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This article considered the traditional finite element method (FEM) and adaptive finite 

element method (FEM) for the numerical solution of the one-dimensional boundary 

value problems. We established the preference or the superiority of the h-adaptive FEM 

to traditional FEM in high gradient problems in terms of accuracy and cost of 

computation. Numerical examples which confirm the performance and adaptability of 

the h-adaptive method over the traditional finite element method and the high accuracy 

of the numerical solution are presented. Detailed error analysis of linear elements was 

also discussed. In conclusion, h-adaptive FEM is recommended for complex systems 

with high gradient problems. 
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1. INTRODUCTION

Most natural phenomena are characterized by high 

gradients where a rapid change in the solution of the model 

occurs. Using global or uniform refinement may resolve the 

issue at a very high computational cost and time since these 

high gradients are normally localised [1, 2]. It is essential to 

accurately solve such models (problems) as it helps to make 

appropriate decisions and to predict future occurrences. 

Though there are different numerical methods for the solution 

of such models (differential equations) [3, 4] in this article, the 

finite element method is adopted because it is efficient, 

accurate, easy to code and able to handle irregular geometry 

[5]. The finite element method is one of the numerical 

approaches to boundary value problems. The method concerns 

partitioning the domain of the solution into a finite number of 

essential subdomains and using the variational approach to 

create an estimate of the solution over the set of finite elements. 

In general, the underlying idea of this method had been used 

with impressive accomplishment in solving problems, 

virtually in all fields of mathematical physics and engineering 

[6, 7]. 

The (FEM) has been used extensively to approximate the 

solution of partial differential equations [8, 9]. To give a 

smooth solution, the FEM has been improved upon in many 

ways. However, applications of this technique to high gradient 

boundary value problems are not trivial. For high gradients 

and singularities problems, mesh refinement is needed. 

Moreover, for any discontinuous or high gradient problem, 

uniform refinement may be extremely expensive for these 

classes of problems. This is because many elements that are 

not in the high gradient region and do not require refinement 

will be refined thereby resulting in serious oscillation in the 

solution [10-12]. Thus, using local refinement that selectively 

refines only the elements within the high gradient region 

seems to be a better choice [13-16]. The adaptive finite 

element method [9, 17-19] has the potential to overcome this 

problem and produce accurate results without refining the 

mesh of the whole domain.  

High gradients, as often found in engineering applications, 

such as fluid, turbulence, shocks, often affect the optimal 

performance, tolerance, and physical behaviour of such 

applications. Therefore, effective, and efficient advanced 

numerical methods in modelling such behaviours are essential 

in the scientific community [19, 20]. 

This article employs the adaptive FEM to approximate the 

high gradient problems to establish the superiority of the 

adaptive FEM over FEM. It was observed from the given 

examples in this work that adaptive finite element performs 

better in term accuracy and computational time compared to 

traditional finite element method. In section two, the 

methodology is discussed, section three discusses the results 

and finally, section four discusses the conclusion and 

recommendations. Figure 1 and Figure 2 below shows a linear 

adaptive geometry and geometry with six degrees of 

polynomial without adaptive respectively 

Figure 1. A linear polynomial adaptive FE geometry for 

second elements (h-adaptive) 

Figure 2. Galerkin FE with six degrees of polynomial 

interpolation in each element 
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Consider the general steady one-dimensional second-order 

ordinary differential advection-dominated equation with two 

boundary conditions below: 

 

𝐷
𝜕2𝑢

𝜕𝑥2 − 𝜈
𝜕𝑢

𝜕𝑥
+ 𝑐(𝑥)𝑢(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1 (1) 

 

where, v and D are the known constant velocity (advection) 

and diffusivity, respectively. 

With the boundary conditions u(0)=u0, u(L)=un, where u is 

an unknown scalar function of x on the interval [xL, xR], f and 

c are given functions of x. The function f(x) is the known 

source function.  
 

 

2. METHODOLOGY 

 

The finite element method (FEM) is a numerical approach 

for partial differential equations with boundary conditions. It 

subdivides the domain of the problem into simpler parts, called 

elements, and adopts a residual approach for the solution of 

the problem through minimization of the error function 

associated with the discretized problem [6, 7]. 

The main task in the finite element method is finding 

approximate solution u such that. 

