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In order to determine the health status of the neonates, studies focus on either statistical 

behavior of the thermograms’ temperature distributions, or just correct classifications of the 

thermograms. However, there exists always a lack of explain-ability for classification 

processes. Especially in the medical studies, doctors need explanations to assess the possible 

results of the decisions. Presenting our new study, how Convolutional Neural Networks 

(CNNs) decide the health status of neonates has been shown for the first time by using Class 

Activation Maps (CAMs). VGG16 which is one of the pre-trained models has been selected 

as a CNN model and the last layers of the VGG16 have been tuned according to CAMs. 

When the model was trained for 50 epochs, train-validation accuracies reached over 95% 

and test sensitivity-specificity were obtained as 80.701%-96.842% respectively. According 

to our findings, the CNN learns the temperature distribution of the body by mainly looking 

at the neck, armpit, and abdomen regions. The focused regions of the healthy babies are 

armpit and abdomen whereas of the unhealthy babies are neck and abdomen regions. Thus, 

we can say that the CNN focuses on dedicated regions to monitor the neonates and decides 

the health status of the neonates. 
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1. INTRODUCTION

Thermal information is a significant marker to assess 

conditions of the matters living or not living such as an engine 

[1], an environment [2], an organism [3] or a neonate [4]. 

Medical thermography is a relatively new technique being in 

computer aided diagnosis systems for evaluating bodies' 

temperatures and giving advises to doctors [5]. Studies about 

determination of healthy-unhealthy neonates in Neonatal 

Intensive Care Units (NICUs) by using both machine learning 

and deep learning algorithms [6, 7] have been realized; 

however, any of them includes explainable features. With this 

paper we show to answer: how CNNs makes a decision when 

babies are classified as healthy and unhealthy. 

The deep learning models such as CNNs correctly classify 

images into desired categories by learning their latent features. 

Although classifications are realized with small errors, they do 

not provide explainable information to assess the classification 

process. When the models could not learn features, developers 

try different model structures by adding more layers without 

knowing what will happen. Especially in medical studies, how 

the model decides and whether it learns are crucial points that 

totally should be explained. 

As can be shown in Figure 1 CNNs can make decisions as 

healthy and unhealthy, but in this case we only know these 

decisions made by a CNN (i.e. we do not know how CNNs 

makes decisions, where it focuses on, which part of images are 

important to decide etc.). 

The basic concept of explain-ability is to give confidence to 

users therefore they can do their works by checking models 

trained. Figure 2 shows the general concepts of XAI that 

consists of AI systems, applications such as security, medicine, 

military and industry, and effects of user side such as Why did 

it do it? How did it decide?, How can I trust? so on. 

Figure 1. Problem definition. While CNNs are able to 

correctly classify the thermograms, the causes of its decision 

are not known. In this study, we will be showing which 

regions are learned by the CNNs 

Figure 2. General concepts of XAI 
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We are filling the big gap in neonatal healthy-unhealthy 

classification with this study and showing differences between 

healthy and unhealthy neonates by visualizing activation maps. 

Thanks to this study, the doctors and specialists will be able to 

know how AI model decides for health status of the neonates. 

The main contributions of our study to literature are as follows: 

• We classify the neonatal thermograms as healthy 

and unhealthy. 

• Deep learning methods such as CNNs and transfer 

learning have been used. 

• This is the first study including explainable 

features of neonatal classification. 

The rest of the paper is that the related works are given in 

Section 2. The imaging system used in NICU can be seen in 

Section 3. We are giving the methods and evaluating metrics 

used in this study in Section 4. While Section 5 shows the 

experiments and results, the Conclusion can be seen in Section 

6. 

 

 

2. RELATED WORK 
 

Measuring the neonatal temperature distribution by using 

both thermography and thermometer, Clark and Stothers 

showed that the results of both techniques were similar [8]. 

Clark and Stothers’s study proved that thermal monitoring of 

neonates could be realized for the first time.  

