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The output of wind and the solar system is not constant; it is difficult to access the 

adequacy of the system. The Generation model is developed for 240 MW of different 

generation units in the Roy Billinton Test System (RBTS). Then a multi-state wind and 

solar generation model is developed based on different solar radiation and wind speed 

to evaluate the probability of the states. In this work, the wind and solar systems are 

studies for separate locations with each consist of 8 MW, 18 MW, 28 MW, and 38 MW 

generation capacities. This wind and solar generation model are applied to Roy 

Billinton Test System (RBTS) to evaluate the reliability indices like Loss of Load 

Expectation (LOLE). Based on the development of the MATLAB program for 

determining reliability indices, the capacity outage probability is developed for multiple 

solar and wind states. Based on standard load forecasting and the Time Series Load 

forecasting technique, the reliability of the system is analyzed. The results reveal the 

variation of risk indices in the system when additional generators are incorporated into 

the RBTS generation system. The cost optimization for Solar and Wind system were 

conducted using HOMER software to obtain the levelized cost of the proposed system.  
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1. INTRODUCTION

1.1 Motivation 

Green energies like solar and wind power generation give 

clean power generation to the environment. The output of 

renewable energies like Solar and Wind are not constant in 

nature due to changes in environmental conditions. Due to an 

outage in the renewable system, there will be a certain level of 

risk indices. The main motivation of this research is to analyze 

the risk indices of the renewable energy system incorporated 

with the RBTS test system and cost optimization. Solar 

radiation and wind speed are the main parameters for Forced 

outage Rate. By adding suitable generators, the system will 

meet the future load demand. 

1.2 Literature survey 

Gami et al. [1] investigated that the capacity value is used 

to calculate the utilization of the generator at a given time. 

Kumar et al. [2] have contributed to the work on Hybrid 

System Reliability Analysis, Reducing Peak Demand to Boost 

Reliability, Annual Reliability Efficiency, Systematic 

Approach to Reliability Studies, Power Management 

Algorithm, Demand Side Management, Markov Model 

Reliability Evaluation, Wind Energy Conversion System 

Uncertainty. For the above works, various methods of 

evaluation have been considered. These methods are condition 

monitoring system, column and limitation generation 

algorithm, analytical procedure, Markov modeling. Reliability 

enhanced by incorporating the solar and wind systems into the 

electrical power system was addressed in Refs. [3-7]. 

Peyghami et al. [8] has addressed the numerous problems in 

future power systems. Adequateness is the key concern that 

focuses on this study. The issue typically occurred due to a 

load demand mismatch in the system. The location of the 

power plant is also necessary to have an appropriate 

environmental effect on the production of electricity. A 

separate mechanism for evaluating the adequacy of the system 

has been developed. Douglas et al. [9] assessed the risk due to 

the load forecast uncertainty, during short-term generation 

planning studies. This forecast depends mainly on the variance. 

In generation system planning studies, the uncertainty of the 

load forecast is a crucial factor in the determination of the 

different reliability indices. As a result, Billinton and Huang 

[10] discussed the impact of the load forecast uncertainty on

the reliability assessment. El-Sheikhi and Billinton [11]

investigated the field of load forecast uncertainty,

incorporating the assessment of the adequacy of various

generator systems, such as Solar and Wind units. Singh et al.

[12] explores various forecasting strategies. Various

techniques include iterative reweighting of the least square

technique, regression technique, multiple regression

techniques, and exponential smoothing technique. To predict

future loads, the generation of system planners to model load

forecasting techniques. Allahnoori et al. [13] is examined that

the reliability studies, which may be carried out by considering

the load uncertainty. Because the load level has changed every

time it is important to predict the load. The authors in

references [14-16] addressed the reliability of renewable

systems such as solar and wind. This review helps to explain

the process of evaluating the system's reliability. Arabali et al.
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[17] is analyzed that the percentage change in load and it is an 

assessed the impact on the reliability of the solar / wind system. 

The load shifting method was carried out to reduce the 

mismatch between load demand and generation. There are 

several kinds of research carried out in conducting a multi-

state model for both Solar and Wind system [18, 19]. 

The several research practices for wind and the solar system 

are to reduce the cost of the system, to improve the reliability, 

Size Optimization, to reduce the losses, to improve efficiency, 

etc. [20-23]. These researches are currently active and the 

researchers are trying to improve the level of the existing 

system using several techniques. There will be a better result 

if the freely available natural resources like solar radiation and 

wind speed are utilized properly. These resources can’t be 

utilized properly when the solar panels are placed in such a 

way that the shading occurs due to building near the solar 

panels and when the wind farm is located where there is less 

average wind speed according to the last 20 years average 

wind speed. The solar can be utilized most probably every day 

due to daily solar radiation but wind can be effectively utilized 

when there is seasonal wind in Ref. [24]. Nowadays for solar 

panels, tree type model has been developed to save space in 

the environment [25]. So, by using this tree model it can fix 

different solar panels in small space. The reliability in the solar 

and wind system will be improved by appropriately utilizing 

the resource [26, 27]. The solar radiation and wind speed data 

was accessed and collected for evaluating forced outage rate 

[28]. Ali Kadhem et al. [29] highlights the contribution of 

integrating wind generators to the RBTS system. The 

reliability indices like Loss of Load Expectation are evaluated. 

