
High Efficient Virtual Machine Migration Using Glow Worm Swarm Optimization Method

for Cloud Computing

Annabathula Phani Sheetal*, Kongara Ravindranath

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram

522502, A.P., India

Corresponding Author Email: uma.15phani@gmail.com

https://doi.org/10.18280/isi.260610 ABSTRACT

Received: 13 October 2021

Accepted: 23 December 2021

In this paper, high efficient Virtual Machine (VM) migration using GSO algorithm for cloud

computing is proposed. This algorithm contains 3 phases: (i) VM selection, (ii) optimum

number of VMs selection, (iii) VM placement. In VM selection phase, VMs to be migrated

are selected based on their resource utilization and fault probability. In phase-2, optimum

number of VMs to be migrated are determined based on the total power consumption. In

VM placement phase, Glowworm Swarm Optimization (GSO) is used for finding the target

VMs to place the migrated VMs. The fitness function is derived in terms of distance

between the main server and the other server, VM capacity and memory size. Then the VMs

with best fitness functions are selected as target VMs for placing the migrated VMs. The

proposed algorithms are implemented in Cloudsim and performance results show that

PEVM-GSO algorithm attains reduced power consumption and response delay with

improved CPU utilization.

Keywords:

cloud computing, VM migration, VM

placement, Glowworm Swarm Optimization

(GSO), power consumption, resource

utilization

1. INTRODUCTION

A major advantage of cloud computing is the ability to pay

as you go, which makes it a perfect fit for a wide range of

utility computing needs. The fifth feature of the programme

might be used to characterise it. Several well-known services

are available on the cloud, some of which include both

software and infrastructure. These things can be made

available in a variety of ways. Public, private, commodity, and

hybrid are the four basic cloud deployment options.

Infrastructure and maintenance costs can be decreased by

utilising cloud computing. Customers benefit from cloud

computing's scalability, dependability, and mobility. The low-

level hardware and software infrastructure is often ignored by

companies in favour of new product development and creating

economic value. The move of all computer services to the

cloud is being slowed down by numerous unresolved problems.

The security, privacy, and energy efficiency concerns of many

companies prevent them from moving their computing

services to the cloud. One of the most contentious issues in

today's society is energy conservation. There are superior

economic incentives for data centre operators, in addition to

increased environmental sustainability [1].

It's much easier to manage and use resources more

efficiently when servers are virtualized in the datacenter.

While this is true for physical systems, virtualized ones benefit

from increased stability and availability. To run virtual

machines (VMs) independently on the same physical

computer, hardware resources are shared (VM). By moving

virtual machines back and forth between a datacenter's

physical servers, you can save money on datacenter energy

costs. There is a feature in nearly all modern CPUs called

dynamic voltage/frequency scaling (DVFS), which decreases

CPU usage depending on workload. In standby mode, servers

can consume up to 66% of their maximum energy capacity.

Critical server software services and hardware components

require a constant supply of electricity [2].

The two halves of a cloud computing system are linked via

the Internet or Intranet. With cloud computing, the primary

objective is to maximise the existing computing resources by

utilising them to their fullest potential. It is vital to have

algorithms for scheduling jobs if you want to optimise

anything. In order to avoid this, users must plan their duties

using an effective planning strategy. In order to spread the

workload across as many processors as possible, scheduling

techniques maximise each processor's performance while also

minimising the overall execution time. To say that task

scheduling is an NP-complete problem is an understatement.

In order to perform tasks under problem-specific limits,

scheduling arranges things in a logical order. Work scheduling

in a cloud context has taken several years to create and solve

utilising heuristic optimization techniques. Clonal Selection

Algorithm makes advantage of the AI system's clonal selection

mechanism as its core mechanism (CSA) [3].

1.1 Problem identification and objectives

VM migration is the process of moving a VM from one

physical server to another. In cloud computing, the data center

places VM to satisfy the demands of users without

compromising the service provided to the user.

VM migration consists of two main steps: (1) VM migration

from overloaded hosts to prevent service deprivation (2) VM

migration from under loaded hosts to enhance the resource

utilization and reduced energy consumption [4].

