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In this paper, high efficient Virtual Machine (VM) migration using GSO algorithm for cloud 

computing is proposed. This algorithm contains 3 phases: (i) VM selection, (ii) optimum 

number of VMs selection, (iii) VM placement. In VM selection phase, VMs to be migrated 

are selected based on their resource utilization and fault probability. In phase-2, optimum 

number of VMs to be migrated are determined based on the total power consumption. In 

VM placement phase, Glowworm Swarm Optimization (GSO) is used for finding the target 

VMs to place the migrated VMs. The fitness function is derived in terms of distance 

between the main server and the other server, VM capacity and memory size. Then the VMs 

with best fitness functions are selected as target VMs for placing the migrated VMs. The 

proposed algorithms are implemented in Cloudsim and performance results show that 

PEVM-GSO algorithm attains reduced power consumption and response delay with 

improved CPU utilization.  
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1. INTRODUCTION

A major advantage of cloud computing is the ability to pay 

as you go, which makes it a perfect fit for a wide range of 

utility computing needs. The fifth feature of the programme 

might be used to characterise it. Several well-known services 

are available on the cloud, some of which include both 

software and infrastructure. These things can be made 

available in a variety of ways. Public, private, commodity, and 

hybrid are the four basic cloud deployment options. 

Infrastructure and maintenance costs can be decreased by 

utilising cloud computing. Customers benefit from cloud 

computing's scalability, dependability, and mobility. The low-

level hardware and software infrastructure is often ignored by 

companies in favour of new product development and creating 

economic value. The move of all computer services to the 

cloud is being slowed down by numerous unresolved problems. 

The security, privacy, and energy efficiency concerns of many 

companies prevent them from moving their computing 

services to the cloud. One of the most contentious issues in 

today's society is energy conservation. There are superior 

economic incentives for data centre operators, in addition to 

increased environmental sustainability [1]. 

It's much easier to manage and use resources more 

efficiently when servers are virtualized in the datacenter. 

While this is true for physical systems, virtualized ones benefit 

from increased stability and availability. To run virtual 

machines (VMs) independently on the same physical 

computer, hardware resources are shared (VM). By moving 

virtual machines back and forth between a datacenter's 

physical servers, you can save money on datacenter energy 

costs. There is a feature in nearly all modern CPUs called 

dynamic voltage/frequency scaling (DVFS), which decreases 

CPU usage depending on workload. In standby mode, servers 

can consume up to 66% of their maximum energy capacity. 

Critical server software services and hardware components 

require a constant supply of electricity [2]. 

The two halves of a cloud computing system are linked via 

the Internet or Intranet. With cloud computing, the primary 

objective is to maximise the existing computing resources by 

utilising them to their fullest potential. It is vital to have 

algorithms for scheduling jobs if you want to optimise 

anything. In order to avoid this, users must plan their duties 

using an effective planning strategy. In order to spread the 

workload across as many processors as possible, scheduling 

techniques maximise each processor's performance while also 

minimising the overall execution time. To say that task 

scheduling is an NP-complete problem is an understatement. 

In order to perform tasks under problem-specific limits, 

scheduling arranges things in a logical order. Work scheduling 

in a cloud context has taken several years to create and solve 

utilising heuristic optimization techniques. Clonal Selection 

Algorithm makes advantage of the AI system's clonal selection 

mechanism as its core mechanism (CSA) [3]. 

1.1 Problem identification and objectives 

VM migration is the process of moving a VM from one 

physical server to another. In cloud computing, the data center 

places VM to satisfy the demands of users without 

compromising the service provided to the user. 

VM migration consists of two main steps: (1) VM migration 

from overloaded hosts to prevent service deprivation (2) VM 

migration from under loaded hosts to enhance the resource 

utilization and reduced energy consumption [4]. 

The main issues of VM migration are: 

(1) Selection of VMs for migration. Once the migration

choice has been made, you must select one or more VMs from 
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the pool of all the ones currently allocated to the server and 

move them to new servers. Finding which virtual machines 

should be moved to servers with the optimal system 

specifications is the problem [5].  

