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In the identification of which stages Alzheimer’s patients are in, the application of the 

medical imaging technology helps doctors give more accurate qualitative diagnoses. 

However, the existing research results are not effective enough in the acquisition of valuable 

information from medical images, nor can they make full use of other modal images that 

highlight different feature information. To this end, this paper studies the application of deep 

learning and brain images in the diagnosis of Alzheimer’s patients. First, the image 

preprocessing operations and the brain image registration process were explained in detail. 

Then, the image block generation process was given, and the degrees of membership to 

white matter, gray matter and cerebrospinal fluid were calculated, and the brain images were 

also preliminarily classified. Finally, a complete auxiliary diagnosis process for Alzheimer’s 

disease based on deep learning was provided, an improved sparse noise reduction auto-

encoder network was constructed, and the brain image recognition and classification based 

on deep learning were completed. The experimental results verified the effectiveness of the 

constructed model. 

Keywords: 

deep learning, brain image recognition, 

Alzheimer’s disease 

1. INTRODUCTION

With the aging of population, the prevalence of Alzheimer’s 

disease is increasing year by year [1-3]. While the cause of 

Alzheimer’s disease is still uncertain, it can bring various 

irreversible harms to patients such as loss of memory, mobility 

impairment and loss of cognitive function [4-7]. Fortunately, 

the rapidly developing medical imaging technology, which 

provides abundant high-quality ecological and physiological 

information [8-11], can be applied to identify which stages 

Alzheimer’s patients are in, and in this way, doctors can give 

more accurate qualitative diagnosis of patients’ conditions. 

Now in the era of big data, there have been increasingly more 

deep learning methods applicable for large-scale, high-

dimensional medical imaging analysis [12-14]. And therefore, 

how to improve a neural network model’s ability to analyze 

medical images of Alzheimer’s disease has become a realistic 

and also challenging task. 

Early diagnosis plays an important role in the prevention 

and treatment of Alzheimer’s disease. Moeskops et al. [15] 

proposed predicting Alzheimer’s disease with a deep three-

dimensional convolutional neural network. The network can 

learn and capture the general features of Alzheimer’s 

biomarkers and adapt to datasets in different fields. Hosseini-

Asl et al. [16] emphasized the inaccuracy and limitations of 

some Alzheimer’s disease test methods such as clinical history 

examination, simple mental status examination and paired 

associate learning, and suggested that the more accurate 

diagnosis method based on neuroimaging data would be the 

future trend. Gunawardena et al. [17] successfully 

distinguished the functional magnetic resonance imaging 

(MRI) data of Alzheimer’s patients from those of the normal 

control group using the convolutional neural network and the 

famous LeNet-5 structure, with an accuracy of 96.85%. Sarraf, 

and Tofighi [18] pointed out that Alzheimer’s disease may be 

partially caused by the loss of white matter integrity and 

interruption of connectivity and that the new microstructure 

measurement values derived from the additional dMRI model 

may contain the geometric structure, diffusion rate and 

complexity of diffusion anisotropy, the estimated number of 

distinguishable fiber compartments, the number of 

decussating fibers, and the dispersion of nerve axons. Nir et al. 

proposed an improved hippocampus segmentation method 

based on the watershed algorithm, and used two methods to 

convert brain images to the binary form - the first one is block 

averaging, mask and concept tagging, and the second is top hat, 

mask and concept tagging [19, 20]. Ismail et al. [21] conducted 

a comparative study on the four types of fractional-order filters 

for edge detection, analyzed the noise performance of these 

filters under random Gaussian noise and salt-and-pepper noise, 

and gave a numeric comparison of the peak signal-to-noise 

ratios of the detected images. 

Through comparison of the studies on different medical 

image classification methods, it can be seen that, in previous 

studies, most experiments required a lot of work to preprocess 

single-modal medical images and extract image features based 

on priori knowledge, which not only reduces the valuable 

information acquired from medical images, but also makes it 

impossible to make full use of other modal images that 

highlight different feature information. To this end, this paper 

studies the application of deep learning and brain images in the 

diagnosis of Alzheimer’s patients. First, Section 2 elaborates 

on the preprocessing operations such as deskulling, template 

generation, template segmentation and reconstruction, 

template registration and grayscale normalization of images, 

and introduces in detail the brain image registration process. 
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Section 3 gives the image block generation process, and 

completes the calculation of the membership degrees of brain 

tissues, namely white matter, gray matter and cerebrospinal 

fluid, and the preliminary classification of brain images. 

