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This article considered the traditional finite element method (FEM) and adaptive finite
element method (FEM) for the numerical solution of the one-dimensional boundary
value problems. We established the preference or the superiority of the h-adaptive FEM
to traditional FEM in high gradient problems in terms of accuracy and cost of
computation. Numerical examples which confirm the performance and adaptability of
the h-adaptive method over the traditional finite element method and the high accuracy
of the numerical solution are presented. Detailed error analysis of linear elements was

also discussed. In conclusion, h-adaptive FEM is recommended for complex systems
with high gradient problems.

1. INTRODUCTION

Most natural phenomena are characterized by high
gradients where a rapid change in the solution of the model
occurs. Using global or uniform refinement may resolve the
issue at a very high computational cost and time since these
high gradients are normally localised [1, 2]. It is essential to
accurately solve such models (problems) as it helps to make
appropriate decisions and to predict future occurrences.
Though there are different numerical methods for the solution
of such models (differential equations) [3, 4] in this article, the
finite element method is adopted because it is efficient,
accurate, easy to code and able to handle irregular geometry
[5]. The finite element method is one of the numerical
approaches to boundary value problems. The method concerns
partitioning the domain of the solution into a finite number of
essential subdomains and using the variational approach to
create an estimate of the solution over the set of finite elements.
In general, the underlying idea of this method had been used
with impressive accomplishment in solving problems,
virtually in all fields of mathematical physics and engineering
[6, 7].

The (FEM) has been used extensively to approximate the
solution of partial differential equations [8, 9]. To give a
smooth solution, the FEM has been improved upon in many
ways. However, applications of this technique to high gradient
boundary value problems are not trivial. For high gradients
and singularities problems, mesh refinement is needed.

Moreover, for any discontinuous or high gradient problem,
uniform refinement may be extremely expensive for these
classes of problems. This is because many elements that are
not in the high gradient region and do not require refinement
will be refined thereby resulting in serious oscillation in the
solution [10-12]. Thus, using local refinement that selectively
refines only the elements within the high gradient region
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seems to be a better choice [13-16]. The adaptive finite
element method [9, 17-19] has the potential to overcome this
problem and produce accurate results without refining the
mesh of the whole domain.

High gradients, as often found in engineering applications,
such as fluid, turbulence, shocks, often affect the optimal
performance, tolerance, and physical behaviour of such
applications. Therefore, effective, and efficient advanced
numerical methods in modelling such behaviours are essential
in the scientific community [19, 20].

This article employs the adaptive FEM to approximate the
high gradient problems to establish the superiority of the
adaptive FEM over FEM. It was observed from the given
examples in this work that adaptive finite element performs
better in term accuracy and computational time compared to
traditional finite element method. In section two, the
methodology is discussed, section three discusses the results
and finally, section four discusses the conclusion and
recommendations. Figure 1 and Figure 2 below shows a linear
adaptive geometry and geometry with six degrees of
polynomial without adaptive respectively
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Figure 1. A linear polynomial adaptive FE geometry for
second elements (h-adaptive)

Xo X1 X5 X3 Xa

Figure 2. Galerkin FE with six degrees of polynomial
interpolation in each element
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Consider the general steady one-dimensional second-order
ordinary differential advection-dominated equation with two
boundary conditions below:

0%u ou 3
D o va + c(ulx) = f(x),

0<x<1 (D
where, v and D are the known constant velocity (advection)
and diffusivity, respectively.

With the boundary conditions u(0)=uo, u(L)=u,, where u is
an unknown scalar function of x on the interval [x., xg], f and
c are given functions of x. The function f(x) is the known
source function.

2. METHODOLOGY

The finite element method (FEM) is a numerical approach
for partial differential equations with boundary conditions. It
subdivides the domain of the problem into simpler parts, called
elements, and adopts a residual approach for the solution of
the problem through minimization of the error function
associated with the discretized problem [6, 7].

The main task in the finite element method is finding
approximate solution u such that.

n
ué = Z Niui
i=1

where, n is the total number of nodes in the domain and N; is
the basis function corresponding to the nodes in each element,
as shown in Figure 3. A system of equations is generated and
solved. The solution of FEM in its weak form is C° continuous,
and it includes boundary conditions in its formulation.