(2) Time and position for migration: Where new virtual 

machines should be installed on the server or where existing 

virtual machines should be transferred to other servers has an 

impact on the quality of VM consolidation and the energy 

consumption of the system Several migration techniques are 

available for migrating VM from one host to another. But they 

fail to consider the migration cost while determining the 

energy consumption during migration [6]. 

During VM migration, the main objectives are: 

 

• To determine the optimum number of VMs for 

migration such that the power consumption is 

reduced. 

• To adaptively determine the optimum locations to 

migrate the VMs. 

 

This paper proposes a high efficient VM migration using 

Glow worm Swarm Optimization (GSO) algorithm for Cloud 

Computing. 

 

 

2. RELATED WORKS 

 

Akhter et al. [1] have simulated existing energy efficient 

algorithms and come up with new findings. Their re-

evaluation suggested that we might use some other statistical 

methods for saving energy in cloud based data centers. Cloud 

users are becoming more aware about environmental issues. 

The energy consumption of data centers is growing rapidly and 

produced higher energy consumption in the economic sector, 

which is a major source for CO2 emissions. Many countries 

around the world are very concerned about energy policies in 

order to reduce greenhouse gas emissions. 

Alshayeji et al. [2] have presented an Energy Efficient 

Virtual Machine Migration (EVM) technique for dealing with 

critical issues that affect the datacenter's servers when 

migrating VMs. EVM-based Energy Based Server Selection 

would be used to select victims and targets (ESS). According 

to their comparing data, EVM outperforms other systems like 

Arbitrary Server Selection (ASS) and the First Fit Strategy in 

terms of reduced server state changes, VM migration, and 

oscillations (FFS). 

In response to this issue, Sayadnavard et al. [7] developed a 

DTMC model to anticipate future resource demand. A more 

precise classification of PMs can be achieved by combining 

the DTMC model with the PMs' reliability model. For the best 

VM-to-PM mapping, we present the e-MOABC algorithm, 

which efficiently balances total energy consumption, resource 

waste, and system dependability to meet SLA and QoS 

requirements. Based on the -dominance multi-objective 

approach, the algorithm for the artificial bee colony was 

developed. The CloudSim toolbox's performance was 

examined, and it turned out that this strategy worked well. 

PSO is a multi-objective method for the VMP problem that 

was developed by Elsedimy and colleagues [8]. VMPMOPSO 

uses the crowding entropy method to optimise the VMP and 

broaden the range of possible solutions while simultaneously 

accelerating convergence time. As well as two other multi-

objective algorithms, including ant colony and genetic, it was 

also compared against a single-objective algorithm known as 

First Fit Decreasing (FFD) (FFD). Two simulation studies 

were conducted to determine the efficacy of the proposed 

VMPMOPSO. 

There are two CPU utilisation thresholds in Double 

Threshold Migration (DTM), one at the top and one at the 

bottom. DTM was invented by Dad and colleagues [9]. It's 

possible to pick and select which VMs get migrated with them. 

Physical machines that are not in use can be turned off as part 

of the VM live migration to reduce server use (PMs). The VM 

placement problem is addressed with a modified version of the 

Best Fit Decreasing (MBFD) method. 

Researchers like Thiam et al. [10] have studied the problem 

of reducing data centre power consumption without affecting 

quality of service. It is necessary to use the CloudSim cloud 

simulator in order to create a cloud-based environment. It 

provides an interface for working with both physical and 

virtual machines. This was done to see which VM placement 

and migration strategy worked best for them, and then they 

compared their results. 

In order to reduce cloud data centre energy consumption, 

reduce service-level agreement violations with a minimum 

number of migrated virtual machines, and improve resource 

utilisation, Jayamala et al. [11] proposed decentralised 

enhanced virtual machine migration (EDVMM) based on a 

linear prediction model [12] VM selection is simplified thanks 

to a more decentralised method, and the VMs that will run on 

a host may be predicted via prediction. This EDVM technique 

utilises virtualization and virtual migration to shift virtual 

machines from overcrowded and underloaded hosts to 

physical machines (PMs). 