The main issues of VM migration are:

(1) Selection of VMs for migration. Once the migration

choice has been made, you must select one or more VMs from

Ingénierie des Systèmes d’Information
Vol. 26, No. 6, December, 2021, pp. 591-597

Journal homepage: http://iieta.org/journals/isi

591

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260610&domain=pdf

the pool of all the ones currently allocated to the server and

move them to new servers. Finding which virtual machines

should be moved to servers with the optimal system

specifications is the problem [5].

(2) Time and position for migration: Where new virtual

machines should be installed on the server or where existing

virtual machines should be transferred to other servers has an

impact on the quality of VM consolidation and the energy

consumption of the system Several migration techniques are

available for migrating VM from one host to another. But they

fail to consider the migration cost while determining the

energy consumption during migration [6].

During VM migration, the main objectives are:

• To determine the optimum number of VMs for

migration such that the power consumption is

reduced.

• To adaptively determine the optimum locations to

migrate the VMs.

This paper proposes a high efficient VM migration using

Glow worm Swarm Optimization (GSO) algorithm for Cloud

Computing.

2. RELATED WORKS

Akhter et al. [1] have simulated existing energy efficient

algorithms and come up with new findings. Their re-

evaluation suggested that we might use some other statistical

methods for saving energy in cloud based data centers. Cloud

users are becoming more aware about environmental issues.

The energy consumption of data centers is growing rapidly and

produced higher energy consumption in the economic sector,

which is a major source for CO2 emissions. Many countries

around the world are very concerned about energy policies in

order to reduce greenhouse gas emissions.

Alshayeji et al. [2] have presented an Energy Efficient

Virtual Machine Migration (EVM) technique for dealing with

critical issues that affect the datacenter's servers when

migrating VMs. EVM-based Energy Based Server Selection

would be used to select victims and targets (ESS). According

to their comparing data, EVM outperforms other systems like

Arbitrary Server Selection (ASS) and the First Fit Strategy in

terms of reduced server state changes, VM migration, and

oscillations (FFS).

In response to this issue, Sayadnavard et al. [7] developed a

DTMC model to anticipate future resource demand. A more

precise classification of PMs can be achieved by combining

the DTMC model with the PMs' reliability model. For the best

VM-to-PM mapping, we present the e-MOABC algorithm,

which efficiently balances total energy consumption, resource

waste, and system dependability to meet SLA and QoS

requirements. Based on the -dominance multi-objective

approach, the algorithm for the artificial bee colony was

developed. The CloudSim toolbox's performance was

examined, and it turned out that this strategy worked well.

PSO is a multi-objective method for the VMP problem that

was developed by Elsedimy and colleagues [8]. VMPMOPSO

uses the crowding entropy method to optimise the VMP and

broaden the range of possible solutions while simultaneously

accelerating convergence time. As well as two other multi-

objective algorithms, including ant colony and genetic, it was

also compared against a single-objective algorithm known as

First Fit Decreasing (FFD) (FFD). Two simulation studies

were conducted to determine the efficacy of the proposed

VMPMOPSO.

There are two CPU utilisation thresholds in Double

Threshold Migration (DTM), one at the top and one at the

bottom. DTM was invented by Dad and colleagues [9]. It's

possible to pick and select which VMs get migrated with them.

Physical machines that are not in use can be turned off as part

of the VM live migration to reduce server use (PMs). The VM

placement problem is addressed with a modified version of the

Best Fit Decreasing (MBFD) method.

Researchers like Thiam et al. [10] have studied the problem

of reducing data centre power consumption without affecting

quality of service. It is necessary to use the CloudSim cloud

simulator in order to create a cloud-based environment. It

provides an interface for working with both physical and

virtual machines. This was done to see which VM placement

and migration strategy worked best for them, and then they

compared their results.

In order to reduce cloud data centre energy consumption,

reduce service-level agreement violations with a minimum

number of migrated virtual machines, and improve resource

utilisation, Jayamala et al. [11] proposed decentralised

enhanced virtual machine migration (EDVMM) based on a

linear prediction model [12] VM selection is simplified thanks

to a more decentralised method, and the VMs that will run on

a host may be predicted via prediction. This EDVM technique

utilises virtualization and virtual migration to shift virtual

machines from overcrowded and underloaded hosts to

physical machines (PMs).

Gu et al. [12] have considered multi-sleep modes base

scheduling. Given the arrival of incoming requests, their goal

is to minimize the energy consumption of a cloud data center

by the scheduling of servers with multi-sleep modes.