Necrotizing enterocolitis (NEC) disease which causes a 

crucial neonatal health problem that affects low-birth weight 

infants in NICU [9] has been studied by Nur [10]. According 

to her findings, unhealthy neonates' thermal asymmetries are 

higher than healthy neonates'. 

Abbas et al. [11] proposed a non-contact monitoring system 

to measure respiratory of newborn babies. Abbas et al. [12] 

analyzed the heat flux during different medical scenarios such 

as an open radiant warmer and convective incubator to 

compensate the external effects while taking the thermograms 

from NICU.  

The abdominal and foot regions were measured for 

extremely premature neonates by Knobel-Dail et al. [13] using 

thermography and thermistors. They pointed out the regional 

variations in thermal condition of neonates with this study. 

We have been also working on this topic over the past three 

years and we showed how neonatal thermograms can be 

classified as healthy and unhealthy by using deep learning 

methods such as CNNs [7].  

These studies about neonatal monitoring with 

thermography and artificial intelligence shows the evidences 

of non-contact and harmless thermal monitoring system for 

neonates. However to give an important suggestions to doctors 

that are interested in diseases about neonates, we have to 

explain the decisions of our intelligent systems also known as 

models that can learn.  

When we come to the explanations of the models, we 

encounter three main explanation methods as numerical, rule-

based, and visual [14].  

The numerical methods measure the contributions of input 

features starting from zero to all or all to zero by using 

quantitative methods such as Information Gain (IG) [15]. On 

the other hand, the rule-based methods use the IG and extract 

various rules from inputs to outputs, and the best known rule-

based method is Decision Trees [16]. While these methods 

give information about classification process, they do not 

efficiently work in big models such as CNNs because of their 

limitations in view of time and computational costs.  

The visual expressions are typically used in convolution-

based methods by creating activation maps (also known as 

salient masks or heat-maps). Using the activation maps, the 

contributions of each pixels can be represented on the input 

images. One of the visual expression methods is Class 

Activation Maps (CAMs) [17]. With the developing of CAMs, 

researchers have been able to uncover the class-related pixels 

contributions to the classification process [18, 19].  

The three methods explained above can be combined to 

increase performance but it should not be forgotten that there 

is always a trade-off between the performance of a model and 

its explain-ability. 

 

 

3. OBTAINING THERMOGRAMS FROM NEONATAL 

INTENSIVE CARE UNIT (NICU) 
 

Thermograms used in this study were taken under difficult 

conditions from Selcuk University’s NICU with ethical 

approval from the Ethics Committee of Non-Interventional 

Clinical Research in Selcuk University, Faculty of Medicine 

(Number: 2015/16 – Date: 06.01.2015) because all time when 

we were taking thermograms from naked neonates we had to 

be fast and mistake-free.  

The VarioCAM HD Infrared Thermal Camera which its 

properties are at Table 1 was used to take thermograms. Our 

setup can be shown in Figure 3.  

 

Table 1. The properties of the infrared thermal camera 

 
Resolution 480x640 

Measurement Accuracy 1 Celcius +- 1% 

Thermal Resolution 0.02 Kelvin at 30 Celsius 

Frame per Minute 100 

 

 
 

Figure 3. System created for taking the thermograms from 

neonatal intensive care unit. (a) laptop (b) incubator (c) 

neonate (d) thermal camera 

 

With the help of nurses in NICU the neonates were stripped 

and the thermograms were taken for hundred times in a minute 

by using the system in Figure 3. The laptop was used to store 

the thermograms taken and export them as thermal maps to 

process with deep learning methods. 

While taking the thermograms reports of the neonates about 

their all information were also stored to label their status. The 

reports are created by two medical pediatric experts by 

analyzing the neonates' all conditions in different aspects such 
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as weights, gestational ages, health information, heart rate, 

respiratory rate and diseases. To our best knowledge there is 

no such a big neonatal thermal images dataset. The dataset 

used in this study consists of 3800 thermograms taken from 38 

different neonates half of them unhealthy and half healthy. 

