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The numerical study of EMHD laminar flow of Bingham fluid flowing among two Riga plates 

with thermal radiation has been established. Both the Riga plates, upper and lower, are taken 

as stationary. Constant heat transfer is considered for both Riga plates. The governing 

equations for the problem have been transformed into dimensionless non-linear PDEs by 

using usual transformations. The obtained non-dimensional PDEs have been solved 

numerically by applying the explicit FDM. MATLAB has been conducted for the numerical 

simulation. The stability analysis stated that the governing equations will be converged for 

0.09,rP  1.00DR   with 0.05, 0.0001Y  =  = . As an outcome, the behavior of several

interesting parameters on the flow pattern and on the local shear stress including local Nusselt 

number have been shown graphically and tabular form. The appropriate mesh space and 

steady-state solution have been found at ( ) ( ), 40,40m n =  and  = 4.00 respectively.

Finally, a comparison with several published results has been discussed. 
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1. INTRODUCTION

Bingham fluid is a non-Newtonian viscous fluid that 

maintains a yield strength which must be surpassed prior to the 

fluid will flow. It is titled after E.C. Bingham who introduced 

its mathematical model in 1916 [1]. A most common example 

is a toothpaste which won't be ejected until certain stress is 

performed to the tube. Bingham fluid is exploited in several 

geological and mechanical materials in Mechanical 

Engineering, Aerospace Engineering as well as Chemical 

Engineering. Some examples are mud, slurries, cement, sludge, 

grease, chocolate, etc. On the other hand, the Riga plate is 

termed as an electromagnetic actuator that is formed by a 

combination of perpetual magnets and a spanwise aligned 

pattern of alternating electrodes seated on a plane surface. It is 

numerously used to avoid the boundary layer separation for 

the radiation of an efficient agent, pressure drag and skin 

friction of submarines. The Riga plate is first considered by 

Gallites and Lilausis [2] to build an imposed magnetic 

moreover electric fields those consequently produces Lorentz 

force collateral to the Riga plate, to control the flow of fluid. 

The novelty of this research is to introduce Riga plate on the 

Bingham fluid flow. Many of the researchers describe the 

Bingham fluid flow and flows along with Riga plate in 

separate ways. 

In this regard, the mathematical representation of Bingham 

fluid, its constitutive equation, flow characteristics, empirical 

expression and apparent viscosity have been established in Ref. 

[3-5]. For the Bingham fluid, the existence of Poiseuille flow, 

laminar convective heat transfer also the explicit computations 

of the friction factor have been carried out numerically or 

analytically by several investigators in Ref. [6-10]. The slow 

spreading of a sheet of Bingham fluid on an inclined plane, 

Hall impact and heat transfer about unsteady MHD Couette 

flow, numerical simulation of Taylor Couette flow, Couette–

Poiseuille flow, explicit equations for laminar flow including 

or excluding suction, injection, slip condition through parallel 

plate or porous parallel plates or in a channel have been 

reviewed [11-16]. The MHD Couette flow including thermal 

radiation, laminar flow with suction and Hall current as well 

as Ion-slip, unsteady boundary layer flows in a porous medium, 

viscous incompressible flow including Hall current and MHD 

two-phase Couette flow for the Bingham fluid through parallel 

plates or moving plates with heat source and viscous 

dissipation have been numerically studied [17-23]. For 

Bingham Plastic, the circular heat and solute source within a 

viscoplastic porous enclosure: the critical source dimension 

for optimum transfers has been considered by [24]. Such 

Couette flow under the action of an imposed magnetic field 

has vast applications in some systems like; MHD power 

generators, accelerators, polymer technology, crude oil 

purification, fluid droplets sprays and petroleum industry. 

Separately, the EMHD flow over a Riga-plate, squeezing 

flow along a Riga plate, nanofluidic transport along Riga plate, 

radiative flow past a moving or stationary Riga plate 

Williamson nanofluid over a heated Riga plate, third grade 

nanofluid along a Riga plate, stagnation point flow in the 

direction of variable thicked Riga plate, also with or without 

chemical reaction, with or without suction, injection, and slip 

condition have been investigated analytically or numerically 

by many investigators in Ref. [25-32]. 