The LOLE is 1.115 hrs/year when 53 numbers of 0.035 MW 

added to the RBTS system and LOLE is 0.987 hrs/year when 

106 numbers of 0.035MW added to the RBTS system. 

Sulaeman et al. [30] highlighted the reliability of the RBTS 

and the IEEE test system integrated Solar PV system. When 

30 MW solar PV added to RBTS system, then the Loss of Load 

Expectation (LOLE) is 0.69888 hrs/year. When 30 MW solar 

PV added to IEEE test system, then the Loss of Load 

Expectation (LOLE) is 8.5613 hrs/year. Lalitha et al. [31] 

discussed reliability indices Loss of Load Expectation (LOLE) 

for RBTS integrated Wind system. When a 30 MW wind farm 

added to the RBTS system, then the Loss of Load Expectation 

(LOLE) is 1.5627 hrs/year. Prasad et al. [32] discusses the 

adequacy assessment of the system. The LOLE for the system 

is 1.09845 hrs/year. Roy et al. [33] discusses the reliability 

assessment model for the wind system. The LOLE for varies 

from 0.2 hrs/year to 0.4 hrs/year when 30 MW and 90 MW 

wind power added to the RBTS system with peak load varied 

from 185 MW to 195 MW. Jiang et al. [34] highlights the 

reliability of the wind farm. The Loss of Load Expectation 

(LOLE) for RBTS integrated Wind system is 0.7895 hrs/year. 

The authors in references [35-38] analyzed the cost of 

Solar/Wind can be optimized based on the net cost of the 

system. The system can be modeled with different components 

to have an optimum value. 

 

1.3 Contributions proposed in the paper 

 

Since the wind and Solar system will not be available every 

time, the Forced Outage Rate (FOR) is an important factor to 

evaluate during system analysis. After knowing the FOR value 

of wind and the solar unit, the Capacity Outage Probability 

Table (COPT) has developed based on the proposed 

methodology of adequacy assessment. Then the 185 MW load 

duration Curve is drawn from the RBTS load data. Then the 

240 MW RBTS test system is added to 8 MW, 18 MW, 28 

MW, 38 MW solar/wind unit with different FOR values. Each 

unit consist of 2 MW then this is subdivided in to 0 MW, 0.25 

MW, 0.5 MW, 0.75 MW, 1 MW, 1.25 MW, 1.5 MW, 1.75 

MW, 2 MW as 9 states. Then the individual probability is 

evaluated for every case. The hourly load duration curve will 

start from 0 hrs to 8760 hrs. Then the reliability indices like 

Loss of Load Expectation (LOLE) of the system is calculated 

based on individual probability IPi and time Ti values. The 

cost optimization performed for Solar and Wind system. 

 

 

2. OBJECTIVE FUNCTION 

 

The objective function is: 

  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚  

= ∑ (𝐶𝑐𝑎,𝑎𝑛𝑛 + 𝐶𝑟𝑒,𝑎𝑛𝑛 + 𝐶𝑜𝑚,𝑎𝑛𝑛)
 

𝑛
  

 

where, n is different components in the system like Solar 

Photovoltaic panels, Wind turbine, converter and battery, 

Cca,ann is annual Capital cost, Cre,ann is Annual replacement cost, 

Com,ann is Annual Operation and Maintenance cost. 

Then the reliability of the system evaluated based on load 

forecasting technique. The amount of solar/wind power that 

can’t able to supply power to the load is known as Loss of 

Load Expectation. The Loss of Load Expectation can be 

calculated in Eq. (1). 

 

𝐿𝑂𝐿𝐸 = ∑ [𝐼𝑃𝑖 ∗ 𝑡𝑖] ∗ (365/100)
𝑛

𝑖=1
  (1) 

 

where, 

IPi- Individual Probability of ith unit. 

ti- Time in % for Load duration curve. 

 

 

3. PROPOSED METHODOLOGY FOR ADEQUACY 

ASSESSMENT 

 

The generation system is adequate to meet the future load 

demand referred to as adequacy assessment. The overall 

methodology for adequacy assessment of solar and wind 

incorporated Roy Billinton Test System (RBTS) is shown in 

Figure 1. The Capacity Outage Probability Table is important 

to understand the probability of different states. Based on the 

outages in each state, the Individual Probability (IPi) is 

evaluated. Renewable energies like solar and wind are 

considered in this study as 2 MW for 1 unit. This one unit is 

categorized into 9 states since the Solar and Wind is changing 

every time due to it depends on the environmental condition. 