As can be inferred from Table 2 and Table 3, the mean value 

of 19 unhealthy neonates' weights is 2094.684 g and standard 

deviation (std) is 785.826 g whereas 19 healthy neonates' are 

1583.429 g and 509.894 respectively. Since neonates are in 

NICU, they are premature babies having low weights. When 

we come to age distributions (gestational age), the unhealthy 

neonates' mean value is bigger than healthy neonates' 

(approximately 20 days), therefore, the unhealthy neonates 

have more mean weight than healthy neonates (approximately 

500 gr). 

 

Table 2. The characteristics of the healthy neonates 

 
Neonate Birth Weight (gr) Age (day) 

Healthy-1 1690 215 

Healthy-2 2200 224 

Healthy-3 1375 198 

Healthy-4 1870 223 

Healthy-5 1300 196 

Healthy-6 1825 238 

Healthy-7 1580 203 

Healthy-8 720 168 

Healthy-9 955 189 

Healthy-10 1175 200 

Healthy-11 1100 196 

Healthy-12 1900 229 

Healthy-13 2300 236 

Healthy-14 1195 206 

Healthy-15 950 201 

Healthy-16 2800 245 

Healthy-17 1605 237 

Healthy-18 1885 225 

Healthy-19 1660 225 

 

Table 3. The characteristics of the unhealthy neonates 

 
Neonate Birth Weight (gr) Age (day) 

Unhealthy-1 2305 239 

Unhealthy-2 1985 224 

Unhealthy-3 2055 238 

Unhealthy-4 1890 233 

Unhealthy-5 2200 245 

Unhealthy-6 3000 252 

Unhealthy-7 3300 232 

Unhealthy-8 1100 196 

Unhealthy-9 2015 238 

Unhealthy-10 2280 259 

Unhealthy-11 865 196 

Unhealthy-12 1590 210 

Unhealthy-13 1100 231 

Unhealthy-14 3300 266 

Unhealthy-15 3079 259 

Unhealthy-16 2700 245 

Unhealthy-17 565 196 

Unhealthy-18 2680 266 

Unhealthy-19 1790 217 

 

 

4. METHODS 

 

To explain how classes are detected for the neonates, a 

CAM structure is needed. For building a CAM structure we 

need CNNs model and transfer learning method. While the 

CNN learns the important features of the images and classifies 

them into classes desired, transfer learning reduces the needed 

time to train a CNN model effectively and improves the model 

performance. The models used in transfer learning are 

described as pre-trained models. By using a pre-trained model 

users do not train a CNN model from scratch, they only realize 

fine-tuning operations on pre-trained models which were 

trained with millions of different images by big companies to 

train model so that decrease the training time. 

As seen in Figure 4, first of all the important features such 

as edge, corner and texture are extracted by a pre-trained 

model and second of all the last layer of the pre-trained model 

is changed according to outputs desired to produce class-

related activations. Then the model is trained and the class-

related activations are obtained. 

 

 
 

Figure 4. The pipeline of the activation maps obtaining 

 

4.1 Convolutional neural networks (CNNs) 

 

To classify an image, it is necessary that important features 

(edges, corners and textures) are obtained. The CNN is one of 

the most used deep learning models due to its structure that 

can effectively learns deep features of images and classifies 

them into classes [20].  

CNNs consists of two main sides as convolutional and 

neural which are dedicated to feature engineering [21, 22] and 

classification processes, respectively. A CNN model is 

displayed in Figure 5. 

The convolutional side learns regional textures that are 

defined at the beginning like 3x3 or 5x5 sizes and the neural 

side learns global textures of its inputs. The meaningful 

features are extracted and classified according to classes 

desired. 