Gu et al. [12] have considered multi-sleep modes base 

scheduling. Given the arrival of incoming requests, their goal 

is to minimize the energy consumption of a cloud data center 

by the scheduling of servers with multi-sleep modes. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1 Overview 

 

This technique consists of the following 3 phases: 

Phase-1: The VMs to be migrated are selected based on 

their resource utilization and Fault probability (FP) (ie) the 

VMs which are underutilized and over utilized are considered. 

Similarly, the VM with higher FoP are also considered for 

migration. 

Phase-2: In order to minimize the total power consumption 

involved in migration, we have to determine the optimum 

number of VMs based on the total power consumption. In 

other words, after selecting the VMs for migration, the total 

migration power (based on the distance from server and task 

size) is computed. The power consumption of the remaining 

VMs are also computed. Then the total power consumption is 

the sum of these two powers. If the total power consumption 

becomes greater than an upper threshold, then the number of 

VMs from the selected VM are reduced until it again becomes 

less than the threshold.  

Phase-3: Glowworm Swarm Optimization (GSO) is used 

for finding the target VMs to place the migrated VMs. The 

fitness function is derived in terms of distance between the 

main server and the other server, VM capacity and memory 

size. Then the VMs with best fitness functions are selected as 

target VMs for placing the migrated VMs. 
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3.2 Fault probability (FP) 

 

Cloud computing environment may suffer from internal and 

external faults [13]. The fault probability (FP) of task ti is 

modelled by an exponential distribution given as follows. 
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where, λ is the failure coefficient of cloud computing 

environment. 

T(ti,vmj) is the execution time of task ti at vmj. 

Then fault probability of vmj for m tasks is given by: 
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3.3 Total power consumption 

 

The execution power (EP) of a task Tjwith size TS can be 

determined as: 

 

EPj = TS(tj) * Pj (3) 

 

where, Pj is the power required for executing a task in unit time. 

The execution power of a vmi running n tasks is given by: 
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The execution power of k VMs are given by: 
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The migration power of vmi is given by: 

 

MP(vmi) = d(Hs, Ht) * S(vmi) (6) 

 

where, d(Hs, Ht) is the distance between the source host (Hs) 

and target host (Ht). 

S(vmi) is the total task size of vmi. 

Total power consumption is given by the sum of migration 

power of vmi and the execution power of remaining k VMs. 

 

totPower = MP(vmi) + EPk (7) 

 

3.4 Selection of VMs for migration  

_______________________________________________ 

Algorithm: Optimum VM selection for Migration 

_______________________________________________ 

Let MigrationVMs = NULL 

For each vmi of host Hj 

Find FP(vmi) using Eq. (2) 

 If (sizeof(Hj) >upperThresholdhostXCPUTotal) OR 

If (sizeof(Hj) < lowerThresholdXhostCPUTotal) OR 

If (FP(vmi) > FPThreshold) 

  add vmi to MigrationVMs 

  RemainingVMs = TotalVMs –

MigrationVMs 

  k = RemainingVMs 

  Find totPower using Eq. (7) 

  If (totPower>= MaxPower) 

   remove vmifromMigrationVMs 

  Else 

                    Hj = Hj +1  

  End if 

 End if 

End for 

_______________________________________________ 

 

3.5 GSO algorithm for VM placement 

 

The migrated VMs are placed over the selected target VMs 

in another host. The target VMs are selected using GSO 

algorithm. 

Glow-worms employ luciferin, a brightness quantity, to 

communicate with each other and transmit information. The 

Krishnanand and Ghose [14] method does the same. GSO can 

avoid missing the perfect response by intelligently adjusting 

the decision radius. This is an excellent method for locating 

the global optimum of a function in a small area of vector 

space. 

 

3.5.1 Basic GSO operations 

An initial swarm of glowworms is released into the solution 

space in GSO, and it spreads out at random. A small amount 

of luciferin is found in each glowworm, indicating that the 

objective function in the search space has been solved. The 

amount of luciferin an agent possesses is associated with their 

present level of fitness. 