The solar radiation and wind speed are not constant every time 

but it was intermediate. The wind turbine blades will be 

damaged when the speed of the wind increases to 25 m/s. 

During this time, the wind turbine is allowed to stop using 

some braking action. The hourly solar radiation is observed for 

a particular location to evaluate the output power of the solar 

system. The load is modeled based on standard load 

forecasting and time series load forecasting techniques. For 9 

years, the reliability indices are calculated. The load data is 

identified based on load modeling. Initially, the 185 MW Roy 

Billinton Test System (RBTS) load duration curve is drawn to 

determine the risk indices of the system [10]. According to the 

result of this load data, the reliability is evaluated based on the 
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generation system. Based on the Individual Probability (IPi) 

and the time correspond to a capacity outage, the reliability 

like Loss of Load Expectation is evaluated. The LOLE is 

represented in days/year. The generation model of RBTS 

generation system, solar and wind system is discussed in 

section 4. The solar/wind model is incorporated with the 

RBTS system to enhance the result of system reliability 

indices. In this study, a minimum of 8 MW is added to the 

RBTS system initially. Then an additional 10 MW is added up 

to 38 MW to satisfy the future load demand. The MATLAB 

program has been written to evaluate the Individual 

Probability (IPi) of each generation state in the Capacity 

Outage Probability Table. The Individual Probability (IPi) 

depends on the unavailability, availability of the generation 

system, and the number of units and number of units on forced 

outages. Mathematically, the Individual Probability (IPi) is 

shown in Eq. (2). 

 

𝐼𝑃𝑖 =
𝑁!

𝐹𝑂!(𝑁−𝐹𝑂)!
𝑊𝑓 . 𝑌𝑁−𝐹𝑂   (2) 

 

where, W = Unavailability, Y = Availability, FO = No of units 

on the forced outage, N = No of units. 

 

 
 

Figure 1. Methodology for adequacy assessment 

 

 

4. GENERATION & LOAD MODEL 

 

4.1 Generation model 

 

In this section, the Roy Billinton Test System generation 

model and solar/wind generation model were discussed. 

 

4.1.1 Roy Billinton Test System Generation model 

The Roy Billinton Test System (RBTS) consist of two 

5MW hydro generation units with FOR as 0.010 each, four 

20MW hydro generation units with each 0.015 FOR each, one 

20MW thermal generation units with 0.025 FOR, one 40MW 

hydro generation units with 0.020 FOR, two 40MW thermal 

generation unit with 0.030 FOR each, one 10MW thermal 

generation unit with FOR 0.020. There are a total of 11 

generation units available in the RBTS test system. Based on 

the unavailability ‘W’ of each generation unit, the Individual 

Probability ‘IPi’ is evaluated. Then the Capacity Outage 

Probability Table developed for the RBTS generation system 

based on the methodology of adequacy assessment. Each state 

consists of 5MW, so a total of 49 states are evaluated in the 

COPT table to evaluate the expected loss of load. The Roy 

Billinton Test system representing the generation units is 

shown in Figure 2. 

 

 
 

Figure 2. RBTS generation system 
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4.1.2 Mathematical modeling of solar and wind generation  

Solar radiation is an important parameter for evaluating 

solar output power. The Solar output power ‘PS’ is evaluated 

using the Eq. (3). 

 

Solar output power PS = ηS * SN * SA * SR  (3) 

 

where, SR= Average solar radiation, SA = Area of solar (m2), 

SN = Number of solar panels, ηS = Efficiency of the solar 

panel. The wind speed data is an important factor 

The Wind output power ‘PWT’ is evaluated using the Eq. (4). 

 

PWT={

0                                                         0 ≤ 𝑤 <  𝑤𝑠𝑐𝑖
𝑃𝑟 ∗ (𝐸 + 𝐹 ∗ 𝑣 + 𝐺 ∗ 𝑣 ∗ 𝑣)      𝑤𝑐𝑖 ≤ 𝑤 < 𝑤𝑟
𝑃𝑟                                                     𝑤𝑟 ≤ 𝑤 < 𝑤𝑐𝑜
0                                                                   𝑤 ≥ 𝑤𝑐𝑜

  (4) 

 

where, w = wind speed (m/s), wci - Cut in wind speed (m/s), 

wco = Cut out wind speed (m/s), wr = Rated wind speed (m/s), 

Pr = Rated output power (MW), E,F,G = calculated from a cut 

in, cut out and rated wind speed. 