3. PROPOSED METHODOLOGY

3.1 Overview

This technique consists of the following 3 phases:

Phase-1: The VMs to be migrated are selected based on

their resource utilization and Fault probability (FP) (ie) the

VMs which are underutilized and over utilized are considered.

Similarly, the VM with higher FoP are also considered for

migration.

Phase-2: In order to minimize the total power consumption

involved in migration, we have to determine the optimum

number of VMs based on the total power consumption. In

other words, after selecting the VMs for migration, the total

migration power (based on the distance from server and task

size) is computed. The power consumption of the remaining

VMs are also computed. Then the total power consumption is

the sum of these two powers. If the total power consumption

becomes greater than an upper threshold, then the number of

VMs from the selected VM are reduced until it again becomes

less than the threshold.

Phase-3: Glowworm Swarm Optimization (GSO) is used

for finding the target VMs to place the migrated VMs. The

fitness function is derived in terms of distance between the

main server and the other server, VM capacity and memory

size. Then the VMs with best fitness functions are selected as

target VMs for placing the migrated VMs.

592

3.2 Fault probability (FP)

Cloud computing environment may suffer from internal and

external faults [13]. The fault probability (FP) of task ti is

modelled by an exponential distribution given as follows.

).(

1)(
T

etFP i

−

−=

(1)

where, λ is the failure coefficient of cloud computing

environment.

T(ti,vmj) is the execution time of task ti at vmj.

Then fault probability of vmj for m tasks is given by:

FP(vmj) =


=

m

i

itFP
1

)(

(2)

3.3 Total power consumption

The execution power (EP) of a task Tjwith size TS can be

determined as:

EPj = TS(tj) * Pj (3)

where, Pj is the power required for executing a task in unit time.

The execution power of a vmi running n tasks is given by:

EP(vmi) =

=

n

j

jj PtTS
1

*)(

(4)

The execution power of k VMs are given by:

EPk =

=

k

i

ivmEP
1

)(

(5)

The migration power of vmi is given by:

MP(vmi) = d(Hs, Ht) * S(vmi) (6)

where, d(Hs, Ht) is the distance between the source host (Hs)

and target host (Ht).

S(vmi) is the total task size of vmi.

Total power consumption is given by the sum of migration

power of vmi and the execution power of remaining k VMs.

totPower = MP(vmi) + EPk (7)

3.4 Selection of VMs for migration

Algorithm: Optimum VM selection for Migration

Let MigrationVMs = NULL

For each vmi of host Hj

Find FP(vmi) using Eq. (2)

 If (sizeof(Hj) >upperThresholdhostXCPUTotal) OR

If (sizeof(Hj) < lowerThresholdXhostCPUTotal) OR

If (FP(vmi) > FPThreshold)

 add vmi to MigrationVMs

 RemainingVMs = TotalVMs –

MigrationVMs

 k = RemainingVMs

 Find totPower using Eq. (7)

 If (totPower>= MaxPower)

 remove vmifromMigrationVMs

 Else

 Hj = Hj +1

 End if

 End if

End for

3.5 GSO algorithm for VM placement

The migrated VMs are placed over the selected target VMs

in another host. The target VMs are selected using GSO

algorithm.

Glow-worms employ luciferin, a brightness quantity, to

communicate with each other and transmit information. The

Krishnanand and Ghose [14] method does the same. GSO can

avoid missing the perfect response by intelligently adjusting

the decision radius. This is an excellent method for locating

the global optimum of a function in a small area of vector

space.

3.5.1 Basic GSO operations

An initial swarm of glowworms is released into the solution

space in GSO, and it spreads out at random. A small amount

of luciferin is found in each glowworm, indicating that the

objective function in the search space has been solved. The

amount of luciferin an agent possesses is associated with their

present level of fitness.

In this paradigm, you can only be lured to a nearby

neighbour whose lumiferin activity is greater than your own.

Because of this, the agent decides to stroll over to their next-

door neighbour and introduce himself. The decision radii and

radii of a glow-worm’s neighbours are related to its local-

decision domain size. Local-decision domain increases to

discover new neighbours when the density of neighbours is

low; otherwise, it decreases to allow the horde to divide into

smaller groups to allow for more efficient communication.

Iterating on the algorithm until it reaches the algorithm's

termination condition [15].

(i) Luciferin-Update Phase.

