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Retinal vessel segmentation plays a significant role in the diagnosis and treatment of 

ophthalmological diseases. Recent studies have proved that deep learning can effectively 

segment the retinal vessel structure. However, the existing methods have difficulty in 

segmenting thin vessels, especially when the original image contains lesions. Based on 

generative adversarial network (GAN), this paper proposes a deep network with residual 

module and attention module (Deep Att-ResGAN). The network consists of four identical 

subnetworks. The output of each subnetwork is imported to the next subnetwork as 

contextual features that guide the segmentation. Firstly, the problems of the original image, 

namely, low contrast, uneven illumination, and data insufficiency, were solved through 

image enhancement and preprocessing. Next, an improved U-Net was adopted to serve as 

the generator, which stacks the residual and attention modules. These modules optimize the 

weight of the generator, and enhance the generalizability of the network. Further, the 

segmentation was refined iteratively by the discriminator, which contributes to the 

performance of vessel segmentation. Finally, comparative experiments were carried out on 

two public datasets: Digital Retinal Images for Vessel Extraction (DRIVE) and Structured 

Analysis of the Retina (STARE). The experimental results show that Deep Att-ResGAN 

outperformed the equivalent models like U-Net and GAN in most metrics. Our network 

achieved accuracy of 0.9565 and F1 of 0.829 on DRIVE, and accuracy of 0.9690 and F1 of 

0.841 on STARE. 
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1. INTRODUCTION

Retinal vessel segmentation from color fundus images is 

important to many ophthalmological applications, including 

diagnosis, treatment, and surgery planning [1, 2]. The 

morphological and topographical changes of the retinal vessels 

are closely related to many retinal diseases and systemic 

diseases, such as hypertension, diabetic retinopathy, glaucoma, 

and arteriosclerosis [3]. Therefore, the research of retinal 

vessel segmentation has a significance in medical applications. 

Because the manual segmentation of retinal vessels is time 

consuming and demanding for doctors, experts around the 

world have developed many retinal vessel segmentation 

algorithms, which fall into the following categories: multiscale 

approaches, mathematical morphology approaches, matched 

filtering approaches, model-based approaches, vessel tracking 

approaches, and pattern recognition approaches [4-6].  

The past three decades have witnessed the emergence of 

multiple excellent fundus segmentation algorithms. For 

example, Martinez-Perez et al. [7] segmented blood vessels 

automatically from retinal images through multiscale feature 

extraction. Zana and Klein [8] combined opening operation, 

reconstruction, and top-hat transform with curvature 

evaluation to segment vessel-like patterns. Hoover et al. [9] 

designed a matched filter response with a dark value 

representing a strong response, and used threshold probing to 

segment vessels from retinal images. Based on super-pixels, 

Zhao et al. [10] developed a chain tracking method to trace 

retinal vessel skeletons. Lam et al. [11] presented a 

regularization multi-concavity model, and offered different 

concavity measures to detect retinal vessels. Dai et al. [12] 

classified enhanced retinal images as vessels and non-vessels, 

using Gaussian mixture model (GMM) and gray voting. 

In the past few years, deep learning has been increasingly 

used in image segmentation due to its superiority over 

traditional methods [5, 13-15]. For retinal vessel segmentation, 

deep learning can autonomously extract the hierarchical 

features from the color fundus images, and the parameters of 

the convolutional layer can be learned through training [14]. 

Hu et al. [16] integrated the conditional random field (CRF) to 

convolutional neural networks (CNNs), forming an integrated 

deep network for retinal vessel segmentation. Yan et al. [17] 

employed joint segment-level and pixelwise losses in U-Net to 

segment retinal vessels. Maninis et al. [18] established a 

unified CNN framework to segment both retinal vessels and 

optic discs. Uysal and Güraksin [19] designed a CNN to 

extract retinal vessels by detecting regional vessel slices 

instead of full-size images. Samuel and Veeramalai [20] 

improved VGG-16 by using two-vessel extraction layers with 

added supervision. Sathananthavathi and Indumathi [21] put 

forward an encoder-enhanced atrous U-Net architecture for 

retinal vessel segmentation. Lin et al. [22] constructed a multi-
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path scale network with a high-resolution main path and two 

low-resolution branches. 

The generative adversarial network (GAN) has also 

attracted much attention, thanks to its ability to create an 

output as realistic as the gold standard [23]. The conventional 

GAN consists of a generator and a discriminator. The former 

generates a new sample from the potential distribution of real 

samples, while the latter, a binary classifier, tries to judge 

whether the input sample is real or generated [23]. With the 

aid of GAN, Son et al. [24, 25] obtained an accurate map of 

the fundus vessels, and achieved good segmentation results on 

two public datasets: Digital Retinal Images for Vessel 

Extraction (DRIVE) and Structured Analysis of the Retina 

(STARE). Guo et al. [26] combined GAN with dense U-Net 

for retinal vessel segmentation. Yang et al. [27] constructed a 

deep convolution GAN with short connection and dense block 

to separate vessels from fundus images. 