Section 4 provides a complete auxiliary diagnosis process for 

Alzheimer’s disease based on deep learning, constructs an 

improved sparse noise reduction auto-encoder network, and 

completes brain image recognition based on deep learning. 

The experimental results prove the effectiveness of the 

constructed model. 

 

 

2. BRAIN IMAGE PREPROCESSING METHOD 

 

In this section, 100 samples of structural MRI images and 

positron emission tomography (PET) images of the same 

individual were first selected from the ADNI database, which 

is dedicated to research on reducing or suppressing the 

progression of Alzheimer’s disease, and then, all the sample 

images were pre-processed through a number of operations, 

including deskulling, template generation, template 

segmentation and reconstruction, template registration, and 

image grayscale normalization. The registration process of the 

structural MRI images and PET images of the Alzheimer’s 

patient is described in detail below. Figure 1 shows the 

corresponding brain image preprocessing process. 

 

 
 

Figure 1. Preprocessing process of the brain images of an 

Alzheimer’s patient 

 

The registration of structural MRI images and PET images 

is a spatial conversion process mapping the points on the 

reference template image to the homologous points on the 

image to be registered. Figure 2 shows the registration process 

of the brain images of the Alzheimer’s patient. In this paper, 

the mutual information method was used to estimate the 

registration quality of the image to be registered and the 

reference image, which is to obtain the mutual information as 

the multi-modal medical image registration criterion based on 

the calculation of the generalized distance between the joint 

probability distribution and the independent probability 

distribution of the image to be registered and the reference one. 

 

 
 

Figure 2. Registration process of brain images 

Given two 3D images A and B after transformation o, 

assuming that the gray values of the points on images A and B 

are represented by a and b, respectively, that the joint 

grayscale histogram of images A and B is denoted as fo(a,b), 

and that the corresponding independent and joint probability 

density functions are represented by ρA,o(a), ρB,o(b) and 

ρAB,o(a,b), then: 
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Eq. (4) gives the definition of mutual information HX(β): 
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The optimal registration parameter β* can be calculated by 

Eq. (5): 

 

( )* max HX


 =   (5) 

 

Finding β* based on the search optimization algorithm is the 

registration process of images A and B, whose purpose is to 

maximize HX(β). 

During the registration process, it is necessary to compare 

the brightness of the image to be registered with that of the 

reference image. An interpolator can be used to calculate the 

brightness of a point on the reference image that is mapped to 

a non-grid location on the image to be registered. Since the 

brightness values of the 8 vertices of the cubic grid unit where 

the point is located on the reference image are known, a 

trilinear interpolator that can perform 3D linear interpolation 

on 8 brightness values was applied here. Suppose that the 

brightness values of the 8 points are represented by Q0-Q7, 

respectively. According to the definition of trilinear 

interpolation, the pixel value UQ of the point Q(a,b,c) on the 

reference image can be expressed by Eq. (6): 
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The optimizer selected in this paper uses the idea of 

Newton’s method, as shown in Eq. (7): 
 

0 1 1... ...l la a a a +       (7) 

 

In order to generate al+1 from al, the quadratic function W(a) 

is used to approximate g(a), and then there is: 
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( ) ( ) ( ) ( )
1

2

T
l T l l l

l lg a h a a a a H a a= +  − + − −   

 

where, hl=∇g(al)T, Hl=∇2g(al). Let ∇W(a)=hl+Hl(a-al)=0. If 

the Hesse matrix Hl is positive definite, that is, Hl>0, then Hl
-

1>0, and there is Newton’s iterative formula: 

 
1 1l l

l la a H h+ −= −   (9) 

 

Affine transformation is a global transformation in linear 

image registration. The purpose is to make the images to be 

registered at different time, from different imaging devices and 

under different conditions spatially consistent with the 

reference image. 

Suppose that there are two 3D images P1 and P2, among 

which, the image to be registered is denoted as P1, and the 

reference image as P2, and that their corresponding gray values 

are denoted as P1(a,b,c) and P2(a,b,c). Suppose that the 3D 

spatial geometric transformation is represented by g, and that 

the 1D grayscale transformation by h. Eq. (10) shows the 

registration process of P1 and P2: 
 

( ) ( )( )( )2 1, , , ,P a b c h P g a b c=   (10) 

 

Spatial transformation and geometric transformation are the 

keys to the registration of the two images, and the grayscale 

transformation h is generally unnecessary. Based on this, the 

above formula can be converted to: 

 

( ) ( )( )2 1, , , ,P a b c P g a b c=   (11) 

 

There are four types of geometric transformations in linear 

registration - translation, scaling, cropping and rotation, which 

are not elaborated in detail here. Instead, the Log-Domain 

differential homeomorphic registration method for local 

registration is described in detail. This method can realize the 

registration of the details of the image to be registered, that is, 

it can find the most suitable spatial transform r that realizes the 

optimal matching of the images P0 and P1. 