The convolutional side (like 1., 3., 5., 7., and 9. parts of 

Figure 5) can consist of dozens of different convolutional 

layers. While first convolutional layers learn low-level (small 

regional) features such as corners and edges, last layers 

typically learn high-level (big regional) features such as 

textures [23].  

Computational capability is an important key that is needed 

when a model is trained. In order to reduce dimensions and 

avoid high computation power, the pooling operation (2., 4., 

6., 8., and 10. parts of Figure 5) is used after the convolutional 

layers. 

 

4.2 Pre-trained networks (transfer learning) 

 

Transfer learning is the process of taking a CNN model that 

has been trained with large data sets and processors with high 

capacities. 

It is difficult to train a CNN from the scratch because of 

needing both high computational capabilities and thousands of 

labeled images. Pre-trained models come up with a solution to 

overcome those lack of needs [24-27]. A pre-trained model 

can be used for both feature extraction and fine-tuning issues.  
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Figure 5. A CNNs model with pre-trained VGG16 architecture 

 

Since lower-level features such as edges are typically the 

same in each classification process, instead of re-learning 

these features for every training, the weights of the first 

convolution layers of the pre-trained models can be directly 

used. Thus, the CNNs models learn convolution weights that 

find textures like tissues. 

We used VGG model which can be seen in Figure 5 with 16 

layers also known as VGG16 that has 5 pooling layers, 13 

convolutional layers, and 3 neural layers [27] (p.s. End-to-end 

21,137,986 features, 224x224x3 input size and 7x7x512 the 

last convolutional layer size). 

 

4.3 Class activation maps (CAMs) 

 

 
 

Figure 6. The activations that are needed to use in 

visualization 

 

There are visualization techniques in CNNs such as layers' 

outputs visualizations and filter visualizations. But these 

techniques are not enough to assess the decisions. CAMs are 

used to determine which parts of image are learned by CNNs.  

The layers' outputs give information about how each layers 

affect their connected layers, and which types of convolutions 

are learned by filter visualization. Since we need to explain 

how CNNs work, advanced techniques such as CAMs are 

necessary to visualize important regions (i.e. class-related 

activations) of images. 

We are trying to find activations seen in Figure 6 because 

those activations are related to diseases and if we apply them 

to images we are going to find the essential regions for 

classification. It is shown that how a CAM is built in Figure 7 

and the detailed representation of the CAM side is given in 

Figure 8. 

If Figure 5 and Figure 7 are compared, it is seen that some 

changes important are needed. To change the VGG16 model 

into CAMs model, we need to add a new convolution layer 

that its size is equal to our number of desired outputs as the 

last convolution.  

As can be seen in 9. part of Figure 5, there are three 

convolutional layers (#512, #512, and #512). Since our output 

has two classes as healthy/unhealthy, the last convolution's 

layer size has been changed from #512 to #2 (10. part of Figure 

7 and Figure 8).  

After obtaining the last convolution with the same sizes of 

output desired, Global Average Pooling (GAP) (Eq. (1)) [28] 

is applied to each last layer (11. part of Figure 7 and Figure 8). 

 

𝐺𝐴𝑃𝑛 =∑𝑓𝑛(𝑥, 𝑦)

𝑥,𝑦

 (1) 

 

where, fn(x, y) is width x height sized n th convolutional layer. 

With the GAP operation 1x1 sized convolutional layers are 

obtained, and then a neural layer is added as the last layer to 

the model (12. part of Figure 7 and Figure 8). 
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Figure 7. A CAM model created by pre-trained VGG16 model 

 

 
 

Figure 8. The detailed representation of CAMs and global average pooling 

 

When it comes to the activation maps the following 

equation is calculated: 

 

𝐼𝑐 =∑𝑤𝑛
𝑐𝐺𝐴𝑃𝑛

𝑛

 (2) 

 

where, Ic is the activation map calculated for class c, 𝑤𝑛
𝑐 

represents the weight of class c for n th layer (i.e. the 

importance of GAPn for the class c). Finally Softmax function 

[29] is calculated with the following equation: 

 

𝑆𝐹𝑇𝑐 =
𝑒𝐼𝑐

∑ 𝑒𝐼𝑐𝑐

 (3) 

The Softmax function gives probabilities that sum of them 

is equal to 1 for example 0.3 healthy and 0.7 unhealthy. 