Based on the output power of wind and solar PV systems, 

the Forced Outage Rate is calculated. The Forced outage Rate 

is 0.756 for solar and 0.749 for wind. 

 

4.2 Load modeling 

 

The Load is modeling based on standard load forecasting 

and time series load forecasting techniques. The procedure for 

this two-forecasting technique for assessing the adequacy is 

discussed in this section. 

 

4.2.1 Standard load forecasting 

In standard load forecasting, an increase in 5% load is 

assumed to be the future load demand. The 5% load is 

increased till 2028 from 2020. The load data is collected from 

the 185 MW RBTS test system for the year 2020 to evaluate 

the risk indices. The advantages in making Standard Load 

forecasting is to predict future load data reasonably and 

accurately. Normally the standard load growth for different 

location considered as 5%. Due to increasing in industries, 

residents, commercial loads in a year, the load growth will 

increase every year. For future years, the corresponding load 

growth obtained using standard and time-series load 

forecasting techniques. 

 

4.2.2 Procedure for time-series load forecasting technique 

The Time series load forecasting is the technique used for 

forecasting the load in advance in which the set of load data is 

recorded for specified interval of time. By using this technique, 

the future load determined for evaluating future reliability 

indices. The Procedure for Time-series load forecasting 

technique as follow: 

Step 1: Observe the load demand values at regular time. 

Step 2: Determine the Latest load forecasting using in Eq. 

(5). 

 

LFt= β(PLt-1- PFt-1)+ PFt-1 (5) 

 

where,  

PLt-1 = Past load demand, 

LFt = Latest forecast, 

PFt-1 = Past forecast, 

β- Constant (0 ≤ β ≤1). 

Step 3: The Error is defined as the difference between actual 

measurement and forecast for time ‘t’. 

Evaluate Error during measurement using Eq. (6). 

 

Error = Ωt- µt (6) 

 

Ωt-= Actual measurement for time period ‘t’. 

µt-= Forecast for same time period ‘t’. 

Step 4: The percentage error is the ratio of the difference 

between actual measurement ‘Ωt’ and forecast for the period 

‘t’ ‘µt’ and forecast for the period ‘t’. The Error in % is 

represented in Eq. (7). 

 

𝐸𝑟𝑟𝑜𝑟% =
Ω𝑡−µ𝑡

µ𝑡
  (7) 

 

Step 5: The Average error is the average difference between 

actual measurement ‘Ωt’ and forecast for the period‘t’ ‘µt’. 

The average error is evaluated in Eq. (8). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠
+ ∑ (Ω𝑡 − µ𝑡)𝑛

𝑡=0   (8) 

 

Step 6: The Average square error is the average square of 

the difference between the actual measurements ‘Ωt’ and 

forecast for the period ‘t’ ‘µt’. The Average square error is 

evaluated in Eq. (9). 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠
+

∑ (Ω𝑡 − µ𝑡)2𝑛
𝑡=0   

(9) 

 

Step 7: The Root average square error is the square root of 

average values in the square of the difference between the 

actual measurement ‘Ωt’ and forecast for the period ‘t’ ‘µt’. 

The Root Average square error is evaluated using (10). 

 

𝑅𝑜𝑜𝑡 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 =

√
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠
+ ∑ (Ω𝑡 − µ𝑡)2𝑛

𝑡=0   
(10) 

 

Step 8: The Mean absolute percentage error is the average 

of percentage error and it is given in Eq. (11). 

 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 % 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠
∑ 𝐸𝑟𝑟𝑜𝑟%𝑛

𝑡=0   
(11) 

 

Step 9: The Standard error deviation is the average square 

of the difference between the average error and error. It is 

represented in Eq. (12). 

 

Standard Error Deviation =

√
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠
+ ∑ (Average error − error)2𝑛

𝑡=0   
(12) 

 

 

5. RELATED WORK 

 

5.1 Error measurement analysis 

 

The error is measured during the process of time series load 

forecasting. The load can be predicted in advance for several 

years. The absolute error measurement, Root Average Square 

Error, Maximum negative error, Maximum positive error is 

discussed in this section. 
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5.1.1 Measurement of error (absolute) 

The error is measured during the processing of data. The 

value is measured and it is represented by ‘Xm’. The value 

which is already known was represented by ‘XK’. Then the 

difference between Xm and XK is known as Absolute error 

measurement. Based on the procedure of the time series load 

forecasting technique, the results are obtained as shown in 

Table 1. The maximum positive and negative error is 0.4 and 

-0.9. The mean absolute error is determined and it is 0.38. 

Between two variables when the result is not obtained between 

these two variables then in correlation measurement there is 

an error. The correlation obtained is in absolute error 

measurement is 0.999563. The coefficient of determination is 

forecasted from the independent variable. The coefficient of 

determination R2 = 99.8851%. Then the 99.8851% of the 

dependent variable variability is taken into account and 

0.1149% of the residual variability is now undercounted. 