Along with the above studies, the present study focuses on 

the numerical study of EMHD laminar flow of Bingham fluid 

flowing among two Riga plates with thermal radiation and 

viscous dissipation. The Ohm’s law including Grinberg term 

for weakly conducting fluid is concerned with the present 

study in which this term appeared as an exponential function, 

as described in the following part and Figure 1. The explicit 

FDM technique has been used to solve the dimensionless non-

linear PDEs. The obtained results have been shown 
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graphically. 

 

 

2. MATHEMATICAL MODEL DERIVATION 

 

Consider the EMHD flow of non-Newtonian Bingham fluid 

which is laminar, incompressible and flows between two 

infinite horizontal Riga plates which are placed at 𝑦 = ±ℎ 

planes and extend from 𝑥 = 0 to ∞and fromz=0 to ∞. Both 

the Riga plates, upper and lower, are taken to be stationary and 

the uniform velocity outside the boundary is 𝑈0 . Both Riga 

plates, lower and upper, are taken at two different constant 

temperatures 𝑇1 and 𝑇2 respectively, where 𝑇2 > 𝑇1. In the X-

direction, a constant pressure gradient 
𝑑𝑝

𝑑𝑥
 is acted on the fluid. 

Thus the fluid velocity vector is given as: �̃� = �̃�𝒊 + �̃�𝒋. 

For the Riga plate the volume density of a Lorentz force is 

𝑭 = 𝑱 ∧ 𝑩; where, the current density by means of Ohm’s law 

is defined as: 𝑱 = 𝜎(𝑬 + �̃� ∧ 𝑩)  

Since the Bingham fluid is weakly conducting ( 𝜎 =
106S/mor very small) then the current density 𝜎(�̃� ∧ 𝑩) is 

small. So that the term 𝜎(�̃� ∧ 𝑩) in the above equation, can be 

neglected. Thus, for finding the electro magneto-

hydrodynamic (EMHD) flow, the extrinsic magnetic field is 

used which is the Lorentz force along the X-axis and is 

represented as: 𝑭 = 𝑱 ∧ 𝑩 ≈ 𝜎(𝑬 ∧ 𝑩) the density force 𝑭 =

𝑭𝒆𝒙, in accordance with Grinberg term (
𝑭

𝜌
), averaged along 

Z-axis, finally expressed as an exponential function of y, can 

be expressed as: 
0 0 exp

8
F J M y

a

  
= − 

 
. 

 

 
 

Figure 1. Riga plate and schematic configuration  

 

Within the appearance of the above considerations, the 

equations connected to the EMHD laminar flow of Bingham 

fluid among two Riga plates with thermal radiation including 

viscous dissipation, governed by the system of coupled non-

linear PDEs under the boundary-layer approximations, which 

are furnished as follows:   

 

Continuity equation:  

0
u v

x y

 
+ =

 
                                   

 (1)

 
 

Momntum equation:  

0 0

1 1

                             exp
8

u u u dp u
u v

t x y dx y y

J M y
a


 

 



     
+ + = − +  

     

 
+ − 

                

(2)

 
 

Energy equation:  
2

2

2

* 2
3

2* 2

1 16
                                      

3

p p

p

T T T T u
u v

t x y c y c y

T
T

c k y

 

 





       
+ + = +   

      


+


           

(3)

 
 

where 

0K
u

y


 = +

 
 
                                   

 (4)

 

and the corresponding initial and boundary conditions for the 

problem are: 

 

10,      0,    t u T T = =
 everywhere                (5) 

 

1

1

2

0, at =0

0,   0, at

0,    at

u T T x

t u T T y h

u T T y h

= =

 = = = −

= = =
              

(6)

 
 

It is required to transform the equations (1) to (4) into 

dimensionless form, as the solution of these equations with the 

initial conditions and boundary conditions (5) and (6) will be 

based on the FDM for numerical solution. The dimensionless 

quantities that have used are given as follows:   

 

0

2

0 0 0

2

1 0
0

2 1

, , , , , ,

and  ,;  where, , ,

x y u v p tU
X Y U V P

h L U V U h K

T T U L a
V h L

T T a


 






 

= = = = = = =

−
= = = =

−  

(7)