This phase depends on the fitness function and the earlier

luciferin value. The updating equation is given as:

))1(()()1()1(++−=+ tFitnesstt xll iii


(8)

Here, 𝑙𝑖(𝑡) denotes the luciferin value of glowworm 𝑖 at time

𝑡, 𝜌 is the luciferin decay constant, 𝛾 is the luciferin

enhancement constant; 𝑥𝑖(𝑡 + 1) ∈��𝑀 is the location of

glowworm 𝑖 at time 𝑡 + 1, and Fitness(𝑥𝑖(𝑡 + 1)) represents the

value of the fitness at glowworm 𝑖’s location at time 𝑡 + 1.

(ii) Neighborhood-Selection Phase.

In this phase, the neighbours of the glow worm i which are

having better brightness can be selected as:

)}()();()(:{)(ttttjt llrdN ji

i

diji
= 

(9)

where, dij(t) is the distance between the worms i and j at time

t, and 𝑟𝑑
𝑖(𝑡) is the decision making radius of worm i at time t.

593

(iii) Moving Probability-Computer Phase.

A glowworm uses a probability rule to move towards other

glowworms having higher luciferin level. The probability Pij(𝑡)
of glowworm 𝑖 moving towards its neighbor 𝑗 can be stated as

follows:

 
−

−
=

)(
)()(

)()(
)(

tk ik

ij

ij

N
tt

tt
t

i
ll

ll
p

(10)

where

() , ()

{ : () (); () ()}

i i

i

dij i j

j t t

j t t t t

N N

d l lr

  

= 

is the set of neighbors of glowworm 𝑖.

(iv) Movement Phase.

Let glowworm i chooses another worm 𝑗∈ (𝑡) for moving,

with (𝑡). Then the movement of i is defined by:















−

−
+=+

||)()(||

)()(
)()1(

tt

tt
stt

xx
xx

xx
ij

ij

ii

(11)

where, (𝑡) denotes the location of 𝑖 at time 𝑡, 𝑠 is the step size,

and ‖⋅‖ is the Euclidean norm operator.

(v) Decision Radius Updating Phase.

The decision making radius of i is updated as follows:

(1) min{ ,max{0, ()

(| () |)}}

i i

d s d

t i

t t

t

r r r
n N

+ =

+ −
 (12)

Here, 𝛽 is a constant, 𝑟𝑠 denotes the sensory radius of 𝑖, and

𝑛𝑡 is a factor for controlling the neighbors.

3.5.2 Determining fitness function

The fitness function F for the GSO algorithm is derived in

terms of memory size (Mem), CPU capacity (C), Available

bandwidth (BW), Power consumption (P) and distance

between the hosts (Dist) [16].

=F
1

max max max

max max

2

.
C BW Mem

C BW Mem

Dist P

Dist P





 
+ + + 

 

 
+ + 

 

 (13)

where, Cmax, BWmax, Memmax, Distmax and Pmax are maximum

threshold values of C, BW, Mem, Dist and P. 𝜇1 and 𝜇2 are

the weight values ranging from 0 to 1.

3.5.3 GSO algorithm

The fundamental GSO algorithm involves the below steps

[15]:

Step 1 (parameters’ definition). The main parameters which

affect the performance of GSO algorithm are, 𝑠, 𝜌, 𝛽, �0, and

�𝑠.

Step 2: Set up the glow-worms from scratch. To begin, the

luciferin and sensor range are distributed equally among the

glow-worms, which are randomly deployed throughout the

fitness function region. This time period is referred to as the

phase. Furthermore, this is the first iteration of the project.

Step 3: This is luciferin update phase. This means that as

the glowworms move around in space, their positions vary,

which means that as they do, the luciferin must also adjust its

value. Each luciferin-updating glowworm follows the Eq. (8).

Step 4: The fourth and last step is (movement phase). rs

denotes a radial sensor range, and brighter glowworms are

more attractive to each glowworm because they have a larger

local-decision domain. Glowworms use a probabilistic

technique to find a neighbour with a greater luciferin value and

move to that one. When a glowworm I moves toward a

neighbour, the probability equation is given in Eq. (10) Then,

the glowworm movement equation is given in Eq. (11).

Step 5: The final stage is to: (local-decision domain update).

The GSO algorithm's local-decision domain changes based on

the number of gathered peaks. Glowworm local-decision

domain ranges are adaptively updated according to Eq. (12).

