓11 (𝑓)𝑓12

(𝑔)𝑓15 (ℎ)𝑓18 (𝑖)𝑓19

581

(𝑗)𝑓20 (𝑘)𝑓21 (𝑙)𝑓22

(𝑚)𝑓23 (𝑛)𝑓24 (𝑜)𝑓25

Figure 5. (a)-(o) Comparison of convergence speeds of JSO and MJSO for selected functions

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊 = ∑ 𝑐𝑏𝑙𝑏𝑑𝑏

𝑛

𝑏=1

 (10)

Subject to:

𝜎𝐿𝐿 ≤ 𝜎𝑏 ≤ 𝜎𝐻𝐻 (10.1)

𝛿𝐿𝐿 ≤ 𝛿𝑗 ≤ 𝛿𝐻𝐻 (10.2)

𝑐𝐿𝐿 ≤ 𝑐𝑏 ≤ 𝑐𝐻𝐻 (10.3)

where, b denotes the bar identifier and b = 1 to n. Cross section

area, length and density of the material of bar b are denoted by

𝑐𝑏 , 𝑙𝑏 , and 𝑑𝑏 respectively. Stress of bar b and deflection at a

joint j are denoted by 𝜎𝑏 and 𝛿𝑗 while 𝜎𝐿𝐿 and 𝜎𝐻𝐻 represent

lower and upper limits of the allowed ranges of all the three

constraints in Eqns. (10.1)-(10.3).

Stress penalty for a bar b is computed by Eq. (11).

𝜑𝜎
𝑏 = {

0 𝑖𝑓 𝜎𝐿𝐿 ≤ 𝜎𝑏 ≤ 𝜎𝐻𝐻

|
(𝜎𝐻𝐻 − 𝜎𝐿𝐿) − 𝜎𝑏

(𝜎𝐻𝐻 − 𝜎𝐿𝐿)
| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11)

Cumulative stress penalty for a design 𝑑 is calculated by

Eq. (12).

𝜑𝜎
𝑑 = ∑ 𝜑𝜎

𝑏

𝑛

𝑏=1

 (12)

Deflection penalty in each direction 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 at a joint j is

calculated by Eq. (13).

𝜑𝛿(𝑥,𝑦,𝑧)
𝑗

=

{
0 𝑖𝑓 𝛿𝐿𝐿 ≤ 𝛿𝑗(𝑥,𝑦,𝑧) ≤ 𝛿𝐻𝐻

|
(𝛿𝐻𝐻−𝛿𝐿𝐿)−𝛿𝑗(𝑥,𝑦,𝑧)

(𝛿𝐻𝐻−𝛿𝐿𝐿)
| 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(13)

Cumulative deflection penalty for a design 𝑑 of the

structure with 𝑚 joints is given by Eq. (14).

𝜑𝛿
𝑑 = ∑ (𝜑𝜎𝑥

𝑚𝑚
𝑗=1 + 𝜑𝜎𝑦

𝑚 + 𝜑𝜎𝑧
𝑚) (14)

Cumulative penalty for a design 𝑑 is expressed as given in

Eq. (15).

𝑃𝑑 = (1 + 𝜑𝜎
𝑑 + 𝜑𝛿

𝑑)𝜀 (15)

where, 𝜀 is the penalty exponent. The penalized objective

function for minimum weight for a design d now becomes as

expressed in Eq. (16).

𝐹𝑑 = 𝑊 × 𝑃𝑑 (16)

10-bar truss is a cantilever truss with 6 joints. Figure 6

shows geometry of a 10-bar truss structure. The figure shows

10 bars A-J each of length 360 inches. The cross section area

for each bar is between 0.1 in2 and 35 in2. The material density

(weight/volume) and elasticity are 0.1 lb/in3 and 107 psi

respectively. Maximum allowed stress violation for a bar is

±25 ksi and maximum allowed deflection at a joint is ±2 in.

Figure 6. Geometry of 10-bar truss structure

The experiments for 10-bar truss design optimization were

conducted for JSO and MJSO for 1000 generations and with

all other parameter settings of Table 2. Table 4 contains the

results. The table displays the best weight 𝑊𝑏𝑒𝑠𝑡 obtained and

582

the cross section areas of all the 10 bars for 𝑊𝑏𝑒𝑠𝑡 for JSO and

MJSO. It also contains average weight 𝑊𝑎𝑣𝑔 , standard

deviation of weights 𝑊𝑠𝑡𝑑 and the number of objective

function evaluation NFE. The table also inherits the results for

the same problem from the literature as reported in the

reference [23]. It can be observed that on the criterion of 𝑊𝑏𝑒𝑠𝑡

MJSO outperforms GA, HPSO, SAHS and TLBO. Average

weight is given for only three algorithms in the literature and

MJSO outperforms PSO.