Eq. (1) is converted to weak form by integration over the
domain as:

fn [D% — UZ—Z+ c(x)u(x)] dx = fn(w - f) dx 2)

Eq. (2) becomes,

D(’)u L J‘L 6ud
w-D—| — | w-v—dx
a a
ool 8 L 3)
=J W'de—J w - c(x)u(x)dx
0 0
where, w is any Weight function.
Let, w(0)=0, and —un, we get from Eq. (3),
W-D JLDawaud JL du
w(l)-D-u, — -— wev—
O0x 0 0
L v e % @
=j W-fdx—j w - c(x)u(x)dx
0 0
= [ owau
W(L)~D-un—;-£ci Daadx
n-1 X
i-1 d
- Zf W v dx 6)
), 0x
i=1 "%
n-1 —1 Xiy
=Zf wefdx — f w - c(Oulx) dx

i=1"* i=1"*

Let,

n n
Ug = Z N;(u;,w = Z N;¢;
7 7

where, U is the approximate solution, u; are the unknown
nodal values and N;, N; are the essential functions needed to
obtain the approximate solution. w is the weight function, and
it is a scalar quantity, ¢ is a virtual constant.

2.1 Shape function

In the study of the finite element method, the basis function
is the connection between nodes while discretizing the domain
problem. Also, the basis function must comply with the
continuity conditions associated with the underlying PDE and
the finite element formulation. The basis functions must
satisfy the following properties:

2.1.1 Partition of unity

i Ny =1 (6)
k=1

2.1.2 Kronecker delta property
Ni(xy) = 6 (7
Linear shape functions for linear elements are given as:

v=[5E
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Similarly, we get,

X x;—x, Ox 1

5]
x = [Ny, N, ] [2]& > ,§=Ed5- (8)

Therefore, Eq. (5) can be expanded as:
6w 6u
W) - Dy = Z f ox Ox
B ZELW ' ”W ©)
1 1
=Zl§f_lw-fd§+Z%’Lw~c(x)u(x)d5

Using the general property of matrix Transpose, we have,

ow du e r R
9% 9x = (Br¢)(Bru®) = (Br¢)' (Bru®),
= ¢T(B$BT)U
where,
B — ON
d T
w- v% = ¢ - v(&)Bru®, (10)

du r .
wevo— = ¢"v(&)Bru



Eq. (5) becomes,

n-1 n-1
x1+1 ow au Xit+1
W(L)-D-un—z Z w - v—dx
i)y, 6x 6x i)y
nt x1+1 nt Xit+1
Z w - fdx — Z f w - c()ulx)dx - c(x)u(x)dx.
i=1 "% i=1 "%

After re-arrangement, we have,
le 1
wL)-D = Y 247 [ - BEBucds
-1
e

l 1
—quﬂf NT -v- Buedé
e

— € 4T T
250 | nrea
1
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l 1
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¢ (13)

ZZ%J-1¢TNTd€ —w(L)-D-u,
-1

The integral equation above, upon evaluation, gives a linear
system of algebraic equations for n unknowns of the problem.

3. RESULTS AND DISCUSSION

In this section, two high gradient problems are considered,
and their results are presented which show the superiority of
the adaptive finite element method over the traditional finite
element method.
Example 1.

Given the following exact solution (refer to Eq. (1)),

2a(x —0.5)

= tan-! (x—O.S) —
u=tan z ) T @ a0y
D=1, v=0 ¢c=0a=0.01.

u(0) = tan™?! (— 07'5),u(1) =tan~! (075)

Table 1 shows the result of the analysis. From this table, it
takes forty-eight elements for traditional FEM to arrive at an
error value of 0.042372 while it takes h-adaptive FEM, forty-
eight elements with four parental elements to arrive at an error
value of 0.007007. It clearly shows that h-adaptive FEM is
better compared to traditional FEM. Figures 3 and 4 shows the
error graph of adaptive FEM and traditional linear FEM
respectively. Figure 5 and Figure 6 shows the comparison of
the exact solution and the numerical solution for the adaptive
FEM and traditional FEM respectively.

Table 1. Comparison of the error of the two methods

Methods Error
h-adaptive FEM with 48-elements  0.007007
FEM with 48-elements 0.042372
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Figure 3. h-adaptive FEM error
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Figure 4. Linear FEM error
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Figure 5. h-adaptive FEM solution
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Figure 6. Linear FEM solution
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Example 2.
Given the following exact solution (refer to Eq. (1)),

T = (1 —x)(tan"*(k(x — x0)) + tan~*(kx,)),
T(0)=0, T(1)=1, v=0, c=0, D = §+ a(x —xp)
f=2{1+k(x —xp)[tan™2(x — x;) + tan"(kx,)]},

Both the h-adaptive finite element method and the
traditional finite method are also considered for this question
to compare their error. Table 2 shows the result of the analysis,
taking k=50 and x0=0.5.