 
 

The obtained dimensionless differential equations are 

presented as follows:  

 

0
U V

X Y

 
+ =

                                     
(8) 

 

1 Y

e

U U U dP U
U V Ze

X Y dX R Y Y




−     
+ + = − + + 

            
(9)
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2

1 4

3
D c

r

U
U V R E

X Y P Y Y

   




      
+ + = + +   

            
(10)

 
 

1 D

U

Y


 = +

 
 
                                

(11)
 

 

and the dimensionless conditions are mentioned as follows: 

 

0,  0,      0U  = =  everywhere             (12) 

 
  0,       0    at =0

0,    0,       0    at 1

  0,       1     at 1

U X

U Y

U Y



 



= =

 = = = −

= = =

              (13) 

 

The non-dimensional parameters are given as follows: 

0
e

V L
R

K


= (Reynolds number); 

2

0p

r

c U L
P

kh


=  (Prandtl 

number); 
2

0 0

08

J M a
Z

U 
=  (Modified Hartmann number); 

0

2

2 1( )
C

p

U Kh
E

c L T T
=

−
 (Eckert number); 

3

24
D

T
R

k








=  (Radiation 

parameter) and 0

0

D

h

KU


 =  (Bingham number or dimensionless 

yield stress). 

 

 

3. SHEAR STRESS AND NUSSELT NUMBER 

 

The shear stress at upper plate has been studied from the 

velocity profile. The local shear stress in X- direction for upper 

wall is 
1

L

Y

U

Y
 

=

 
  

 
. Also the Nusselt number at upper plate 

has been studied from the temperature profile. The local 

Nusselt number in X- direction for upper wall is 

 

( )
1

1

Y
L

m

T

Y
Nu

T

=

 
 
 


− −

; where, 

1

1

1

1

m

U dY

T

UdY


−

−

=




. 

 

 

4. NUMERICAL PROCEDURE 

 

A set of finite difference approach is required to solve the 

dimensionless non-linear PDEs (8) to (11) by the explicit FDM 

subjected to boundary conditions. So that the region interior to 

the boundary layer is distributed into a grid of lines 

perpendicular to Y-axis. 

Here it is considered that the height of the plate ( )max 40X =  

i.e. X changes from 0 to 40 and regard ( )max 2Y =  as 

corresponding to Y →  i.e. Y changes from 0 to 2. Also 

40m =  and 40n =  mesh spacing are considered in the X and 

Y directions respectively as shown in Figure 2.   

 

 
 

Figure 2. Finite difference space grid 

 

It is assumed that X , Y  are constant mesh sizes along X 

and Y directions respectively and taken as follows: 

 

( )1.0 0 40X x =   , ( )0.05 0 2Y y =     

 

with the smaller time-step, 0.0001 = .  

Let 'U  and '  represents the magnitudes of 𝑈  and 𝜃  at 

the final time-step respectively. With the help of the explicit 

FDM approach the suitable set of finite difference equations 

are obtained as follows: 

 

, 1, , , 1
0

i j i j i j i jU U V V

X Y

− −− −
+ =

 
                     (14) 

 

( )

, , , 1, , , 1

, ,

, , 1 , , 1

, 1 , , 1
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1
                

2
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i j i j

i j i j i j i j

Y
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U U U U U U dP
U V

X Y dX

U U

Y Y
Ze

R U U U

Y



 



− −

− −

−

+ −

 − − −
+ + = −

  

 − −  
   

    
+ +  

 − +  +
     

        (15) 

 

( )
( )

, , , 1, , , 1

, ,

2

, 1 , , 1 , , 1

,2

'

21 4

3

i j i j i j i j i j i j

i j i j

i j i j i j i j i j

D c i j

r

U V
X Y

U U
R E

P YY

     



  


− −

+ − −

− − −
+ + =

  

− + −   
+ +   

   

  (16) 

 

,

, , 1

1 D
i j

i j i jU U

Y




−

= +
− 

 
 

                          (17) 

 

and the boundary conditions with FDM are: 

 

, , ,

, , ,

0, 0, 0 at 1

0, 0, 1 at 1

i L i L i L

i L i L i L

U W L

U W L





= = = = −

= = = =
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5. STABILITY  

 

Excluding the stability and convergence criteria of the FDM, 

the analysis will remain incomplete since an explicit procedure 

is being used. For the considered problem the stability 

condition finally can be termed as follows:  

 

( )
2

1 4 2
1

3

D

r

VU R

X Y P Y

    
− + +  

   
 

 

Using 0.05, 0.0001Y  =  =  and the initial condition, the 

above equations gives 0.09 rP   when 1.00DR  . 