 

𝑢𝑒 = ∑𝑁𝑖𝑢𝑖

𝑛

𝑖=1

 

 

where, n is the total number of nodes in the domain and Ni is 

the basis function corresponding to the nodes in each element, 

as shown in Figure 3. A system of equations is generated and 

solved. The solution of FEM in its weak form is C0 continuous, 

and it includes boundary conditions in its formulation. 

Eq. (1) is converted to weak form by integration over the 

domain as: 

 

∫ [𝐷
𝜕2𝑢

𝜕𝑥2
− 𝑣

𝜕𝑢

𝜕𝑥
+ 𝑐(𝑥)𝑢(𝑥)] 𝑑𝑥 = ∫ (𝑤 ⋅ 𝑓) 𝑑𝑥

ΩΩ

 (2) 

 

Eq. (2) becomes, 

 

𝑤 ⋅ 𝐷
𝜕𝑢

𝜕𝑥
|
0

𝐿

− ∫ 𝑤 ⋅ 𝑣
𝜕𝑢

𝜕𝑥
𝑑𝑥

𝐿

0

= ∫ 𝑤 ⋅ 𝑓𝑑𝑥
𝐿

0

− ∫ 𝑤 ⋅ 𝑐(𝑥)𝑢(𝑥)𝑑𝑥 
𝐿

0

 

(3) 

 

where, w is any weight function. 

Let, w(0)=0, and 
𝜕𝑢

𝜕𝑥
=un, we get from Eq. (3), 

 

𝑤(𝐿) ⋅ 𝐷 ⋅ 𝑢𝑛 − ∫ 𝐷
𝜕𝑤

𝜕𝑥

𝜕𝑢

𝜕𝑥
𝑑𝑥 − ∫ 𝑤 ⋅ 𝑣

𝜕𝑢

𝜕𝑥

𝐿

0

 
𝐿

0

 

= ∫ 𝑤 ⋅ 𝑓𝑑𝑥 − ∫ 𝑤 ⋅ 𝑐(𝑥)𝑢(𝑥)𝑑𝑥
𝐿

0

𝐿

0

 

(4) 

 

𝑤(𝐿) ⋅ 𝐷 ⋅ 𝑢𝑛 − ∑ ∫ 𝐷
𝜕𝑤

𝜕𝑥

𝑥𝑖−1

𝑥𝑖

𝜕𝑢

𝜕𝑥
𝑑𝑥

𝑛−1

𝑖=1

− ∑ ∫ 𝑤 ⋅ 𝑣
𝜕𝑤

𝜕𝑥

𝑥𝑖−1

𝑥𝑖

𝑑𝑥 

𝑛−1

𝑖=1

 

= ∑ ∫ 𝑤 ⋅ 𝑓
𝑥𝑖−1

𝑥𝑖

𝑑𝑥 

𝑛−1

𝑖=1

− ∑ ∫ 𝑤 ⋅ 𝑐(𝑥)𝑢(𝑥)
𝑥𝑖−1

𝑥𝑖

𝑑𝑥 

𝑛−1

𝑖=1

 

(5) 

Let, 

 

𝑢𝑎 = ∑𝑁𝑗(𝑥)𝑢𝑗 ,

𝑛

𝑗

𝑤 = ∑𝑁𝑖𝜙𝑖

𝑛

𝑖

 

 

where, ua is the approximate solution, uj are the unknown 

nodal values and Ni, Nj are the essential functions needed to 

obtain the approximate solution. w is the weight function, and 

it is a scalar quantity, ϕ is a virtual constant. 

 

2.1 Shape function 

 

In the study of the finite element method, the basis function 

is the connection between nodes while discretizing the domain 

problem. Also, the basis function must comply with the 

continuity conditions associated with the underlying PDE and 

the finite element formulation. The basis functions must 

satisfy the following properties:  

 

2.1.1 Partition of unity 

 

∑ 𝑁𝑘

𝑛

𝑘=1

= 1 (6) 

 

2.1.2 Kronecker delta property 

 

𝑁𝑖(𝑥𝑘) = 𝛿𝑖𝑘 (7) 

 

Linear shape functions for linear elements are given as: 

 

𝑁 = [
1 − 𝜉

2
,
1 + 𝜉

2
]. 