Table 2. Comparison of the error of the two methods

Methods
h-adaptive FEM with 44-elements
FEM with 44-elements

Error
0.001740
0.017763

—&— Error

-0.001

-0.002

-0.003

Error
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Figure 7. h-adaptive FEM error
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Figure 9. h-adaptive FEM solution
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Exact
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Figure 10. Linear FEM solution (h=1/20)

Table 2 above shows that it takes forty-four elements for
traditional FEM to arrive at an error value of 0.017763 while
it takes h-adaptive FEM, forty-eight elements with four
parental elements to arrive at an error value of 0.001740. It
clearly shows that h-adaptive FEM is better compared to
traditional FEM. Figures 7 and 8 above shows the error graph
of adaptive FEM and traditional linear FEM respectively.
Figure 9 and Figure 10 above shows the comparison of the
exact solution and the numerical solution for the adaptive FEM
and traditional FEM respectively.

3.1 Error analysis

This section focuses on the truncation error of the
displacement. The error of the finite element method with
constant mesh is considered. Truncation error through Taylor
series expansion is expressed as shown below.

From Eq. (3) above, we have,

Dau L J’LD awaud f’“ 6ud
w-D—| — ——dx— | w-v—dx
0x dx 0x 0x
A P (14)
+f w-c(x)ulx)dx = f w- fdx
0 0
substitute for:
2 2
u=u,+ zu"(x*),u’ =uy + Eu’”(x*), x*€(0,L)

in Eqg. (14) above gives,

D a +h2 lll( *
w Oxuh 7 U x*)

[
, Jo ox
d h?
. (auh + 7u"'(x*)> dx
k a hz nr *
—Lw-v-(au;ﬁ-?u (x))dx (15)

+ fOLw cc(x) - (uh + h;u”(x*)) dx

- | ‘- fdx

0
w=Np=N;, i€IN, w(0)=0

where, IN represents internal and Neuman boundary nodes.

2

L h
+w() D -—u'""(x*)
0 2

auh

w(L)-D - o
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L
h
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0 0

L
f (w - fHdx
0
Re-arrange, we have,
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Therefore,
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0
N, =|:
1
DhZ 0 hZ hZ
Ku=f+Tu (X) : +U7u (x )Nb_TNC
DR? 0 ] (17)
2 ul!l.(x*)
Ku=f +Af
where,
Dh2 0 h2 h?
Af=Tu (x*) 1 +177u (x )Nb—7NC
el 0 ] a8)
—D— :
2 ulll(x*)

v h?
IAf1] < B2 e (D + [ 1N1]) + 5 e GOIIN] - (19)
Theorem 1:
Given a linear system Ax=b where A € R"*", b € R™ and
x € R™ With condition number given as k(A). Let 6b € R™ be
a small perturbation of b and define x + §x € R™ as the

solution of the system:

A(x + 6x) = (b + 6b),

Then,
161 _ a9 < 1321
[1xl] ~ = |Inl]
This can be written as,
|I5b|| IISXII k(A)||6b||
k(A)IIbII_ |IxI| h |IbI|

Apply the theorem above to Equation (19), we have,

[1o1] _ l1ul] _ kCa]151]
k(AL ] = (I

where, k(A) is the condition number.
The error analysis is performed in the post-processing stage.
For the simplicity of the calculation, it is assumed that:

" () a ()

Table 3. Error analysis for linear elements

[16£1] [16x] k(A)|15f1| k(4)

k(A|If1] [II] [I£1]
Ex 1. 6.8341e-08 3.0954e-04 0.23353 584.56
Ex 2. 7.1111e-07 0.030277 0.1481 456.35

From Table 3 above, it is evident that when the condition
number of matrix K is increased, then the relative error
increases. In conclusion, two factors affect the error accuracy,
which is Ax and condition number of matrix K.



4. CONCLUSIONS

In this study, h-adaptive and traditional finite element
method that enables high accurate approximations of high
gradient advection-dominated problems have been proposed.

The

h-adaptive quickly identifies the fine region and

concentrates in that region by further subdivide the area
without further increase the elements to get better accuracy.
This has also saved time and computational stress and
minimizes error compared to the traditional finite element
method, which requires more time and computational stress to
deal with the generated algebraic equation due to the many
elements involved. This approach is recommended for general
differential equations with high gradients.
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NOMENCLATURE

SEOT XX

condition number
load vector
stiffness matrix
mesh
conductivity
weight function



N shape function 1) change
Greek symbols

o high-gradient value
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