A comparative convergence graph containing average

values of penalized weights for JSO and MJSO is shown in

Figure 7. It is evident from the figure that MJSO continuously

provides better values than JSO making it a variant that is

capable of providing better results at every stage of execution.

Figure 7. Convergence graph for penalized weight of 10-bar

truss design for JSO and MJSO

Table 4. Comparative results for 10-bar truss design optimization for JSO, MJSO and literature

Variable A B C D E F G

Cross section area

JSO 30.5030 0.1005 23.1995 15.1241 0.1000 0.5468 21.2243

MJSO 30.5821 0.1000 23.0505 15.1876 0.1000 0.5528 21.0851

GA [17] 28.920 0.100 24.070 13.960 0.100 0.560 21.950

PSO [18] 29.999 0.100 23.268 15.129 0.100 0.554 21.232

HS [20] 30.150 0.102 22.710 15.270 0.102 0.544 21.560

HPSO [19] 30.704 0.100 23.167 15.183 0.100 0.551 20.978

ABC [22] 30.548 0.100 23.180 15.218 0.100 0.551 21.058

SAHS [21] 30.394 0.100 23.098 15.491 0.100 0.529 21.189

TLBO [23] 30.6684 0.1000 23.1584 15.2226 0.1000 0.5421 21.0255

Variable H I J 𝑾𝒃𝒆𝒔𝒕 𝑾𝒂𝒗𝒈 𝑾𝒔𝒕𝒅 NFE(×103)

Cross section area

JSO 7.4820 0.1000 21.4063 5061.0814 5065.1659 7.0011 50

MJSO 7.4775 0.1000 21.5475 5060.9112 5064.9284 6.5316 50

GA [17] 7.690 0.100 22.090 5,076.31 - - 15

PSO [18] 7.454 0.100 21.670 5,059.85 5067.51 17.509 10.19

HS [20] 7.541 0.100 21.450 5,057.88 - - 20

HPSO [19] 7.460 0.100 21.508 5,060.92 - - 12.5

ABC [22] 7.463 0.100 21.501 5,060.88 - - 500

SAHS [21] 7.488 0.100 21.342 5,061.42 5061.95 0.71 7.081

TLBO [23] 7.4654 0.1000 21.4660 5,060.973 5064.808 6.3707 13.767

7. CONCLUSION AND FUTURE WORK

The experiments conducted for JSO and the proposed

MJSO are sufficient to establish that MJSO outperforms JSO

for unimodal, multimodal and truss design optimization.

Opposition based learning is a proven tool to improve the

efficiency of population based algorithms. Any bias towards

global best is expected to improve convergence for unimodal

functions but the proposed variant identifies passive swarm

motion that can be replaced for biased movements without

affecting the convergence for multimodal functions as well.

Furthermore, few directions for future work are suggested

below:

(1) To check and possibly improve the performance of JSO

on multi-objective problems.

(2) The proposed work tests biased moves in the passive

swarm motion step of JSO. Similar bias can be tested in active

swarm motion and the ocean current.

(3) JSO can be hybridized with other nature-inspired

algorithms to develop a hybrid variant that is more efficient.

(4) Novel real world optimization problems can be

identified and JSO can be modified to efficiently solve specific

problems.

REFERENCES

[1] Mirjalili, S., Mirjalili, S.M., Lewis, A. (2014). Grey wolf

optimizer. Advances in Engineering Software, 69: 46-61.

https://doi.org/10.1016/j.advengsoft.2013.12.007

[2] Mirjalili, S., Lewis, A. (2016). The whale optimization

algorithm. Advances in Engineering Software, 95: 51-67.

https://doi.org/10.1016/j.advengsoft.2016.01.008

[3] Kaveh, A., Eslamlou, A.D. (2020). Water strider

algorithm: A new metaheuristic and applications.

Structures, 25: 520-541.

https://doi.org/10.1016/j.istruc.2020.03.033

[4] Hayyolalam, V., Kazem, A.A.P. (2020). Black widow

optimization algorithm: A novel meta-heuristic approach

for solving engineering optimization problems.

Engineering Applications of Artificial Intelligence, 87:

103249. https://doi.org/10.1016/j.engappai.2019.103249

[5] Chou, J.S., Truong, D.N. (2021). A novel metaheuristic

optimizer inspired by behavior of jellyfish in ocean.

Applied Mathematics and Computation, 389: 125535.

https://doi.org/10.1016/j.amc.2020.125535

[6] Rahnamayan, S., Tizhoosh, H.R., Salama, M.M. (2008).