 

Similarly, we get, 

 

𝑥 = [𝑁1, 𝑁2] [
𝑥1

𝑥2
] ,

𝜕𝑥

𝜕𝜉
=

𝑥1 − 𝑥2

2
,
𝜕𝑥

𝜕𝜉
=

𝑙

2
𝑑𝜉. (8) 

 

Therefore, Eq. (5) can be expanded as: 

 

𝑤(𝐿) ⋅ 𝐷 ⋅ 𝑢𝑛 − ∑
𝑙𝑒
2

∫ 𝐷
𝜕𝑤

𝜕𝑥

𝜕𝑢𝑒

𝜕𝑥
𝑑𝜉

1

−1𝑒

− ∑
𝑙𝑒
2

∫ 𝑤 ⋅ 𝑣
𝜕𝑢𝑒

𝜕𝑥

1

−1𝑒

  

= ∑
𝑙𝑒
2

∫ 𝑤 ⋅ 𝑓 𝑑𝜉 + ∑
𝑙𝑒

2
∫ 𝑤 ⋅ 𝑐(𝑥)𝑢(𝑥)𝑑𝜉

1

−1𝑒

1

−1𝑒

 

(9) 

 

Using the general property of matrix Transpose, we have, 

 
𝜕𝑤

𝜕𝑥

𝜕𝑢

𝜕𝑥
= (𝐵𝑇𝜙)(𝐵𝑇𝑢

𝑒) = (𝐵𝑇𝜙)𝑇(𝐵𝑇𝑢
𝑒),  

= 𝜙𝑇(𝐵𝑇
𝑇𝐵𝑇)𝑢

𝑒 

 

where,  

 

𝐵𝑇 =
𝜕𝑁

𝜕𝑥
, 

𝑤 ⋅ 𝑣
𝜕𝑢

𝜕𝑥
= 𝜙 ⋅ 𝑣(𝜉)𝐵𝑇𝑢

𝑒, 

𝑤 ⋅ 𝑣
𝜕𝑢

𝜕𝑥
= 𝜙𝑇𝑣(𝜉)𝐵𝑇𝑢

𝑒  

(10) 
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Eq. (5) becomes, 

 

𝑤(𝐿) ⋅ 𝐷 ⋅ 𝑢𝑛 − ∑ ∫ 𝐷
𝑥𝑖+1

𝑥𝑖

𝜕𝑤

𝜕𝑥
 

𝑛−1

𝑖=1

𝜕𝑢

𝜕𝑥
𝑑𝑥 − ∑ ∫ 𝑤

𝑥𝑖+1

𝑥𝑖

𝑛−1

𝑖=1

⋅ 𝑣
𝜕𝑢

𝜕𝑥
 𝑑𝑥 

= ∑ ∫ (𝑤
𝑥𝑖+1

𝑥𝑖

 

𝑛−1

𝑖=1

⋅ 𝑓)𝑑𝑥 − ∑ ∫ 𝑤 ⋅ 𝑐(𝑥)𝑢(𝑥)𝑑𝑥
𝑥𝑖+1

𝑥𝑖

 

𝑛−1

𝑖=1

⋅ 𝑐(𝑥)𝑢(𝑥)𝑑𝑥. 

 

After re-arrangement, we have, 

 

𝑤(𝐿) ⋅ 𝐷 ⋅ 𝑢𝑛 − ∑
𝑙𝑒
2

𝜙𝑇 ∫ 𝐷 ⋅ (𝐵𝑇
𝑇𝐵𝑇)𝑢

𝑒𝑑𝜉
1

−1𝑒

− ∑
𝑙𝑒
2

𝜙𝑇 ∫ 𝑁𝑇 ⋅ 𝑣 ⋅ 𝐵𝑇𝑢
𝑒𝑑𝜉

1

−1𝑒

− ∑
𝑙𝑒
2

𝜙𝑇 ∫ 𝑁𝑇𝑓(𝜉)𝑑𝜉
1

−1𝑒

− ∑
𝑙𝑒
2

𝜙𝑇 ∫ 𝑐(𝜉)𝑁𝑇𝑁𝑢𝑒𝑑𝜉 = 0
1

−1𝑒

 

(11) 

 

𝑤(𝐿) ⋅ 𝐷 ⋅ 𝑢𝑛 − ∑
𝑙𝑒
2

𝜙𝑇 ∫ (𝐷(𝐵𝑇
𝑇𝐵𝑇) + 𝑁𝑇𝑣𝐵𝑇

1

−1𝑒

+ 𝑐(𝜉)𝑁𝑇𝑁)𝑢𝑒𝑑𝜉

− ∑
𝑙𝑒
2

𝑒

∫ 𝜙𝑇𝑁𝑇
1

−1

𝑑𝜉 = 0 

(12) 