 

Table 1. Measurement of error (absolute) 

 
Post Processed result Model fit 

Number of Observations 5 

Maximum negative error -0.9 

Maximum positive error 0.4 

Mean absolute error 0.38 

Root average square error 0.479583 

Residual sum -0.5 

The standard deviation of residuals 0.469042 

Coefficient of determination (R2) 0.998851 

Correlation 0.999563 

 

5.1.2 Measurement of error (range %) 

 

Table 2. Measurement of error (range %) 

 
Post Processed result Model fit 

Number of observations 5 

Maximum negative error -2.25% 

Maximum positive error 1% 

Normalized average absolute error 0.95% 

Normalized root average square error 1.19896% 

Residual sum -1.25% 

The standard deviation of residuals 1.1726% 

Coefficient of determination (R2) 0.998851 

Correlation 0.999563 

 

The measurement of error is an important factor for 

analyzing better results. In the load time series load forecasting, 

the load was predicted in advance. The load is forecasted based 

on the previous values. There are different parameters 

analyzed based on the time series forecasting procedure as 

shown in Table 2. The maximum positive and negative error 

is determined as 1% and -2.25%. Then the average absolute 

error is 0.95%. The disparity between the data and an 

approximation mode is calculated in the residual sum. The 

residual sum is estimated as -1.25%. Then the standard 

deviation of the residuals is evaluated as 1.1726%. The latest 

forecast is evaluated for 9 years based on the observed value 

using the time-series load forecasting technique. The number 

of times an observation occurs in a given load forecast data is 

referred as number of occurrences. Since residual value 

determined as 0.25 with 5 number of occurrences, it is 

considered as final value. The measurement during time- 

series load forecasting, the residual value is obtained as shown 

in Figure 3. 

 

 
 

Figure 3. Residual value in the measurement 

 

5.1.3 Measurement of error (target %) 

Based on the time series forecasting procedure, the error, 

different parameters are tabulated for measurement as shown 

in Table 3. There are five observations taken during load 

forecasting. The variables will be forecasted based on the 

observed value. There is an error in measurement due to the 

vast variation in the observed variables. The maximum 

positive and negative error during model fit is 0.196078% and 

-0.486486%. Then the root average square percentage error is 

0.25%. The Standard deviation of residuals is 0.243475%. 

 

Table 3. Measurement of error (target %) 

 
Post processed result Model fit 

Number of Observations 5 

Maximum negative error -0.486486% 

Maximum positive error 0.196078% 

Average absolute % error 0.191184% 

Root average square % error 0.25% 

Residual sum -0.0488998% 

The standard deviation of residuals 0.243475% 

Coefficient of determination (R2) 0.998851 

Correlation 0.999563 

 

5.1.4 Evaluation of the latest forecast 

The observed load demand for 5 years is taken as a variable 

to forecast the load. The minimum value of load demand is 

185 MW and the maximum value of load demand is 225 MW. 

Based on this, the median, mean value, and standard deviation 

are evaluated and shown in Table 4. 

 

Table 4. System load parameters 

 
Variable System load 

Numeric values 5 

Minimum value 185 MW 

Maximum value 225 MW 

Median 204 MW 

Mean value 204.5 

Standard deviation 14.1483 

 

There are different measurements P1 ≤ P ≤ Pn for different 

time intervals T1 ≤ T≤ Tn. The autocorrelation function is 

evaluated based on the lag‘f’ from the Eq. (13). Based on this 

Eq. (13). the autocorrelation curve is represented in Figure 4. 

 

𝑟 =
∑ (Pi−P)(Pi+1−P) 𝑛−𝑓

𝑖=1

∑  𝑛
𝑖=1 (Pi−P)2   (13) 

 

Let the time interval ‘T’ is assumed variable so that ‘T’ not 

evaluated in the above equation. 
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Figure 4. Autocorrelation in time series load forecasting 

method 

 

Table 5. Latest forecast result using Time series Load 

forecasting 

 
Year Actual Latest forecast Lower Upper Residuals 

2020 185 184.1 183.14 185.05 -0.9 

2021 194.3 194.25 193.29 195.20 
4.76916 

E-11 

2022 204 204.4 203.44 205.35 0.4 

2023 214.3 214.55 213.59 215.50 0.3 

2024 225 224.7 223.74 225.65 -0.3 

2025 - 234.85 233.89 235.80 - 

2026 - 245 244.04 245.95 - 

2027 - 255.15 254.19 256.10 - 

2028 - 265.3 264.34  266.25 - 

 

 
 

Figure 5. Confidence band reliability analyze of solar and 

wind 

 

The load demand for the first 5 years between 2020 and 

2024 is given as input data. The observed actual data for the 

first 5 years are 185, 194.3, 204, 214.3, and 225. These values 

are represented in MW. Based on the observed values, the 

latest forecast is determined using the time series forecasting 

technique. There is some deviation in the perdition result 

compared to the observed value. For each year’s latest forecast, 

the upper and lower limit is determined. The corresponding 

residuals for the observed value are highlighted in the result. 