Opposition-based differential evolution. IEEE

Transactions on Evolutionary Computation, 12(1): 64-79.

https://doi.org/10.1109/TEVC.2007.894200

[7] Muthusamy, H., Ravindran, S., Yaacob, S., Polat, K.

(2021). An improved elephant herding optimization

using sine–cosine mechanism and opposition based

learning for global optimization problems. Expert

Systems with Applications, 172: 114607.

583

https://doi.org/10.1016/j.eswa.2021.114607

[8] Choudhary, P.K., Das, D.K. (2021). Optimal

coordination of over-current relay in a power distribution

network using opposition based learning fractional order

class topper optimization (OBL-FOCTO) algorithm.

Applied Soft Computing, 113A: 107916.

https://doi.org/10.1016/j.asoc.2021.107916

[9] Abedi, M., Gharehchopogh, F.S. (2020). An improved

opposition based learning firefly algorithm with

dragonfly algorithm for solving continuous optimization

problems. Intelligent Data Analysis, 24(2): 309-338.

https://doi.org/10.3233/IDA-194485

[10] Tubishat, M., Idris, N., Shuib, L., Abushariah, M.A.,

Mirjalili, S. (2020). Improved salp swarm algorithm

based on opposition based learning and novel local

search algorithm for feature selection. Expert Systems

with Applications, 145: 113122.

https://doi.org/10.1016/j.eswa.2019.113122

[11] Shekhawat, S., Saxena, A. (2020). Development and

applications of an intelligent crow search algorithm

based on opposition based learning. ISA Transactions, 99:

210-230. https://doi.org/10.1016/j.isatra.2019.09.004

[12] Sun, L., Chen, S., Xu, J., Tian, Y. (2019). Improved

monarch butterfly optimization algorithm based on

opposition-based learning and random local perturbation.

Complexity, 2019: 4182148.

https://doi.org/10.1155/2019/4182148

[13] Yu, Y., Zhu, A., Zhu, Z., Lin, Q., Yin, J., Ma, X. (2019).

Multifactorial differential evolution with opposition-

based learning for multi-tasking optimization. 2019

IEEE Congress on Evolutionary Computation (CEC),

Wellington, New Zealand, pp. 1898-1905.

https://doi.org/10.1109/CEC.2019.8790024

[14] Bao, X., Jia, H., Lang, C. (2019). Dragonfly algorithm

with opposition-based learning for multilevel

thresholding Color Image Segmentation. Symmetry,

11(5): 716. https://doi.org/10.3390/sym11050716

[15] Chen, Y., Chen, Z., Wu, L., Long, C., Lin, P., Cheng, S.

(2019). Parameter extraction of PV models using an

enhanced shuffled complex evolution algorithm

improved by opposition-based learning. Energy Procedia,

158: 991-997.

https://doi.org/10.1016/j.egypro.2019.01.242

[16] Ewees, A.A., Abd Elaziz, M., Houssein, E.H. (2018).

Improved grasshopper optimization algorithm using

opposition-based learning. Expert Systems with

Applications, 112: 156-172.

https://doi.org/10.1016/j.eswa.2018.06.023

[17] Camp, C., Pezeshk, S., Cao, G. (1998). Optimized design

of two-dimensional structures using a genetic algorithm.

Journal of Structural Engineering, 124(5): 551-559.

https://doi.org/10.1061/(ASCE)0733-

9445(1998)124:5(551)

[18] Schutte, J.F., Groenwold, A.A. (2003). Sizing design of

truss structures using particle swarms. Structural and

Multidisciplinary Optimization, 25(4): 261-269.

https://doi.org/10.1007/s00158-003-0316-5

[19] Li, L.J., Huang, Z.B., Liu, F. Wu, Q.H. (2007). A

heuristic particle swarm optimizer for optimization of pin

connected structures. Computers & Structures, 85(7-8):

340-349.

https://doi.org/10.1016/j.compstruc.2006.11.020

[20] Lee, K.S., Geem, Z.W. (2004). A new structural

optimization method based on the harmony search

algorithm. Computers & Structures, 82(9-10): 781-798.

https://doi.org/10.1016/j.compstruc.2004.01.002

[21] Degertekin, S.O. (2012). Improved harmony search

algorithms for sizing optimization of truss structures.

Computers & Structures, 92: 229-241.

https://doi.org/10.1016/j.compstruc.2011.10.022

[22] Sonmez, M. (2011). Artificial bee colony algorithm for

optimization of truss structures. Applied Soft Computing,

11(2): 2406-2418.

https://doi.org/10.1016/j.asoc.2010.09.003

[23] Camp, C.V., Farshchin, M. (2014). Design of space

trusses using modified teaching–learning based

optimization. Engineering Structures, 62: 87-97.

https://doi.org/10.1016/j.engstruct.2014.01.020

584