 

−∑
𝑙𝑒
2

𝜙𝑇 ∫ (𝐷(𝐵𝑇
𝑇𝐵𝑇) + 𝑁𝑇𝑣𝐵𝑇 + 𝑐(𝜉)𝑁𝑇𝑁)

1

−1𝑒

𝑢𝑒𝑑𝜉

= ∑
𝑙𝑒
2

𝑒

∫ 𝜙𝑇𝑁𝑇
1

−1

𝑑𝜉 − 𝑤(𝐿) ⋅ 𝐷 ⋅ 𝑢𝑛 

(13) 

 

The integral equation above, upon evaluation, gives a linear 

system of algebraic equations for 𝑛 unknowns of the problem.  

 

 

3. RESULTS AND DISCUSSION 
 

In this section, two high gradient problems are considered, 

and their results are presented which show the superiority of 

the adaptive finite element method over the traditional finite 

element method. 

 

Example 1. 

 

Given the following exact solution (refer to Eq. (1)), 

 

𝑢 = 𝑡𝑎𝑛−1 (
𝑥 − 0.5

𝛼
) , 𝑓 =

2𝛼(𝑥 − 0.5)

(𝛼2 + (𝑥 − 0.5)2)2
,  

𝐷 = 1, 𝑣 = 0, 𝑐 = 0, 𝛼 = 0.01. 

𝑢(0) = tan−1 (−
0.5

𝛼
) , 𝑢(1) = tan−1 (

0.5

𝛼
). 

 

Table 1 shows the result of the analysis. From this table, it 

takes forty-eight elements for traditional FEM to arrive at an 

error value of 0.042372 while it takes h-adaptive FEM, forty-

eight elements with four parental elements to arrive at an error 

value of 0.007007. It clearly shows that h-adaptive FEM is 

better compared to traditional FEM. Figures 3 and 4 shows the 

error graph of adaptive FEM and traditional linear FEM 

respectively. Figure 5 and Figure 6 shows the comparison of 

the exact solution and the numerical solution for the adaptive 

FEM and traditional FEM respectively. 

Table 1. Comparison of the error of the two methods 

 
Methods Error 

h-adaptive FEM with 48-elements 0.007007 

FEM with 48-elements 0.042372 

 

 
 

Figure 3. h-adaptive FEM error 

 

 
 

Figure 4. Linear FEM error 

 

 
 

Figure 5. h-adaptive FEM solution 

 

 
 

Figure 6. Linear FEM solution 
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Example 2. 

Given the following exact solution (refer to Eq. (1)), 

𝑇 = (1 − 𝑥)(tan−1(𝑘(𝑥 − 𝑥0)) + tan−1(𝑘𝑥0)),

T(0)=0, T(1)=1, v=0, c=0, 𝐷 =
1

𝑎
+ 𝑎(𝑥 − 𝑥0)

𝑓 = 2{1 + 𝑘(𝑥 − 𝑥0)[tan
−1(𝑥 − 𝑥0) + tan−1(𝑘𝑥0)]},

Both the h-adaptive finite element method and the 

traditional finite method are also considered for this question 

to compare their error. Table 2 shows the result of the analysis, 

taking k=50 and x0=0.5. 

Table 2. Comparison of the error of the two methods 

Methods Error 

h-adaptive FEM with 44-elements 0.001740

FEM with 44-elements 0.017763 

Figure 7. h-adaptive FEM error 

Figure 8. Linear FEM error 

Figure 9. h-adaptive FEM solution 

Figure 10. Linear FEM solution (h=1/20) 

Table 2 above shows that it takes forty-four elements for 

traditional FEM to arrive at an error value of 0.017763 while 

it takes h-adaptive FEM, forty-eight elements with four 

parental elements to arrive at an error value of 0.001740. It 

clearly shows that h-adaptive FEM is better compared to 

traditional FEM. Figures 7 and 8 above shows the error graph 

of adaptive FEM and traditional linear FEM respectively. 

Figure 9 and Figure 10 above shows the comparison of the 

exact solution and the numerical solution for the adaptive FEM 

and traditional FEM respectively. 

3.1 Error analysis 

This section focuses on the truncation error of the 

displacement. The error of the finite element method with 

constant mesh is considered. Truncation error through Taylor 

series expansion is expressed as shown below.  