Pseudocode of GSO algorithm

Set number of dimensions 𝑚

Set number of glowworms 𝑛

Let (𝑡) be the location of glowworm 𝑖 at time 𝑡

Generate initial population of glowworms (𝑖 = 1, 2, . . . ,𝑛)

randomly

for 𝑖 = 1 to 𝑛 do ℓ𝑖(0) = ℓ

0(0) = 𝑟0;

set maximum iteration number = iter max

set 𝑡 = 1

While (𝑡< iter max) do

{

(𝑡) = 3 − (3 − 0.001) ∗ (𝑡/iter max)1

for each glowworm 𝑖 do

ℓ(𝑡 + 1) = (1 − 𝜌)ℓ𝑖(𝑡) + 𝛾𝐽𝑖(𝑡 + 1);

for each glowworm 𝑖 do

{

)}()();()(:{)(ttttjt llrdN ji

i

diji
= 

for each glowworm 𝑗∈𝑁𝑖(𝑡) do

 
−

−
=

)(
)()(

)()(
)(

tk ik

ij

ij

N
tt

tt
t

i
ll

ll
p

𝑗 = select glowworm (𝑝⃗)















−

−
+=+

||)()(||

)()(
)()1(

tt

tt
stt

xx
xx

xx
ij

ij

ii

255)1(==+ RStr
i

d
for 𝑘 = 1 to 𝑚 do

𝑥𝑖max,←𝑥𝑖max,𝑘+ 𝛼(rand − 0.5);

end

}

𝑡 ← 𝑡 + 1;

}

4. EXPERIMENTAL RESULTS

The proposed PEVM-GSO technique is implemented in

Cloudsim and compared with the MOABC and VMPMOPSO

techniques. The NASA workload [7] has been used as the

emulator of Web users requests to the Access Point (AP). This

594

workload represents realistic load deviations over a period

time. It comprises 100960 user requests sent to the Web

servers during a day. Table 1 displays experimental parameters.

Table 1. Shows the experimental parameters assigned in this

work

Parameter Value

Work load NASA traces

Resource Utilization

Thresholds
𝑈𝑙𝑜𝑤−𝑡ℎ𝑟 = 20%𝑎𝑛𝑑𝑈ℎ𝑖𝑔ℎ_𝑡ℎ𝑟

= 80%

Response Time

Thresholds

�𝑇𝑙𝑜𝑤−𝑡ℎ𝑟

= 200𝑚𝑠𝑎𝑛𝑑�𝑇ℎ𝑖𝑔ℎ_𝑡ℎ𝑟

= 1000𝑚𝑠

Scaling Intervals ∆𝑡 = 10𝑚𝑖𝑛

Desired Response Time DRT = 1000ms=1s

Fault rate 1 to 2

Configuration of VMs Medium and Large

Maximum On-demand

VM Limitation
MaxVM=10VM

Task and Resources

Scheduling Policy
Time-Shared

4.1 Results

In this experiment, we vary the CPU Threshold Values as

0.25, 0.40, 0.55, 0.70, 0.85 and 1.0 that are mentioned in Table

2.

Table 2. Power consumption values for CPU threshold

CPU Threshold PEVM-GSO MOABC VMPMOPSO

0.25 0.71 0.82 0.93

0.40 0.67 0.8 0.92

0.55 0.65 0.77 0.88

0.70 0.62 0.76 0.85

0.85 0.61 0.72 0.82

1.00 0.55 0.68 0.79

Figure 1. Power consumption for CPU threshold

Figure 1 shows the Power consumption for PEVM-GSO

and MOABC techniques when the CPU Threshold is varied [8,

9]. As seen from the figure, the power consumption of PEVM-

GSO ranges from 0.71 to 0.55 and the energy consumption of

MOABC ranges from 0.82 to 0.68. and the power

consumption of VMPMOPSO ranges from 0.93 to 0.79. Hence

PEVM-GSO is 16% better than MOABC technique and 27%

better than VMPMOPSO technique. Table 3 shows migration

values of corresponding threshold values.