These latest forecasts are determined using the time series 

forecasting technique to evaluate the reliability of the system. 

These predicted values help to determine the reliability of the 

future system. The results of the latest forecast using the time 

series forecast technique are shown in Table 5. There is better 

accuracy in the result which is highlighted as the confidence 

band shown in Figure 5. 

 

 

6. SYSTEM OPTIMIZATION MODEL FOR SOLAR 

AND WIND SYSTEM 

 

The average solar radiation and wind speed was 

downloaded from the NASA data available in HOMER 

software for the particular location. The HOMER software 

gives the optimal solution and gives the least net present cost 

of the system. The optimization of cost obtained based on the 

objective function.  

The Annualized cost is the total cost of the system, which 

includes capital cost, replacement cost and operating cost. This 

annualized cost can be calculated from Eq. (14). 

 

Cann=QC*[(Cca,ann+Cre,ann)*FCR (IR,YN)]+Com,ann  (14) 

 

The Capital Recovery factor FCR is represented in Eq. (15). 

 

FCR(IR,YN)=[IR(1+IR)Yn]/[(1+IR)Yn-1]  (15) 

 

where, IR is the annual interest rate in %, YN is the number of 

years. 

The Net present cost is the ratio of annualized total cost of 

the system to the Lifetime of the project as shown in Eq. (16). 

 

The Net present Cost (CNP)=
𝐶𝑇,𝑎𝑛𝑛

𝐹𝐶𝑅(𝐼𝑅,𝑃𝐿)
  (16) 

 

where, 𝐶𝑇,𝑎𝑛𝑛  is the annualized total cost of the system in 

$/year, 𝑇𝐿,,𝑎𝑛𝑛 is the total load served by the system annually. 

The annual interest rate is 41.2% and The Project lifetime 

was taken as 25 years for this study. The annualized total cost 

of the system is $ 1,60,352 and the total load consumption is 

7,19,188 kWh/year.  

 

 

7. RESULT AND DISCUSSION 

 

7.1 Reliability analysis of solar and wind 

 

The reliability of Solar and wind was analyzed by Standard 

and Time series load forecasting technique. 

 

7.1.1 Reliability of solar and wind with standard load 

forecasting technique 

The Loss of Load Expectation is one of the reliability 

indices considered in this study. The standard load forecasting 

technique is applied to evaluate the load demand in the future.  

The current RBTS generation system can’t meet the future 

load demand due to less generation capacity. So, to understand 

the losses of load that occur on the system, the reliability 

indices are evaluated based on the methodology of adequacy 

assessment. The RBTS generation not possible to meet the 

load after the 7th year due to the load demand is greater than 

the generation. The solar and wind units were incorporated 

into the RBTS test system and then the expected loss of load 

is determined. The Loss of Load Expectation decreases when 

adding additional solar and wind to RBT generation system. 

The reliability improved after adding the capacities of solar 

and wind to the RBTS system. In the 9th year, after adding 38 

MW wind and solar, the Loss of Load Expectation is 27.2427 

days/year and 27.75952 days/year. The Variation in LOLE 

indices with RBTS generation system is incorporated into the 
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wind and solar system using standard load forecasting as 

shown in Tables 6 and 7. The Variation of LOLE and load 

demand for RBTS is incorporated in the wind and solar system 

using standard load forecasting, it is graphically represented in 

Figures 6 and 7. 

 

7.1.2 Reliability of solar and wind with time series load 

forecasting technique 

The Time series load forecasting technique is applied to 

evaluate the load demand in the future. The load forecasting is 

done for 9 years based on the procedure of time series load 

forecasting. This technique is used to evaluate the risk indices 

in the system. When utilizing only the RBTS generation, then 

it is not possible to generate power after the 6th year. The 

various capacities of solar/wind are incorporated into the 

RBTS system to analyze the reliability indices like Loss of 

Load. 

Expectation. Loss of load expectation is gradually 

increasing every year. Due to additional capacities like Solar 

and Wind added to the system, the loss of load expectation 

decreases. The Variation in LOLE indices with RBTS 

generation system is incorporated into the wind and solar 

system using the time series load forecasting technique shown 

in Tables 8 and 9. The Variation of LOLE and load demand 

for RBTS is incorporated in the wind and solar system using 

the time series load forecasting technique is graphically 

represented in Figures 8 and 9. 