In this paradigm, you can only be lured to a nearby 

neighbour whose lumiferin activity is greater than your own. 

Because of this, the agent decides to stroll over to their next-

door neighbour and introduce himself. The decision radii and 

radii of a glow-worm’s neighbours are related to its local-

decision domain size. Local-decision domain increases to 

discover new neighbours when the density of neighbours is 

low; otherwise, it decreases to allow the horde to divide into 

smaller groups to allow for more efficient communication. 

Iterating on the algorithm until it reaches the algorithm's 

termination condition [15]. 

 

(i) Luciferin-Update Phase.  

This phase depends on the fitness function and the earlier 

luciferin value. The updating equation is given as: 

 

))1(()()1()1( ++−=+ tFitnesstt xll iii
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(8) 

 

Here, 𝑙𝑖(𝑡) denotes the luciferin value of glowworm 𝑖 at time 

𝑡, 𝜌 is the luciferin decay constant, 𝛾 is the luciferin 

enhancement constant; 𝑥𝑖(𝑡 + 1) ∈��𝑀 is the location of 

glowworm 𝑖 at time 𝑡 + 1, and Fitness(𝑥𝑖(𝑡 + 1)) represents the 

value of the fitness at glowworm 𝑖’s location at time 𝑡 + 1. 

 

(ii) Neighborhood-Selection Phase. 

In this phase, the neighbours of the glow worm i which are 

having better brightness can be selected as: 
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where, dij(t) is the distance between the worms i and j at time 

t, and 𝑟𝑑
𝑖(𝑡) is the decision making radius of worm i at time t.
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(iii) Moving Probability-Computer Phase. 

A glowworm uses a probability rule to move towards other 

glowworms having higher luciferin level. The probability Pij(𝑡) 
of glowworm 𝑖 moving towards its neighbor 𝑗 can be stated as 

follows: 
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is the set of neighbors of glowworm 𝑖. 
 

(iv) Movement Phase. 

Let glowworm i chooses another worm 𝑗∈ (𝑡) for moving, 

with (𝑡). Then the movement of i is defined by: 
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where, (𝑡) denotes the location of 𝑖 at time 𝑡, 𝑠 is the step size, 

and ‖⋅‖ is the Euclidean norm operator. 

 

(v) Decision Radius Updating Phase. 

The decision making radius of i is updated as follows:  
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Here, 𝛽 is a constant, 𝑟𝑠 denotes the sensory radius of 𝑖, and 

𝑛𝑡 is a factor for controlling the neighbors.  

 

3.5.2 Determining fitness function 

The fitness function F for the GSO algorithm is derived in 

terms of memory size (Mem), CPU capacity (C), Available 

bandwidth (BW), Power consumption (P) and distance 

between the hosts (Dist) [16].  
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where, Cmax, BWmax, Memmax, Distmax and Pmax are maximum 

threshold values of C, BW, Mem, Dist and P. 𝜇1 and 𝜇2 are 

the weight values ranging from 0 to 1.  

 

3.5.3 GSO algorithm 

The fundamental GSO algorithm involves the below steps 

[15]: 

Step 1 (parameters’ definition). The main parameters which 

affect the performance of GSO algorithm are, 𝑠, 𝜌, 𝛽, �0, and 

�𝑠. 

Step 2: Set up the glow-worms from scratch. To begin, the 

luciferin and sensor range are distributed equally among the 

glow-worms, which are randomly deployed throughout the 

fitness function region. This time period is referred to as the 

phase. Furthermore, this is the first iteration of the project. 

Step 3: This is luciferin update phase. This means that as 

the glowworms move around in space, their positions vary, 

which means that as they do, the luciferin must also adjust its 

value. Each luciferin-updating glowworm follows the Eq. (8). 

Step 4: The fourth and last step is (movement phase). rs 

denotes a radial sensor range, and brighter glowworms are 

more attractive to each glowworm because they have a larger 

local-decision domain. Glowworms use a probabilistic 

technique to find a neighbour with a greater luciferin value and 

move to that one. When a glowworm I moves toward a 

neighbour, the probability equation is given in Eq. (10) Then, 

the glowworm movement equation is given in Eq. (11). 