From Eq. (3) above, we have, 

𝑤 ⋅ 𝐷
𝜕𝑢

𝜕𝑥
|
0

𝐿

− ∫ 𝐷
𝐿

0

𝜕𝑤

𝜕𝑥

𝜕𝑢

𝜕𝑥
𝑑𝑥 − ∫ 𝑤

𝐿

0

⋅ 𝑣
𝜕𝑢

𝜕𝑥
𝑑𝑥 

+∫ 𝑤 ⋅ 𝑐(𝑥)𝑢(𝑥)𝑑𝑥
𝐿

0

= ∫ (𝑤 ⋅ 𝑓)
𝐿

0

𝑑𝑥 

(14) 

substitute for: 

𝑢 = 𝑢ℎ +
ℎ2

2!
𝑢′′(𝑥∗), 𝑢′ = 𝑢ℎ

′ +
ℎ2

2!
𝑢′′′(𝑥∗), 𝑥∗ ∈ (0, 𝐿)

in Eq. (14) above gives, 

𝑤 ⋅ 𝐷 (
𝜕

𝜕𝑥
𝑢ℎ +

ℎ2

2
𝑢′′′(𝑥∗))|

0

𝐿

− ∫ 𝐷 ⋅
𝐿

0

𝜕𝑤

𝜕𝑥

⋅ (
𝜕

𝜕𝑥
𝑢ℎ +

ℎ2

2
𝑢′′′(𝑥∗)) 𝑑𝑥

− ∫ 𝑤 ⋅ 𝑣 ⋅ (
𝜕

𝜕𝑥
𝑢ℎ +

ℎ2

2
𝑢′′′(𝑥∗)) 𝑑𝑥

𝐿

0

+ ∫ 𝑤 ⋅ 𝑐(𝑥) ⋅ (𝑢ℎ +
ℎ2

2
𝑢′′(𝑥∗)) 𝑑𝑥

𝐿

0

= ∫ (𝑤 ⋅ 𝑓)𝑑𝑥 
𝐿

0

𝑤 = 𝑁𝜙 ≡ 𝑁𝑖 , 𝑖 ∈ 𝐼𝑁, 𝑤(0) = 0 

(15) 

where, IN represents internal and Neuman boundary nodes. 

𝑤(𝐿) ⋅ 𝐷 ⋅
𝜕𝑢ℎ

𝜕𝑥
|
0

𝐿

+ 𝑤(𝐿) ⋅ 𝐷 ⋅
ℎ2

2
𝑢′′′(𝑥∗)

970



 

−∫ 𝐷 ⋅
𝜕𝑤

𝜕𝑥

𝜕𝑢ℎ

𝜕𝑥
𝑑𝑥

𝐿

0

− ∫ 𝐷 ⋅
𝜕𝑤

𝜕𝑥
⋅
ℎ2

2
𝑢′′′(𝑥∗)𝑑𝑥

𝐿

0

 

−∫ 𝑤 ⋅ 𝑣
𝜕𝑢ℎ

𝜕𝑥
𝑑𝑥

𝐿

0

− ∫ 𝑤 ⋅ 𝑣 ⋅
ℎ2

2
𝑢′′′(𝑥∗)𝑑𝑥

𝐿

0

 

+∫ 𝑤 ⋅ 𝑐(𝑥) ⋅ 𝑢ℎ𝑑𝑥
𝐿

0

+ ∫ 𝑤 ⋅ 𝑐(𝑥) ⋅
ℎ2

2
𝑢′′(𝑥∗)𝑑𝑥

𝐿

0

= ∫ (𝑤 ⋅ 𝑓)𝑑𝑥
𝐿

0

 

 

Re-arrange, we have, 

 

−∫ 𝐷 ⋅
𝜕𝑁𝑖

𝜕𝑥

𝐿

0

⋅
𝜕𝑢ℎ

𝜕𝑥
𝑑𝑥 − ∫ 𝑁𝑖

𝐿

0

⋅ 𝑣
𝜕𝑢ℎ

𝜕𝑥
𝑑𝑥 + ∫ 𝑁𝑖

𝐿

0

⋅ 𝑐(𝑥)𝑢ℎ𝑑𝑥 

= ∫ 𝑁𝑖 ⋅ 𝑓𝑑𝑥
𝐿

0

+ ∫ 𝐷 ⋅
𝜕𝑁𝑖

𝜕𝑥

𝐿

0

⋅
ℎ2

2
𝑢′′′(𝑥∗)𝑑𝑥 

+∫ 𝑁𝑖 ⋅ 𝑣
𝐿

0

⋅
ℎ2

2
𝑢′′′(𝑥∗)𝑑𝑥 − ∫ 𝑁𝑖 ⋅ 𝑐(𝑥) ⋅

ℎ2

2
𝑢′′(𝑥∗)