 

4.4 Evaluation of the results 

 

Typically three metrics are used to evaluate the results. The 

ratio of correctly classified data to all data is described as 

accuracy (Eq. (4)). 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

where, TP is number of the real patient data labeled as patient, 

FP is number of healthy data labeled as patient, TN is number 
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of healthy data labeled as healthy, and FN is number of the 

unhealthy data as healthy. The confusion matrix is obtained by 

using those four expressions as shown at Table 4. 

 

Table 4. The confusion matrix 

 
Confusion Matrix Actual Class 

Class 

Predicted 

TP FN 

FP TN 

 

By using a confusion matrix, evaluations become more 

understandable and metrics such as specificity and sensitivity 

can be directly calculated. 

The ratio of the TN to all healthy data is described as 

specificity (Eq. (5)) and the ratio of the TP to all unhealthy 

data is described as sensitivity (Eq. (6)). 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

 

5. EXPERIMENTS AND RESULTS 

 

After explaining how the dataset was collected and which 

methods were used in this study, the experiments carried out 

are explained in this section. The overall experiments can be 

seen at Table 5. 

 

Table 5. The overall experiments 

 
1 Acquisition of thermal images 

2 Divide the images into train, validation, and test sets 

3 Resize images from 480x640 to 224x224 

4 Load the pre-trained VGG16 model 

5 Chance the size of last convolutional layer to two 

6 Remove the neural layer 

7 Add Global Average Pooling and a new neural layer 

8 Train the model 

9 Test the model 

 

As can be seen at Table 5, after the acquisition of 

thermograms, the dataset used in this study was created by 

using 100 thermograms from 38 different neonates half of 

them unhealthy and half healthy. To divide the dataset into 

training, validation, and testing sets 60, 10, and 30 

thermograms have been used from each neonate respectively. 

Therefore totally 2280, 380, and 1140 thermograms have been 

used for training, validation, and testing sets.  

There are some restrictions in pre-trained models such as 

resizing because they were trained by millions of images with 

determined sizes such as 224x224 or 299x299 and we cannot 

change their sizes. Since VGG16 only accepts 224x224 

images, all thermograms were resized from 480x640 to 

224x224. This situation may cause some information loos 

while training but the results are obtained over 90% accuracy 

for our classifications. 

To create the model that classifies the thermograms and 

uncovers the class-related activations, VGG16 was loaded and 

its last convolutional layer's size was changed from #512 to #2 

due to the fact that our desired output's size is two being 

healthy and unhealthy. 

Removing the neural layer coming from the last 

convolutional layer, the GAP and a new neural layer with 

softmax were added to the model. Then the hyper-parameters 

were tuned as can be seen at Table 6 and the training and 

validation processes started for 50 epochs. As shown in Figure 

9 the training and validation accuracies achieved over 95%.  

 

 
 

Figure 9. Accuracy values belonging training and validation 

phases 
 

At first stages of the training, the training and validation 

accuracies are relatively different due to lack of training 

computations to be realized. By training the model epoch by 

epoch the difference between the training and validation 

accuracy is getting close and at the end they are being the 

approximately same. 