 

 

6. OUTCOMES WITH EXPLANATION  

 

Due to investigate the physical situation of the developed 

mathematical model, the steady-state numerical values have 

been computed for the non-dimensional velocity (𝑈)  and 

temperature (𝜃)  profiles within boundary layer by using 

FDM with the help of MATLAB R2015 software. The total 

outcomes can be explained in four parts. At first, the mesh 

sensitivity has been discussed to obtain the appropriate grid 

spacing for the numerical calculation. The further 

calculations have been carried out on applying this output. 

Secondly, time sensitivity has been explained to obtain the 

steady-state solution. The further calculations have been 

carried out on applying the above two outputs.  Thirdly, the 

effect of Reynolds number (𝑅𝑒)  and modified Hartmann 

number (𝑍) on the velocity (𝑈) and on the temperature (𝜃) 

distributions also on the local shear stress at upper Riga plate 
(𝜏𝐿)  and local Nusselt number at that plate (𝑁𝑢𝐿)  are 

discussed graphically. Furthermore, for brevity, the effect of 

other parameters like, Prandtl number (𝑃𝑟), Eckert number 
(𝐸𝑐) , Radiation parameter (𝑅𝐷) and Bingham number (𝜏𝐷) 

are shown in tabulated form. At last, the present result has been 

compared with several published results to test the stability of 

outputs. 

 

6.1 Examine mesh sensitivity 

 

 
 

Figure 3. Illustration of mesh sensitivity for velocity 

 

To find out the appropriate mesh space i.e. to find the 

appropriate values of m and n , the computations have been 

continued for three different mesh spaces such as 𝑚=20, 𝑛 =
20; 𝑚 = 30, 𝑛 = 30 and 𝑚=40, 𝑛=40 as shown in Figure 3; 

where, 𝑅𝑒 = 2.00,  𝑍 = 0.50,  𝑅𝐷 = 0.05,  𝐸𝑐 = 0.10,  𝑃𝑟 =

1.50, and 𝜏𝐷 = 0.001. The obtained curves are smooth and 

shows a negligible change among these curves. So that any of 

the above mesh sizes can be chosen as appropriate mesh size. 

Since it is better to choose the greater mesh size, thus 

𝑚=40 and 𝑛=40 can be chosen as the appropriate mesh size. 

 

6.2 Examine time sensitivity 

 

To complete the time sensitivity test of the developed 

mathematical model, the computations for U  and  have 

been continued for different dimensionless time step sizes 

such as  = 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50 and 4.00. It 

is observed that, the result of computations for different 

profiles, however shows little changes after  = 2.50 and 

shows negligible changes up to  = 4.00. Thus the solutions of 

all variables for  = 4.00 are taken essentially as the steady-

state solutions. The time sensitivity for U  and  are shown 

(see Figure 4).  

 

 
(a) 

 
(b) 

 

Figure 4. Illustration of time sensitivity for (a) Velocity 

and (b) Temperature distributions; where, 𝑅𝑒 = 2.00, 𝑍 =
0.50, 𝑅𝐷 = 0.05, 𝐸𝑐 = 0.10, 𝑃𝑟 = 1.50, and 𝜏𝐷 = 0.001 

 

It is seen from Figure 4 that the velocity and the temperature 

profiles reach their steady state monotonically. It also should 

be mentioned that the temperature profile reaches the steady 

state faster than the velocity profile. 

 

6.3 Effect of parameters 

 

In order to get the clear concept of physical phenomena of 

the developed model, the effects of parameters such as eR  and 

𝑍, with the appearance of (𝜏𝐷 = 0.001), (𝑃𝑟 = 1.50), (𝑅𝐷 =
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0.001) and (𝐸𝑐 = 0.50) are represented graphically through 

Figures 5-8. For brevity, the impacts of other parameters are 

presented in Table 1.  