Assuming that the similarity of two images can be 

characterized by the similarity criterion Com(P0,P1,r), and that 

the normalization term used to control the smoothness of r is 

represented by NO h(r), the following energy equation can be 

established: 
 

( ) ( ) ( )0 12 2

1 1
, ,  

i NO

S r Com P P r NO h r
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= +   (12) 

 

where, the parameters φi and φNO are respectively used to 

control the noise in the image and the degree of normalization 

required for registration. The deformation parameters need to 

be continuously optimized during the registration process. 

Assuming that the unit transformation during algorithm 

initialization is represented by r, and that the update field 

calculated in each iteration in the optimization and iteration 

process of the deformation parameters is represented by λ, then: 
 

( ) ( )
2

0 1 0 1, , , , ,corr

addS P P r Com P P r  = + +   (13) 

 

where, λ is added to r at the end of each iteration; in other 

words, r will be updated every time the iteration is completed 

until the end of the iteration. 

If the optimization process is constrained within the 

differential homeomorphic space, deformation fields that meet 

the continuous, smooth, and one-to-one mapping requirements 

can be obtained. All the deformation fields form a Lie group, 

and then the updated energy equation in the differential 

homeomorphic space can be further obtained, as shown in Eq. 

(14): 

 

( ) ( )( )
2
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diffeoS P P r Com P P r exp  = +   (14) 

 

where, the “○” operation is a combination of spatial 

transformation + superposition, which is more accurate and 

reasonable than direct superposition of quantitative values. 

In order to simplify the calculation process, the entire 

differential homeomorphic mapping is optimized in the 

logarithmic domain, so here eu is used to take the place of r, 

and then: 

 
d ue r e e e = =   (15) 

 

The Log-Domain differential homeomorphic optimization 

process is described in detail as follows: 

Step1: Determine the initial value as follows: 

 

',Pt Pt = =   (16) 

 

Step2: Complete the first iteration of the optimization 

process based on the following formula: 
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where,  
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That is, perform total differentiation in all directions in the 

differential homeomorphic space: 
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Step3: Complete the second iteration of the optimization 

process based on the following formula: 
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Step3: Repeat the operation to obtain the optimal result: 

 
( ) ( )( ) ( ) ( )( )' '

,
m m m m

exp u exp u = = −   (24) 

 

 

3. IMAGE BLOCK TAG FUSION 

 

 
 

Figure 3. Image block generation process 

 

As an algorithm for local weighted voting, the tag fusion 

algorithm based on the similarity of image blocks believes that 

the more similar a pixel point or image block of the image to 

be registered is with that of the reference image, the greater 

weight the corresponding tag has. Figure 3 shows the 

schematic diagram of the image block generation process. The 

similarity of image blocks is often measured by Euclidean 

distance. First, analyze the scenario where the image block is 

extremely small, that is, there is only one pixel point in the 

block. Assuming that the image block of the image to be 

registered is represented by TU1=[h1], and that the image block 

of the reference image is represented by TU2=[h2], Eq. (25) 

gives the calculation formula of the Euclidean distance D 

between the two: 

 

1 2h h = −   (25) 

 

It can be seen from the above formula that the Euclidean 

distance between the pixel of the image to be registered and 

that of the reference image is the difference between the two 

pixel points. If the pixel values of the two pixels are equal, that 

is, TU1=TU2, then the similarity of the images can be 

expressed as δ=0. For an actual image with noise, when δ is 

not equal to 0, the pixel values of the two pixels may still be 

equal. In this paper, the Gaussian-weighted Euclidean distance 

shown in Eq. (26) was used to measure the similarity between 

the two: 
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2

1 2h h

fH e

−
−
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(26) 

 

When the image block contains m pixels, let TU1
-

=[h1,h2,…,hn ]T and TU2
-=[h'1,h'2,…,h'm]T, and then the 

calculation formula of the Euclidean distance between the two 

is expressed as Eq. (27): 

 
2
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2

TU TU = −   (27) 

 

Assuming that the 2-norm of the vector is represented by 

||*||2, then: 
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Eq. (29) shows the corresponding Gaussian weighted 

Euclidean distance calculation formula: 

 
2

1 2
2

TU TU

fH e

−
−

=   
(29) 

 

For the pixel i of the image to be registered, the image block 

TU with a size of m×m and 1 as the center pixel is represented 

by a column vector with a size of m2×1. Suppose that the image 

blocks in the similar set of TU is denoted as SIBj, and that the 

number of image blocks in the similar set as n, then j∈[0,n]. 