Figure 2 shows the VM Migrations for PEVM-GSO and

MOABC techniques when the CPU Threshold is varied. As

seen from the figure, the VM Migrations of PEVM-GSO

ranges from 6400 to 1250 and the VM Migrations of MOABC

ranges from 7345 to 2350 and the VM migration of

VMPMOPSO ranges from 7985 to 2945. Hence PEVM-GSO

is 28% better than MOABC technique and 38% better than

VMPMOPSO technique. Table 4 shows CPU utilization at

corresponding threshold values.

Table 3. No of VM migration values for CPU threshold

CPU Threshold PEVM-GSO MOABC VMPMOPSO

0.25 6400 7345 7985

0.40 4810 5781 6454

0.55 3310 4210 5241

0.70 2480 3630 4021

0.85 1810 2875 3652

1.00 1250 2350 2945

Figure 2. Number of VM migrations for CPU threshold

Table 4. CPU utilization values for CPU threshold

CPU Threshold PEVM-GSO MOABC VMPMOPSO

0.25 70.55 65.28 55.65

0.40 71.33 67.73 61.48

0.55 72.52 70.36 64.98

0.70 73.11 71.66 68.65

0.85 76.5 73.11 71.84

1.00 78 75.25 73.76

Figure 3. CPU utilization for CPU threshold

Figure 3 shows the CPU Utilization for PEVM-GSO and

MOABC techniques [17] when the CPU Threshold is varied.

As seen from the figure, the CPU Utilization of PEVM-GSO

ranges from 70.55 to 78 and the CPU Utilization of MOABC

ranges from 65.28 to 75.25 and CPU utilization of

VMPMOPSO ranges from 55.65 to 73.76. Hence PEVM-GSO

595

is 4% better than MOABC technique and 10% better than

VMPMOPSO technique [18, 19]. Table 5 shows values of

delay for corresponding threshold.

Figure 4 shows the Response Delay for PEVM-GSO and

MOABC techniques when the CPU Threshold is varied. As

seen from the figure, the Response Delay of PEVM-GSO

ranges from 1.25 to 4.92 and the Response Delay of MOABC

ranges from 2.58 to 5.82 and the Response delay of

VMPMOPSO ranges from 3.12 to 5.52. Hence PEVM-GSO is

33% better than MOABC technique and 37% better than

VMPMOPSO technique.

Table 5. Response delay values for CPU threshold

CPU Threshold PEVM-GSO MOABC VMPMOPSO

0.25 1.25 2.58 3.12

0.40 1.78 2.94 3.45

0.55 2.25 3.65 4.12

0.70 2.66 4.15 4.95

0.85 4.34 5.25 5.01

1.00 4.92 5.82 5.52

Figure 4. Response Delay for CPU Threshold

5. CONCLUSION

In this paper, power efficient Virtual Machine (VM)

migration using GSO algorithm for cloud computing is

proposed. In VM selection phase, VMs to be migrated are

selected based on their resource utilization and fault

probability. In phase-2, optimum number of VMs to be

migrated are determined based on the total power consumption.

In VM placement phase, GSO is used for finding the target

VMs to place the migrated VMs. The fitness function is

derived in terms of distance between the main server and the

other server, VM capacity and memory size. Then the VMs

with best fitness functions are selected as target VMs for

placing the migrated VMs. The proposed PEVM-GSO

algorithm is implemented in Cloudsim and compared with

MOABC algorithm. Performance results show that PEVM-

GSO algorithm attains reduced power consumption and

response delay with improved CPU utilization, when

compared to MOABC algorithm.

REFERENCES

[1] Akhter, N., Othman, M., Naha, R.K. (2018). Evaluation

of Energy-efficient VM Consolidation for Cloud Based

Data Center-Revisited. arXiv preprint arXiv:1812.06255.

[2] AlShayeji, M.H., Samrajesh, M.D. (2017). Energy

efficient virtual machine migration algorithm. Journal of

Engineering Research, 19-42.

[3] Jena, R.K. (2017). Energy efficient task scheduling in

cloud environment. Energy Procedia, 141: 222-227.

https://doi.org/10.1016/j.egypro.2017.11.096

[4] Balaji, K., Kiran, P.S., Kumar, M.S. (2020). Resource

aware virtual machine placement in IaaS cloud using bio-

inspired firefly algorithm. Journal of Green Engineering,

10: 9315-9327.

[5] Li, Z., Yu, X., Yu, L., Guo, S., Chang, V. (2020). Energy-

efficient and quality-aware VM consolidation method.