Step 5: The final stage is to: (local-decision domain update). 

The GSO algorithm's local-decision domain changes based on 

the number of gathered peaks. Glowworm local-decision 

domain ranges are adaptively updated according to Eq. (12). 

 

Pseudocode of GSO algorithm 

 

Set number of dimensions 𝑚 

Set number of glowworms 𝑛 

Let (𝑡) be the location of glowworm 𝑖 at time 𝑡 

Generate initial population of glowworms (𝑖 = 1, 2, . . . ,𝑛) 

randomly 

for 𝑖 = 1 to 𝑛 do ℓ𝑖(0) = ℓ 

0(0) = 𝑟0; 

set maximum iteration number = iter max 

set 𝑡 = 1 

While (𝑡< iter max) do 

{ 

(𝑡) = 3 − (3 − 0.001) ∗ (𝑡/iter max)1 

for each glowworm 𝑖 do 

ℓ(𝑡 + 1) = (1 − 𝜌)ℓ𝑖(𝑡) + 𝛾𝐽𝑖(𝑡 + 1); 

for each glowworm 𝑖 do 

{ 
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for each glowworm 𝑗∈𝑁𝑖(𝑡) do 
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𝑗 = select glowworm (𝑝⃗ ) 
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for 𝑘 = 1 to 𝑚 do 

𝑥𝑖max,←𝑥𝑖max,𝑘+ 𝛼(rand − 0.5); 

end 

} 

𝑡 ← 𝑡 + 1; 

} 

 

 

4. EXPERIMENTAL RESULTS  

 

The proposed PEVM-GSO technique is implemented in 

Cloudsim and compared with the MOABC and VMPMOPSO 

techniques. The NASA workload [7] has been used as the 

emulator of Web users requests to the Access Point (AP). This 

594



 

workload represents realistic load deviations over a period 

time. It comprises 100960 user requests sent to the Web 

servers during a day. Table 1 displays experimental parameters.  

 

Table 1. Shows the experimental parameters assigned in this 

work 

 
Parameter Value 

Work load NASA traces 

Resource Utilization 

Thresholds 
𝑈𝑙𝑜𝑤−𝑡ℎ𝑟 = 20%𝑎𝑛𝑑𝑈ℎ𝑖𝑔ℎ_𝑡ℎ𝑟

= 80% 

Response Time 

Thresholds 

�𝑇𝑙𝑜𝑤−𝑡ℎ𝑟

= 200𝑚𝑠𝑎𝑛𝑑�𝑇ℎ𝑖𝑔ℎ_𝑡ℎ𝑟

= 1000𝑚𝑠 

Scaling Intervals ∆𝑡 = 10𝑚𝑖𝑛 

Desired Response Time DRT = 1000ms=1s 

Fault rate 1 to 2 

Configuration of VMs Medium and Large 

Maximum On-demand 

VM Limitation 
MaxVM=10VM 

Task and Resources 

Scheduling Policy 
Time-Shared 

 

4.1 Results 

 

In this experiment, we vary the CPU Threshold Values as 

0.25, 0.40, 0.55, 0.70, 0.85 and 1.0 that are mentioned in Table 

2. 

 

Table 2. Power consumption values for CPU threshold 

 
CPU Threshold PEVM-GSO MOABC VMPMOPSO 

0.25 0.71 0.82 0.93 

0.40 0.67 0.8 0.92 

0.55 0.65 0.77 0.88 

0.70 0.62 0.76 0.85 

0.85 0.61 0.72 0.82 

1.00 0.55 0.68 0.79 

 

 
 

Figure 1. Power consumption for CPU threshold 

 

Figure 1 shows the Power consumption for PEVM-GSO 

and MOABC techniques when the CPU Threshold is varied [8, 

9]. As seen from the figure, the power consumption of PEVM-

GSO ranges from 0.71 to 0.55 and the energy consumption of 

MOABC ranges from 0.82 to 0.68. and the power 

consumption of VMPMOPSO ranges from 0.93 to 0.79. Hence 

PEVM-GSO is 16% better than MOABC technique and 27% 

better than VMPMOPSO technique. Table 3 shows migration 

values of corresponding threshold values. 