The impression of Reynolds number (𝑅𝑒)  on U  and   

distributions as well as 𝜏𝐿 and 𝑁𝑢𝐿 are presented in Figures 5-

6. From Figure 5(a, b), it is observed that, the velocity and the 

temperature distributions increase with the increment of 𝑅𝑒. It 

is seen from Figure 6(a, b) that, number at upper Riga plate, 

both the local shear stress and Nusselt decreases with the rise 

of Re. 

Furthermore, the effects of modified Hartmann number (𝑍) 

on U and 𝜃 distributions as well as 𝜏𝐿 and 𝑁𝑢𝐿 are presented 

(see Figures 7-8). From Figure 7(a, b), it is realized that, both 

the velocity and the temperature distributions increase with the 

increment of Z . It is seen from Figure 8(a, b) that, at upper 

Riga plate, both the local shear stress and Nusselt number 

decreases with the increment of Z . 

 

 
(a) 

 
(b) 

 

Figure 5. Effects of 𝑅𝑒 on (a) Velocity and (b) 

Temperature distributions; where, 𝑍 = 1.50, 𝑅𝐷 = 0.001, 
𝐸𝑐 = 0.50, 𝑃𝑟 = 2.50, and 𝜏𝐷 = 0.001 at 𝜏 = 4.00 

 

Figure 5 shows that, both the distributions increases with 

the increment of eR . 

Figure 6 shows that, at upper Riga plate, both the local 

shear stress and Nusselt number decreases with the increment 

of 𝑅𝑒. 

Figure 7 shows that, both the distributions increase with the 

increment of 𝑍. 

Figure 8 shows that, at upper Riga plate, both the local 

shear stress and Nusselt number decreases with the rise of 𝑅𝑒. 

Furthermore, the effects of other parameters like 𝑃𝑟 , 𝐸𝑐, DR  

and 𝜏𝐷  on 𝜃 and 𝑁𝑢𝐿  are presented in the following tabular 

form. Table 1 shows that 𝑃𝑟  opposes 𝜃 and 𝑁𝑢𝐿 both. Again, 

𝐸𝑐  enhances 𝜃 while it decreases 𝑁𝑢𝐿 . Furthermore, 𝑅𝐷 

opposes 𝜃  while it increases 𝑁𝑢𝐿 . Also, for 𝜏𝐷  a negligible 

change occurs in 𝜃 while 𝜏𝐷 increases 𝑁𝑢𝐿. 

 

 
(a) 

 
(b) 

 

Figure 6. Effects of 𝑅𝑒 on (a) local shear stress, (b) local 

Nusselt number at upper Riga plate; where, 𝑍 = 1.50, 𝑅𝐷 =
0.001, 𝐸𝑐 = 0.50, 𝑃𝑟 = 2.50, and 𝜏𝐷 = 0.001 at 𝝉 = 𝟒. 𝟎𝟎 

 

 
(a) 

 
(b) 

 

Figure 7. Effects of Z  on (a) Velocity and (b) Temperature 

distributions; where, 𝑅𝑒 = 1.00, 𝑅𝐷 = 0.001, 𝐸𝑐 = 0.50, 
𝑃𝑟 = 2.50, and 𝝉𝑫 = 𝟎. 𝟎𝟎𝟏 at 𝝉 = 𝟒. 𝟎𝟎 
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(a) 

 
(b) 

 

Figure 8. Effects of Z  (a) local shear stress, (b) local 

Nusselt number at upper Riga plate; where, 1.00,eR =  

0.001,DR =  0.50,cE =  2.50,rP =  and 0.001D =  at 4.00 =  

 

Table 1. Effects of parameters on temperature distributions 

& Nusselt number at upper Riga plate 

 
Effect of Parameters Profiles 

rP  cE  DR  D    
LNu  

1.50 0.50 0.001 0.001 0.5783           

0.5781  

0.5778 

(Dec.) 

0.9233           

0.9158  

0.9081 

(Dec.) 

1.60    

1.70    

      

 0.40   0.5774 

0.5783  

0.5791 

(Inc.) 