The similar set S={SIBj} of TU is an m2×n matrix. The weight 

χ={χj} of the image blocks in the similar set is an n×k column 

vector. Assuming that the parameter that controls the 

sparseness of the weight coefficients is denoted as σ, the sparse 

decomposition formula based on image blocks is expressed as 

follows: 

 

2

1

1
arg min

2
SIB S


    = − +   (30) 

 

where, χ* is the sparse weight of the image blocks in the similar 

set. After χ* is obtained, the tag values of the image blocks in 

the image to be registered can be further obtained based on 

local weighted voting. Instead of binary local weighted voting, 

the goal of this research is to achieve the ternary classification 

of brain tissues in the structural MRI images and PET images, 

which requires comparison of the degrees of membership to 

different brain tissues. 

Suppose that the three column vectors used to characterize 

whether the pixel point at the corresponding position of TUj 

belongs to any of the three types of brain tissues - white matter, 

gray matter, and cerebrospinal fluid - are represented by Kon
j, 

Khn
j and Kzrg

j, and that the size of each column vector is m2×1. 

Suppose that the column vectors characterizing the 

corresponding degree of membership is represented by Uon
i, 
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Uhn
i and Uzrg-

i, and that the size is also m2×1. The tag fusion 

algorithm based on the local weighted voting mechanism is 

described in detail as follows: 

First, for any pixel point i of the brain region Ψ, calculate 

the degrees of its membership to the three types of brain tissues 

- white matter, gray matter, and cerebrospinal fluid – 

according to Eq. (31), (32) and (33) as follows: 
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Then compare the degrees of membership, that is, Uon
i, Uhn

i 

and Uzrg-
i, of the same pixel point, and classify the pixel point 

to the type with the largest membership degree. Finally, repeat 

the above two steps until all pixels are classified. 

 

 

4. BRAIN IMAGE RECOGNITION BASED ON DEEP 

LEARNING 
 

 
 

Figure 4. Auxiliary diagnosis process for Alzheimer’s 

disease based on deep learning 

 

In order to obtain more accurate recognition results of 

structural MRI and PET images, an improved sparse noise 

reduction auto-encoder network was constructed, which 

contains a sparse noise reduction auto-encoder and a softmax 

classifier, and the quasi-Newton method was used to solve the 

cost function of sparse noise reduction auto-encoding. Figure 

4 shows a complete auxiliary diagnosis process for 

Alzheimer’s disease based on deep learning. Figure 5 shows 

the structure of the proposed improved sparse noise reduction 

auto-encoder network. 

Assuming that the step size is represented by ξl, and that the 

direction of the l-th search is represented by FXl, the iterative 

formula of the quasi-Newton method is expressed by Eq. (34): 

 

1l l l la a FX+ = +   (34) 

 

The step size ξl can be calculated by Eq. (35): 

( ) l l l largmin g a FX = +   (35) 

 

Suppose that the inverse matrix of the Hessian matrix is 

represented by NJl, and that the second-order differentiable 

objective function is represented by g, the direction FXl of the 

l-th search can be calculated by Eq. (36): 

 

l l lFX NJ g= −    (36) 

 

In order to solve the storage problem of the approximate 

Hessian matrix, the quasi-Newton method based on limited 

memory was adopted in this paper, which uses the gradient 

information of the last n iterations to construct NJl on the basis 

of the original algorithm. Eq. (37) shows the update formula 

of NJl: 
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  (37) 

 

where,  
 

T

l l l lU SR CF CH= −   (38) 

 

1
l T

l lCF CH
 =   (39) 

 

( ) ( )1l l lCF g a g a+= −   (40) 

 

1l l lCH a a+= −   (41) 

 

In the quasi-Newton method based on limited memory, the 

inverse matrix NJl of the complete Hessian matrix is no longer 

saved; instead, saving the vectors of the last n steps in the 

vector sequence CHl and CFl will suffice. 
 