 

Table 6. All values used in this study 

 
The pre-trained model used VGG16 

Input size 224x224 

#Unhealthy neonates’ thermograms 1900 

#Healthy neonates’ thermograms 1900 

#Training data 2280 

#Validation data 380 

#Testing data 1140 

Loss function Cross Entropy 

Optimizer RMSprop 

Learning rate 1e-5 

#Epoch 50 

Training-validation metric Accuracy 

Testing metrics Sensitivity-Specificity 

 

Table 7. The confusion matrix 

 
Confusion Matrix Actual Class 

Class 

Predicted 

460 110 

18 552 

 

After the model was trained, the test set was classified by 

the model. The obtained confusion matrix can be seen at Table 

7. The model classified 460 of 570 thermograms of the 

unhealthy neonates, and 552 of 570 thermograms of healthy 

neonates correctly. The sensitivity and specificity, therefore, 

were obtained as 80.701% and 96.842% respectively. This 

shows the model has more capability to detect healthy 

neonates. 

When we come to the activation maps, some randomly 

selected of them are shown in Figure 10 and Figure 11. 

Unhealthy neonates were placed in Figure 10, and healthy 

neonates were placed in Figure 11, and the activations 

belonging healthy and unhealthy classes are displayed on the 

images. 
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Figure 10. The outputs of the CAMs belonging three 

unhealthy neonates 

 
 

Figure 11. The outputs of the CAMs belonging three healthy 

neonates 

 

It is clearly seen that the model tries to find the thermal 

distributions of neck, armpit, and abdomen regions. Especially 
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for healthy class-related activations the model is looking for 

armpit regions whereas for unhealthy class-related activations 

the model is looking for neck and abdomen regions. 

These findings show us that the model learn the features of 

neonates that is meaning it does not look at the unrelated 

regions such as background. Moreover, related specific class 

regions are the same for the all thermograms. 

 

 

6. CONCLUSIONS 

 

Monitoring systems in the medicine are extremely crucial 

for early diagnosis of diseases and thermal information gives 

us ability to assess the health status of patients. The 

thermography method provides temperature values of the 

related skins, and neonatal monitoring could be realized by 

using both traditional and advanced ways. 

Image classification problems have been solved more 

efficiently (over 90% accuracy) with the development of deep 

learning models such as CNNs recently. However, their 

decision process still keeps its secret and lots of researcher 

tries to find the answer how CNNs works. 

So far CNNs have been used to classify the neonatal 

thermograms as healthy and unhealthy, but the question of 

how CNNs have decided could not be known. With the 

development of CAMs, we’ve been able to see important 

activations in convolutional layers. 

With the realizing study, we both classify the neonates as 

healthy and unhealthy and show how CNNs makes a decision 

by using CAMs. To avoid training CNNs from scratch, 

VGG16 has been used as a pre-trained model; therefore, both 

time and computational costs decreased. 

The developed model classified the thermograms of 

neonates with 80.701% (sensitivity) and 96.842% (specificity). 

Due to CAMs requirements such as global average pooling 

layer, most of the visual information are left at the last layer of 

the pre-trained model. This shows the model better learns the 

healthy neonates' thermograms than unhealthy neonates'. 

Normally we showed in our previous studies that a CNN 

model classifies both healthy and unhealthy neonatal 

thermograms with the same performance as about 95% 

accuracy. 

Our main findings about explain-ability show that the CNNs 

are looking for neck, armpit, and abdomen regions' thermal 

distribution. Moreover, the class-related activations of the 

healthy babies are on the armpit and abdomen regions whereas 

activations of the unhealthy babies are on the neck and 

abdomen regions. 

To conclude, our research results show that: 

• Because of the CAMs restricted structure, VGG’s 

classification ability decreases but in our study we 

successfully trained the VGG model and achieved 

sensitivity-specificity as 80.701% and 96.842% 

respectively. 

• The decision process of the health status detection 

was not known before this study, by highlighting 

the main areas that effect the outputs we show that 

how VGG16 decides on neonatal thermograms. 

These results have vital importance for both us and medical 

specialists because the results show that the CNNs learn the 

specific regions of neonates being healthy and unhealthy. 

In future studies we will be focusing on disease-specific 

activations and giving their importance for every disease 

neonates have. 
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