0.9266 

0.9233  

0.9199 

(Dec.) 

 0.50   

 0.60   

      

  0.001  0.5783          

0.5782  

0.5764 

(Dec.) 

0.9233 

0.9408  

0.9830 

(Inc.) 

  0.100  

  1.000  

      

   0.0001 0.5783 

0.5783  

0.5783  

(Negligible 

change) 

0.9221          

0.9227  

0.9233 

(Inc.) 

   0.0005 

   0.0010 

 

6.4 Comparison  

 

A comparison with several published study has presented in 

the following tabular form. The new invention of the present 

research is the investigation of the flow of Bingham fluid 

through Riga plate while Bhatti et al. [33] studied the viscous 

nanofluid along a Riga plate with thermal radiation, Ayub et 

al. [34] considered nanofluid flow through Riga plate with slip 

effect, Ahmed et al. [35] studied the nanofluid flow through 

Riga plate with Buoyancy effect, Hayat et al. [36] considered 

the Squeezing flow through a Riga plate, and Abbas et al. [37] 

studied Cassion nanofluid flow through porous Riga plate. 

Table 2. Comparison of the present result with several published result 

 
      Output 

  

Effect on 

Present Result Bhatti et al. [33] Ayub et al. [34] Ahmed et al. [35] Hayat et al. [36] Abbas et al. [37] 

 
U  

  

L  

LNu  

Modified Hartmann number ( )Z  

Inc. 

Inc. 

Dec. 

Dec. 

Inc. Inc.   Inc. 

Dec. 

Inc. 

Inc. 

Dec. 

 

 

Inc. 

Inc. 

 

 

7. CONCLUTION 

 

The explicit FDM solution for the EMHD laminar flow of 

Bingham fluid through a parallel Riga plates with thermal 

radiation and viscous dissipation has been established. The 

results were discussed graphically for two important 

parameters like 𝑅𝑒 and 𝑍, on the velocity and the temperature 

distributions, also on the local shear stress and on the local 

Nusselt number at the upper plate. For brevity, the effect of 

other parameters such as rP , cE , DR  and D  are shown in the 

tabular form. The total results were discussed in the following 

four parts: 

1. Examine Mesh Sensitivity 

2. Examine Time Sensitivity 

3. Effect of Some Parameters 

4. Comparison with Published Results  

Finally, the important findings of this investigation are 

mentioned as follows: 

1. The converged solution is found at 𝑃𝑟 ≥ 0.09, 𝑅𝐷 ≤ 1.00 

with 𝛥𝑌 = 0.05 and 𝛥𝜏 = 0.0001. 

2. The appropriate mesh space is found at (m, n) = (40, 40).  

3. The steady-state solution is found at  = 4.00. 

4. The temperature profile approaches the steady state faster 

than the velocity profile. 

5. The velocity profile enhanced by eR  and Z  both. 

6. The temperature distributions increased by eR , Z  and cE . 

7. The temperature distributions reduced by rP and DR  both. 

8. The eR  and Z  opposes the local shear stress and Nusselt 

 

646



 

number both. 

9. The rP  and cE  reduces the Nusselt number while DR  and 

D  enhance. 
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NOMENCLATURE 

 

,u v  velocity components along the direction 
,x y  

1 2,  T T  temperatures at lower and upper plates 

0B  uniform magnetic field  

pc  specific heat at the constant pressure 

'k  magnetic permeability 
,U V  dimensionless velocity components  

LNu  dimensionless local Nusselt number at upper 

plate 

eR  Reynolds number 

rP  Prandtl number 

CE  Eckert number 

Z  modified Hartmann number  

DR  Radiation parameter  

0J  applied current density in the electrodes 

0M  magnetization of the permanent magnets 

mT  dimensionless mean fluid temperature 

a  width of magnets and electrodes 
*k  dimensional form is mean absorption 

coefficient 

 

Greek symbols 

 

 

*  Stefan-Boltzmann constant 
  density of the fluid 

D  Bingham number or dimensionless yield 

stress 
  electric conductivity of the fluid 

  thermal conductivity 
  dimensionless time 
  dimensionless temperature 

  viscosity 

L  dimensionless local shear stress at upper 

plate 
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