𝐿

0

𝑑𝑥 

−𝑁𝑖(𝐿) ⋅ 𝐷 ⋅
𝜕𝑢ℎ

𝜕𝑥
|
𝐿
− 𝑁𝑖(𝐿) ⋅ 𝐷 ⋅

ℎ2

2
𝑢′′′(𝑥∗) 

 

−∑(∫ 𝐷 ⋅
𝜕𝑁𝑖

𝜕𝑥
⋅
𝜕𝑁𝑗

𝜕𝑥
𝑑𝑥

𝐿

0

) 𝑢𝑗

𝑛

𝑗

− ∑(∫ 𝑁𝑖 ⋅ 𝑣 ⋅
𝜕𝑁𝑗

𝜕𝑥
𝑑𝑥

𝐿

0

)𝑢𝑗

𝑛

𝑗

+ ∑(∫ 𝑁𝑖 ⋅ 𝑐(𝑥) ⋅ 𝑁𝑗𝑑𝑥
𝐿

0

) 𝑢𝑗

𝑛

𝑗

= ∫ 𝑁𝑖 ⋅ 𝑓𝑑𝑥
𝐿

0

+ ∫ 𝐷 ⋅
𝜕𝑁𝑖

𝜕𝑥
⋅
ℎ2

2
𝑢′′′(𝑥∗)𝑑𝑥

𝐿

0

+ ∫ 𝑁𝑖 ⋅ 𝑣 ⋅
ℎ2

2
𝑢′′′(𝑥∗)𝑑𝑥

𝐿

0

− ∫ 𝑁𝑖 ⋅ 𝑐(𝑥) ⋅
ℎ2

2
𝑢′′(𝑥∗)𝑑𝑥

𝐿

0

− 𝑁𝑖(𝐿) ⋅ 𝐷

⋅
𝜕𝑢ℎ

𝜕𝑥
|
𝐿
− 𝑁𝑖(𝐿) ⋅ 𝐷 ⋅

ℎ2

2
𝑢′′′(𝑥∗) 

 

Let  

 

𝐷𝑖𝑗 = ∫ 𝐷 ⋅
𝜕𝑁𝑖

𝜕𝑥
⋅
𝜕𝑁𝑖

𝜕𝑥
𝑑𝑥

𝐿

0

, 𝑣𝑖𝑗 = ∫ 𝑁𝑖 ⋅ 𝑣 ⋅
𝜕𝑁𝑗

𝜕𝑥

𝐿

0

𝑑𝑥,  

𝑐𝑖𝑗 = ∫ 𝑁𝑖 ⋅ 𝑐(𝑥)𝑁𝑗𝑑𝑥
𝐿

𝑜

, 𝑘𝑖𝑗 = −𝐷𝑖𝑗 − 𝑣𝑖𝑗 + 𝑐𝑖𝑗 , 

 

We have, 

 

∑𝑘𝑖𝑗𝑢𝑗

𝑛

𝑗=1

= ∫ 𝑁𝑖 ⋅ 𝑓𝑑𝑥 +
𝐷ℎ2

2
𝑢′′′(𝑥∗)(𝑁𝑖(𝐿)) + 𝑣

𝐿

0

⋅
ℎ2

2
∫ 𝑢′′′(𝑥∗)𝑁𝑖𝑑𝑥

𝐿

0

−
ℎ2

2
∫ 𝑢′′(𝑥∗)𝑁𝑖 ⋅ 𝑐(𝑥)𝑑𝑥

𝐿

0

− 𝑁𝑖(𝐿). 𝐷.
𝜕𝑢ℎ

𝜕𝑥
|
𝐿

− 𝑁𝑖(𝐿). 𝐷.
ℎ2

2
𝑢′′′(𝑥∗) 

(16) 

 