 
 

Figure 5. Structure of the proposed improved sparse noise 

reduction auto-encoder network 
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In order to avoid the network over-fitting problem caused 

by the small sample size, the sparse penalty term EDIL and the 

weight of the hidden layer θ were calculated. Assuming that 

the weight attenuation term to prevent over-fitting is 

represented by EDθ, the overall cost function is expressed by 

Eq. (42): 
 

IL Q SPED ED ED ED = + +   (42) 

 

The calculation formula of EDθ is shown in Eq. (43): 
 

( )
2

1 1

1

2

m FX

ji

i j

ED 
= =

=    (43) 

 

Assuming that the number of iterations is denoted as l, that 

the step size of the hidden layer as ξl, and that the vector 

direction as FXl, the update of EDIL and θ can be completed 

through Eq. (44) and (45): 
 

1k k l lFX  + = +   (44) 

 

( ) ( )minIL l l l IL l l lED FX ED FX   + = +   (45) 

 

Suppose that the network input vector is denoted as SR, that 

the weight difference of the last two iterations as DAl, and that 

the difference between the partial derivatives of two adjacent 

iterations as PDl. Through multiple experiments, NJl-n and Φl 

in the model can be calculated as follows: 
 

0

l lNJ Φ SR=   (46) 

 

1 1

1 1

T

l l

l T

l l

DA PD
Φ

PD PD

− −

− −

=   (47) 

Through continuous repeat of the above iteration steps, the 

value of EDIL can be gradually reduced until the training of the 

neural network is completed. Finally, the updated values of 

EDIL and θ can be used as the input to the Softmax classifier 

to achieve image recognition and classification. 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In this paper, the images to be registered for the auxiliary 

diagnosis after tag fusion were evaluated in terms of 

information entropy, correlation coefficient and peak signal-

to-noise ratio. Table 1 shows the evaluation results. It can be 

seen that the information entropy of the tag fused brain images 

was improved, indicating that the amount of information 

contained in the images to be registered increased after the 

image block tag fusion. Correlation coefficient 1 (with the 

structural MRI image) and correlation coefficient 2 (with the 

PET image), peak signal-to-noise ratio 1 (to the structural MRI 

image), and peak signal-to-noise ratio 2 (to the PET image) 

were all improved. Both correlation coefficient 1 and 

correlation coefficient 2 increased, indicating that the images 

to be registered after image block tag fusion are closely 

correlated to the original single-modal brain images, thus 

verifying the feasibility of the image block tag fusion method 

proposed in this paper. Both peak signal-to-noise ratio 1 and 

peak signal-to-noise ratio 2 are large, showing that the tag 

fused images obtained from the proposed algorithm extracted 

a lot of information from the original brain images and that the 

denoising effect was excellent. At the same time, it can be seen 

that, through image block tag fusion, the registration results 

were good, proving that the proposed algorithm has a certain 

robustness. 

 

 

Table 1. Evaluation of tag-fused images 
 

Image 0.2MRI+0.8PET 0.3MRI+0.7PET 0.4MEI+0.6PET 0.5MRI+0.5PET 0.4MRI+0.6Temp 

Information entropy 4.0521 4.023 4.0356 4.0532 3.8645 

Correlation coefficient 1 - 0.89475 0.92574 0.98564 0.97468 

Correlation coefficient 2 - - - 0.98564 0.85962 

Peak signal to noise ratio 1 - - - 15.2677 16.7548 

Peak signal to noise ratio 2 - - - 26.4852 24.2684 

Image 0.5MRI+0.5Temp 0.6MRI+0.4Temp 0.4PET+0.6Temp 0.5PET+0.5Temp 0.6PET+0.4Temp 

Information entropy 3.8956 3.7648 4.0859 4.0326 4.0516 

Correlation coefficient 1 - - 0.98567 0.96254 - 

Correlation coefficient 2 0.99647 0.98745 - - 0.96325 

Peak signal to noise ratio 1 18.2574 19.2684 32.5746 34.5186 - 

Peak signal to noise ratio 2 22.5486 19.2643 - 18.2635 19.4856 

 

 

 

 
 

Figure 6. Decline curve of the network loss function 
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For the ADNI database, after the registration of the brain 

images to be registered, the Dice values of the brain tissues, 

namely white matter, gray matter and cerebrospinal fluid, are 

higher than those obtained by the traditional image registration 

method. It can be seen from the comparison of the loss curves 

in Figure 6 that, the loss function value of the algorithm using 

the idea of image block tag fusion converged faster in the 

network training stage, and that the downward trend of the 

curve was more stable. 