 

Table 6. Variation in LOLE indices with RBTS incorporated to wind system using standard load forecasting 

 

Installed capacity 

LOLE (days/year)- Load growth at 5% per year (Forecast peak load) 

1st 

Year 

2nd 

Year 

3rd 

Year 

4th 

Year 

5th 

Year 

6th 

Year 

7th 

Year 

8th 

Year 

9th 

Year 

185 

MW 

194.25 

MW 

204 

MW 

214.25 

MW 

225 

MW 

236.25 

MW 

248 

MW 

260.5 

MW 

273.5 

MW 

RBTS 240 MW 0.026222 0.079486 0.209181 0.613010 1.637236 3.959987 _ - - 

RBTS+ 

Wind with FOR= 0.749 

248 MW 0.021035 0.0595370 0.156349 0.448146 1.3626325 3.721862 8.086882 _ _ 

258 MW 0.015186 0.055428 0.120427 0.340281 1.039402 3.067690 7.037390 _ - 

268 MW 0.011287 0.041197 0.095041 0.257979 0.814372 2.417501 5.979675 13.14533 _ 

278 MW 0.008321 0.025612474 0.074967 0.204406 0.631164 1.930171 5.107580 11.12189 27.2427 

 

Table 7. Variation in LOLE indices with RBTS incorporated to solar system using standard load forecasting 

 

Installed capacity 

LOLE (days/year)- Load growth at 5% per year (Forecast peak load) 

1st 

Year 

2nd 

Year 

3rd 

Year 

4th 

Year 

5th 

Year 

6th 

Year 

7th 

Year 

8th 

Year 

9th 

Year 

185 

MW 

194.25 

MW 

204 

MW 

214.25 

MW 

225 

MW 

236.25 

MW 

248 

MW 

260.5 

MW 

273.5 

MW 

RBTS 240 MW 0.026222 0.079486 0.209181 0.613010 1.637236 3.959987 _ _ _ 

RBTS+ 

Solar with FOR= 0.756 

248 MW 0.021178 0.059882 0.157332 0.450795 1.370528 3.738114 8.113198 _ _ 

258 MW 0.015429 0.045430 0.121790 0.345676 1.052739 3.101338 7.089643 _ _ 

268 MW 0.011576 0.034192 0.096956 0.262966 0.831736 2.464235 6.060183 13.32111 _ 

278 MW 0.008576 0.026379 0.076888 0.209556 0.647267 1.976308 5.195023 11.32215 27.75952 

 

Table 8. Variation in LOLE indices with RBTS incorporated to wind system using time series load forecasting 

 

Installed capacity 

LOLE (days/year)-Time series load forecasting technique 

1st 

Year 

2nd 

Year 

3rd 

Year 

4th 

Year 

5th 

Year 

6th 

Year 

7th 

Year 

8th 

Year 

9th 

Year 

184.1 

MW 

194.25 

MW 

204.4 

MW 

214.55 

MW 

224.7 

MW 

234.85 

MW 

245 

MW 

255.15 

MW 

265.3 

MW 

RBTS 240 MW 0.02294 0.077336 0.206535 0.59092 1.61069 3.957268 _ _ _ 

RBTS+ 

Wind with FOR= 0.749 

248 MW 0.018604 0.059539 0.164852 0.46017 1.328163 3.32918 6.84083 _ _ 

258 MW 0.01299 0.055429 0.131342 0.354138 1.01409 2.665814 5.770971 11.023565 _ 

268 MW 0.009307 0.041198 0.109026 0.274199 0.792572 2.10532 4.951535 9.100932 17.215689 

278 MW 0.006734 0.025612 0.085242 0.216033 0.616445 1.683172 4.099724 7.872568 15.18512 

 

Table 9. Variation in LOLE indices with RBTS incorporated to solar system using time series load forecasting 

 

Installed capacity 

LOLE (days/year)- Time series load forecasting technique 

1st 

Year 

2nd 

Year 

3rd 

Year 

4th 

Year 

5th 

Year 

6th 

Year 

7th 

Year 

8th 

Year 

9th 

Year 

184.1 

MW 

194.25 

MW 

204.4 

MW 

214.55 

MW 

224.7 

MW 

234.85 

MW 

245 

MW 

255.15 

MW 

265.3 

MW 

RBTS 240 MW 0.023345 0.078285 0.207535 0.59199 1.619027 3.970817 _ _ _ 

RBTS+ 

Solar with FOR= 0.756 

248 MW 0.018652 0.059882 0.168926 0.463024 1.336243 3.343553 6.865008 _ _ 

258 MW 0.013099 0.045432 0.133802 0.35693 1.026625 2.699814 5.820498 11.358987 _ 

268 MW 0.009437 0.034193 0.109427 0.277017 0.809763 2.141816 5.017673 9.21352 16.912565 

278 MW 0.006778 0.026379 0.085242 0.218945 0.632096 1.725497 4.184411 7.991503 15.44692 
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Table 10. Net present cost for solar and wind system when multiplier=1 