𝑁𝑎 = [𝑁𝑖|0
𝐿] = 𝑁𝑖(𝐿), 𝑁𝑏 = [∫ 𝑁𝑖 ⋅ 𝑓𝑑𝑥

𝐿

0

],  

𝑁𝑐 = [∫ 𝑢′′(𝑥∗)𝑁𝑖 ⋅ 𝑐(𝑥)𝑑𝑥
𝐿

𝑜

] , 𝑖 ∈ 𝐼𝑁(𝑖 ≠ 0) 

 

Therefore, 

 

𝑁𝑎 = [
0
⋮
1
] 

 

𝐾𝑢 = 𝑓 +
𝐷ℎ2

2
𝑢′′′(𝑥∗) [

0
⋮
1
] + 𝑣

ℎ2

2
𝑢′′′(𝑥∗)𝑁𝑏 −

ℎ2

2
𝑁𝑐

−
𝐷ℎ2

2
[

0
⋮

𝑢′′′(𝑥∗)
] 

(17) 

 

𝐾𝑢 = 𝑓 + Δ𝑓 

where, 

 

Δ𝑓 =
𝐷ℎ2

2
𝑢′′′(𝑥∗) [

0
⋮
1
] + 𝑣

ℎ2

2
𝑢′′′(𝑥∗)𝑁𝑏 −

ℎ2

2
𝑁𝑐

− 𝐷
ℎ2

2
[

0
⋮

𝑢′′′(𝑥∗)
] 

(18) 

 

||Δ𝑓|| ≤ ℎ2|𝑢′′′(𝑥∗)| (𝐷 +
𝑣

2
||𝑁𝑏||) +

ℎ2

2
|𝑢′′(𝑥∗)|||𝑁𝑐|| (19) 

 

Theorem 1:  

 

Given a linear system Ax=b where 𝐴 ∈ 𝑅𝑛×𝑛, 𝑏 ∈ 𝑅𝑛  and 

𝑥 ∈ 𝑅𝑛 With condition number given as k(A). Let 𝛿𝑏 ∈ 𝑅𝑛 be 

a small perturbation of b and define 𝑥 + 𝛿𝑥 ∈ 𝑅𝑛  as the 

solution of the system: 

 

𝐴(𝑥 + 𝛿𝑥) = (𝑏 + 𝛿𝑏), 
 

Then, 

 

||𝛿𝑥||

||𝑥||
≤ 𝑘(𝐴) ≤

||𝛿𝑏||

||𝑏||
 

 

This can be written as, 

 

||𝛿𝑏||

𝑘(𝐴)||𝑏||
≤

||𝛿𝑥||

||𝑥||
≤

𝑘(𝐴)||𝛿𝑏||

||𝑏||
 

 

Apply the theorem above to Equation (19), we have, 

 

||𝛿𝑓||

𝑘(𝐴)||𝑓||
≤

||𝛿𝑢||

||𝑢||
≤

𝑘(𝐴)||𝛿𝑓||

||𝑓||
 

 

where, k(A) is the condition number. 

The error analysis is performed in the post-processing stage. 

For the simplicity of the calculation, it is assumed that: 

 
|𝑢′′′(𝑥∗)|𝑚𝑎𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |𝑢′′′(𝑥)| 

 

Table 3. Error analysis for linear elements 

 
 ||𝛿𝑓||

𝑘(𝐴)||𝑓||
 

||𝛿𝑥||

||𝑥||
 

𝑘(𝐴)||𝛿𝑓||

||𝑓||
 

𝑘(𝐴) 

Ex 1. 6.8341e-08 3.0954e-04 0.23353 584.56 

Ex 2. 7.1111e-07 0.030277 0.1481 456.35 

 

From Table 3 above, it is evident that when the condition 

number of matrix K is increased, then the relative error 

increases. In conclusion, two factors affect the error accuracy, 

which is Δx and condition number of matrix K. 
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4. CONCLUSIONS 

 

In this study, h-adaptive and traditional finite element 

method that enables high accurate approximations of high 

gradient advection-dominated problems have been proposed. 

The h-adaptive quickly identifies the fine region and 

concentrates in that region by further subdivide the area 

without further increase the elements to get better accuracy. 

This has also saved time and computational stress and 

minimizes error compared to the traditional finite element 

method, which requires more time and computational stress to 

deal with the generated algebraic equation due to the many 

elements involved. This approach is recommended for general 

differential equations with high gradients. 
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NOMENCLATURE 

 

k condition number 

f load vector 

K stiffness matrix 

h mesh 

D conductivity 

w weight function 
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N shape function 

Greek symbols 

 high-gradient value 

𝛿 change 
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