 

 
 

Figure 7. Comparison of the recognition rates of different 

brain tissues 

 

Table 2 compares the brain image recognition accuracy of 

different models. It can be seen that method 1 proposed in this 

paper is better than the stacked auto-encoding + BP neural 

network model 2, the traditional stacked auto-encoding model 

3 and the weighted multi-modal classification model 4. Then, 

the grayscale image features of different brain tissues were 

extracted, and the degrees of membership to the brain tissues 

- white matter, gray matter and cerebrospinal fluid - were 

compared based on the data source. Figure 7 shows the 

comparison results of the recognition rates for different brain 

tissues. It can be seen that the calculation method proposed in 

this paper is also superior to other models in terms of the brain 

tissue recognition rate. 

 

Table 2. Comparison of the brain image recognition accuracy 

of different models 

 
Model No. 1 2 3 4 

Training times 

1 92.31 81.46 77.58 66.75 

2 90.44 82.45 76.25 76.48 

3 94.61 80.48 73.56 68.51 

4 89.39 81.74 74.81 65.15 

5 88.26 81.49 76.85 69.28 

6 92.87 80.52 74.28 65.43 

Mean 91.31 81.75 75.48 68.75 

 

In order to further verify the effectiveness of the proposed 

algorithm in the auxiliary diagnosis of Alzheimer’s disease, 

the brain images of patients with mild cognitive impairment 

were also used in the comparative experiment to show a more 

comprehensive comparison of the recognition rates for 

different types of brain images and test the sensitivity and 

specificity of different models towards different image 

modalities. Therefore, in addition to the samples of patients 

from the ADNI database, 122 brain images of patients with 

mild cognitive impairment were also added. Table 3 shows the 

results of the comparative experiment on different types of 

images. 

As can be seen from the table, in the “Alzheimer’s disease-

normal” classification experiment, for MRI images, the 

proposed model had the highest accuracy - the accuracy of 

brain image recognition and classification was 91.2%, the 

sensitivity 92.5%, and the specificity 93.2%. In the 

“Alzheimer’s disease-mild cognitive impairment” 

classification experiment, for MRI images, the proposed 

model still had the highest accuracy of brain image recognition 

and classification - 89.2%. The specificity was 88.1%, and the 

sensitivity was relatively lower - 78.2%, which was lower than 

the sensitivity of 79.2% towards PET images. 

 

Table 3. Experimental results of different types of images 

 
Type Alzheimer’s disease - normal 

Model No. 1 2 3 

Image modality Structural MRI images PET images Structural MRI images PET images Structural MRI images PET images 

Accuracy 91.2 86.2 88.4 87.2 87.1 86.2 

Specificity 93.2 94.3 86.2 85.1 86.2 81.2 

Sensitivity 92.5 82.1 90.2 90.3 83.2 78.4 

Type Alzheimer’s disease - mild cognitive impairment 

Model No. 1 2 3 

Image modality Structural MRI images PET images Structural MRI images PET images Structural MRI images PET images 

Accuracy 89.2 80.2 71.4 75.2 76.4 71.0 

Specificity 88.1 89.5 75.1 72.3 79.2 76.1 

Sensitivity 78.2 79.2 66.4 69.2 75.2 76.8 

 

 

6. CONCLUSION 
 

This paper studied the application of deep learning and brain 

images in the diagnosis of Alzheimer’s patients. It first 

completed the image preprocessing operations and brain 

image registration. Then, it gave the image block generation 

process, and completed the calculation of the membership 

degrees of white matter, gray matter and cerebrospinal fluid. 

Finally, it provided a complete auxiliary diagnosis process for 

Alzheimer’s disease based on deep learning and constructed 

an improved sparse noise reduction auto-encoder network for 

brain image recognition and classification. The experimental 

results showed the evaluation on the tag fused images, and 

verified that the registration results of images was all good 

after image block tag fusion, so the proposed algorithm has 

certain robustness. The decline curves of the network loss 

function drawn verified the convergence of the proposed 

neural network during the training stage. The comparison of 
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the recognition rates for different types of brain tissues and the 

accuracy of different models in brain image recognition 

proved that the proposed method is superior to other models in 

terms of brain tissue recognition rate. The comparative 

experimental results with respect to different types of images 

verified that the proposed model is still effective for the 

classification of Alzheimer’s disease - mild cognitive 

impairment. 
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