 
Name of system components Capital cost ($) Operating cost ($) Replacement cost ($) Salvage  Total cost ($) 

Flat plate Solar PV 1,06,904 2,303 0 0 1,09,207 

Generic 3 kW Wind 2,42,667 1,56,854 0 0 3,99,521 

1 kWh Lead acid battery 6,20,400 2,67,341 8,00,199 -1,28,910 15,59,030 

Converter 1,693 2,919 718.47 -135.22 5,196 

Total 9,71,664 4,29,417 8,00,918 -1,29,045 20,72,954 

 

 

 

 
   

Figure 6. Variation of LOLE and load demand for RBTS 

incorporated Wind system using standard load forecasting 
 

Figure 7. Variation of LOLE and load demand for RBTS 

incorporated Solar system using standard load forecasting 

   

 

 

 
   

Figure 8. Variation of LOLE and load demand for RBTS 

incorporated Wind system using Time series load forecasting 
 

Figure 9. Variation of LOLE and load demand for RBTS 

incorporated Solar system using Time series load 

forecasting 

 

7.2 Cost optimization results with sensitivity analysis for 

solar and wind system 

 

The generation system considered is Solar and Wind system. 

The capacity of Solar PV system is 2494 kW and the capacity 

of Wind is 546 kW. The total cost i.e. net present cost was 

analyzed based on the system components used. The Solar and 

Wind system are operated with converter and battery 

components. To analyze the system, the residential load was 

considered as 1971.19 kWh/day with peak load of 139.94 kW. 

This residential load data is taken from HOMER software to 

understand the levelized cost and net present cost of the system. 

The capital cost, replacement cost, operating cost and salvage 

for Generic 3 kW Wind and Flat plate Solar PV with battery 

and converter was shown in Table 10. This table describes the 

net present cost for the system. The levelized cost of Solar and 

Wind are 0.00229 $/kWh and 0.0294 $/kWh.  

The multiplier for every component was set to 0.75 and 1. 

Table 11 shows when the multiplier set to 1. The total Net 

present cost is $ 20,72,954. If the multiplier set to 0.75, then 

the capital and operating cost reduced to 25%. During this case, 

there was variation in the net present cost and cost of energy.  

The Net present cost for this proposed optimization model 

was reduced from $ 27,60,000 to $ 20,72,954. The best 

solution from several iteration in HOMER software is 

highlighted in Table 11. The below result shows the best 

solution of net present cost and levelized cost of energy 

calculated from various iteration using HOMER software. 

Similarly, Levelized cost of Energy reduced from $ 0.296 to 

$ 0.223 when multiplier set to 1 and when multiplier set to 0.75 

then the levelized cost of Energy $ 0.167 and the net present 

cost is $ 15,50,000. The Table 11 shows the Sensitivity 

analysis with variation in Capital and operating cost of the 

system. 
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Table 11. Sensitivity analysis with variation in capital and 

operating cost 

 

System 

parameters 

Multiplier=1 Multiplier=1 Multiplier=0.75 

Base model 
Proposed 

model 

Proposed 

model 

Net Present 

cost 
$ 27,60,000 $ 20,72,954 $ 15,50,000 

Levelized 

cost of 

Energy (for 

kWh) 

$ 0.296 $ 0.223 $ 0.167 

 

 

8. CONCLUSION 

 

The reliability and cost are evaluated for the system consists 

of Solar and Wind. The adequacy is assessed in the system 

which is analyzed using standard load forecasting and time 

series load forecasting techniques. There were better reliability 

and cost of the system in the result of the methodology utilized. 

In the proposed methodology of adequacy assessment, the 

reliability indices like Loss of Load Expectation are evaluated. 

The results show that the RBTS generation system will satisfy 

the load demand only for 6 years. The solar/wind capacities of 

38 MW are embedded in the RBTS system to meet the load 

demand in the 9th year. So, in this 9th year, the LOLE for wind 

and solar using standard load forecasting technique is 27.2427 

days/year and 27.75952 and using time series load forecasting 

technique is 15.18512 days/year and 15.44692 days/year. The 

maximum negative and positive errors during measurement 

using the time series forecasting method are -0.486486% and 

0.196078%. The latest load forecast is evaluated using this 

method based on the observed load demand. The methodology 

developed will helps to analyze the reliability of the system for 

various cases. The cost optimization for Solar and Wind were 

conducted using HOMER software. The result shows that the 

Levelized cost is minimized from $ 0.296 to $ 0.223. The main 

innovation for conducting this research is the reliability 

evaluated using forecasting technique which can be used for 

generation planning and cost optimization gives the best 

solution with less cost for the system. 
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