Future Generation Computer Systems, 102: 789-809.

https://doi.org/10.1016/j.future.2019.08.004

[6] Khajeh-Hosseini, A. (2010). Cloud migration: a case

study of migrating an enterprise IT system to IaaS. 2010

IEEE 3rd International Conference on Cloud Computing,

pp. 1-5. https://doi.org/10.1109/CLOUD.2010.37

[7] Sayadnavard, M.H., Haghighat, A.T., Rahmani, A.M.

(2021). A multi-objective approach for energy-efficient

and reliable dynamic VM consolidation in cloud data

centers. Engineering Science and Technology, an

International Journal.

https://doi.org/10.1016/j.jestch.2021.04.014

[8] Elsedimy, E.I., Algarni, F. (2021). Toward enhancing the

energy efficiency and minimizing the SLA violations in

cloud data centers. Applied Computational Intelligence

and Soft Computing, pp. 1-14.

https://doi.org/10.1155/2021/8892734

[9] Dad, D., Yagoubi, D.E., Belalem, G. (2014). Energy

efficient VM live migration and allocation at cloud data

centers. International Journal of Cloud Applications and

Computing (IJCAC), 4(4): 55-63.

https://doi.org/10.4018/ijcac.201410010516

[10] Thiam, C., Thiam, F. (2019). An energy-efficient VM

migrations optimization in cloud data centers. In 2019

IEEE AFRICON, pp. 1-5.

https://doi.org/10.1109/AFRICON46755.2019.9133776

[11] Jayamala, R., Valarmathi, A. (2021). An enhanced

decentralized virtual machine migration approach for

energy-aware cloud data centers. Intelligent Automation

And Soft Computing, 27(2): 347-358.

https://doi.org/10.32604/iasc.2021.012401

[12] Gu, C., Li, Z., Huang, H., Jia, X. (2018). Energy efficient

scheduling of servers with multi-sleep modes for cloud

data center. IEEE Transactions on Cloud Computing,

8(3): 833-846.

https://doi.org/10.1109/TCC.2018.2834376

[13] Sheetal, A.P., Ravindranath, K. (2021). Cost effective

hybrid fault tolerant scheduling model for cloud

computing environment. International Journal of

Advanced Computer Science and Applications, pp. 416-

422. https://doi.org/10.14569/IJACSA.2021.0120646

[14] Krishnanand, K.N., Ghose, D. (2005). Detection of

multiple source locations using a glowworm metaphor

with applications to collective robotics. In Proceedings

2005 IEEE Swarm Intelligence Symposium, pp. 84-91.

https://doi.org/10.1109/SIS.2005.1501606

[15] Li, Z., Huang, X. (2016). Glowworm swarm

optimization and its application to blind signal separation.

Mathematical Problems in Engineering.

https://doi.org/10.1155/2016/5481602

[16] Fahmideh, M., Daneshgar, F.S., Rabhi, F. (2018). A

generic cloud migration process model. European

Journal of International Systems.

596

https://doi.org/10.1109/CLOUD.2010.37
https://doi.org/10.1155/2021/8892734
https://doi.org/10.4018/ijcac.2014100105
https://doi.org/10.1109/AFRICON46755.2019.9133776
https://doi.org/10.32604/iasc.2021.012401
https://doi.org/10.1109/TCC.2018.2834376
https://doi.org/10.14569/IJACSA.2021.0120646
https://doi.org/10.1109/SIS.2005.1501606
https://doi.org/10.1155/2016/5481602

https://doi.org/10.1080/0960085X.2018.1524417

[17] Li, Z., Yu, J., Hu, H., Chen, J., Hu, H., Ge, J., Chang, V.

(2018). Fault-tolerant scheduling for scientific workflow

with task replication method in cloud. In IoTBDS, pp.

95-104.

[18] He, L., Huang, S. (2016). Improved glowworm swarm

optimization algorithm for multilevel color image

thresholding problem. Mathematical Problems in

Engineering. https://doi.org/10.1155/2016/3196958

[19] Alshathri, S., Ghita, B., Clarke, N. (2018). Sharing with

live migration energy optimization scheduler for cloud

computing data centers. Future Internet, 10(9): 86.

https://doi.org/10.3390/fi10090086

597

https://doi.org/10.1080/0960085X.2018.1524417
https://doi.org/10.3390/fi10090086