Figure 2 shows the VM Migrations for PEVM-GSO and 

MOABC techniques when the CPU Threshold is varied. As 

seen from the figure, the VM Migrations of PEVM-GSO 

ranges from 6400 to 1250 and the VM Migrations of MOABC 

ranges from 7345 to 2350 and the VM migration of 

VMPMOPSO ranges from 7985 to 2945. Hence PEVM-GSO 

is 28% better than MOABC technique and 38% better than 

VMPMOPSO technique. Table 4 shows CPU utilization at 

corresponding threshold values. 

 

Table 3. No of VM migration values for CPU threshold 

 
CPU Threshold PEVM-GSO MOABC VMPMOPSO 

0.25 6400 7345 7985 

0.40 4810 5781 6454 

0.55 3310 4210 5241 

0.70 2480 3630 4021 

0.85 1810 2875 3652 

1.00 1250 2350 2945 

 

 
 

Figure 2. Number of VM migrations for CPU threshold 

 

Table 4. CPU utilization values for CPU threshold 

 
CPU Threshold PEVM-GSO MOABC VMPMOPSO 

0.25 70.55 65.28 55.65 

0.40 71.33 67.73 61.48 

0.55 72.52 70.36 64.98 

0.70 73.11 71.66 68.65 

0.85 76.5 73.11 71.84 

1.00 78 75.25 73.76 

 

 
 

Figure 3. CPU utilization for CPU threshold 

 

Figure 3 shows the CPU Utilization for PEVM-GSO and 

MOABC techniques [17] when the CPU Threshold is varied. 

As seen from the figure, the CPU Utilization of PEVM-GSO 

ranges from 70.55 to 78 and the CPU Utilization of MOABC 

ranges from 65.28 to 75.25 and CPU utilization of 

VMPMOPSO ranges from 55.65 to 73.76. Hence PEVM-GSO 
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is 4% better than MOABC technique and 10% better than 

VMPMOPSO technique [18, 19]. Table 5 shows values of 

delay for corresponding threshold.  

Figure 4 shows the Response Delay for PEVM-GSO and 

MOABC techniques when the CPU Threshold is varied. As 

seen from the figure, the Response Delay of PEVM-GSO 

ranges from 1.25 to 4.92 and the Response Delay of MOABC 

ranges from 2.58 to 5.82 and the Response delay of 

VMPMOPSO ranges from 3.12 to 5.52. Hence PEVM-GSO is 

33% better than MOABC technique and 37% better than 

VMPMOPSO technique. 

 

Table 5. Response delay values for CPU threshold 

 
CPU Threshold PEVM-GSO MOABC VMPMOPSO 

0.25 1.25 2.58 3.12 

0.40 1.78 2.94 3.45 

0.55 2.25 3.65 4.12 

0.70 2.66 4.15 4.95 

0.85 4.34 5.25 5.01 

1.00 4.92 5.82 5.52 

 

 
 

Figure 4. Response Delay for CPU Threshold 

 

 

5. CONCLUSION 

 

In this paper, power efficient Virtual Machine (VM) 

migration using GSO algorithm for cloud computing is 

proposed. In VM selection phase, VMs to be migrated are 

selected based on their resource utilization and fault 

probability. In phase-2, optimum number of VMs to be 

migrated are determined based on the total power consumption. 

In VM placement phase, GSO is used for finding the target 

VMs to place the migrated VMs. The fitness function is 

derived in terms of distance between the main server and the 

other server, VM capacity and memory size. Then the VMs 

with best fitness functions are selected as target VMs for 

placing the migrated VMs. The proposed PEVM-GSO 

algorithm is implemented in Cloudsim and compared with 

MOABC algorithm. Performance results show that PEVM-

GSO algorithm attains reduced power consumption and 

response delay with improved CPU utilization, when 

compared to MOABC algorithm. 
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