Recently, the attention module is proposed and applied to 

enable the traditional deep learning network to extract more 

characteristic tasks and speed up target learning [28]. 

Attention U-Net has been employed to accurately segment 

retinal vessels, skin lesions, lung, and pancreas [29-33]. Li et 

al. [31] designed a connection-sensitive attention U-Net for 

retinal vessel segmentation. Lv et al. [32] presented an 

attention-guided U-Net with atrous convolution, which 

focuses on vessel regions. Chen et al. [33] created the 

Attentive BConvLSTM U-Net with Redesigned Inception 

(IBA-U-Net), which integrates the bi-directional 

convolutional long short-term memory (BConvLSTM) block 

with the attention block, aiming to segment lungs, skin lesions, 

and retinal vessels from images. 

Despite the progress of the above technologies, retinal 

vessel segmentation still faces several challenges. Firstly, it is 

difficult to separate the easily fragmented and often missing 

small vessels from the background, owing to the diverse 

morphologies of retinal vessels and the nonuniform 

illumination in fundus images [5, 6, 13]. Secondly, the 

segmentation effect is seriously affected by the lesion regions 

in retinal images. Retinal vessel segmentation becomes very 

challenging, if the original image contains lesions like diabetic 

retinopathy, and arteriosclerotic retinopathy. Figure 1 shows 

three fundus lesion images from DRIVE and STARE datasets. 

The retinal vessels are not easy to segment, for the vessel 

structure is obscured by lesions [6, 13]. This calls for a robust 

and precise retinal vessel segmentation algorithm.  

 

 
(a) Background diabetic retinopathy; (b) Retinal artery 

occlusion; (c) Arteriosclerotic retinopathy  

 

Figure 1. Fundus lesion images from DRIVE and STARE 

datasets 

 

This paper proposes a GAN-based deep network with 

residual module and attention module (Deep Att-DesGAN). 

The proposed network, consisting of four identical 

subnetworks, is deeper than the common GAN. In the network, 

an improved U-Net serves as the generator, responsible for 

extracting image features and generating an input image for 

the discriminator. The generator achieves a good segmentation 

effect, using the residual module and attention module. 

Meanwhile, the discriminator iteratively refines the 

segmentation by gaming. By constantly gaming, the generator 

and discriminator are optimized constantly. As a result, the 

generated images become so similar to gold standard images 

in distribution that they cannot be easily distinguished by the 

discriminator [24, 25]. The improved U-Net stacks the residual 

and attention modules, thereby enhancing the generalization 

ability of the network [29-34]. Specifically, the residual 

module adjusts the weight of the generator, while the attention 

module improves the prediction accuracy and reduce the time 

cost. The flow of our network is illustrated in Figure 2. 

 

 
 

Figure 2. Flow of our network 

 

The remainder of this paper is organized as follows: Section 

2 proposes the Deep Att-ResGAN, and details the network 

structure; Section 3 describes the data from DRIVE and 

STARE datasets, and validates the proposed network with the 

retinal images; Section 4 summarizes the main findings of the 

research. 

 

 

2. METHODOLOGY 

 

This section details the framework of the Deep Att-

ResGAN for retinal vessel segmentation. The network consists 

of four identical subnetworks [16, 35, 36]. The output of each 

subnetwork is inputted to the next subnetwork. Each 

subnetwork contains a generator and a discriminator. 

Responsible for producing the confused image, the generator 

relies on the residual module to maintain subnetwork 

performance, and on the attention module to focus on salient 

features. The discriminator is responsible for estimating the 

probability for the segmentation result to be real. 

 

2.1 Image augmentation and preprocessing 

 

The original datasets were expanded through image 

augmentation, aiming to provide enough training samples. The 

20 images in the training set were expanded to 4,800 by 

flipping and rotation. 

Data preprocessing is fundamental to the effect of deep 

learning. This paper enhances the images through several steps 

of preprocessing, including contrast limited adaptive 
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histogram equalization (CLAHE), Gamma correction, and 

normalization [37].  

Firstly, the original image was normalized to boost the 

generalizability of the network [37]. Then, CLAHE was 

applied to the normalized image to improve the contrast 

between each vessel and the background, and to highlight the 

vessel region [9, 38]. Finally, the uneven illumination of the 

image was suppressed by Gamma correction [37]. Figure 3 

illustrates the three steps of preprocessing: global 

normalization, CLAHE, and Gamma correction. 

 

 
(a) Original image; (b) Normalized image; (c) Post-CLAHE 

image; (d) Post-Gamma correction image 

 

Figure 3. Steps of image preprocessing 

 

2.2 Deep Att-ResGAN 

 

The proposed Deep Att-ResGAN consists of four identical 

Att-ResGANs [31, 32]. As shown in Figure 4, each Att-

ResGAN is composed of a generator and a discriminator.  

The generator is essentially an improved U-Net, which 

ensures that the output is as realistic as gold standard. Drawing 

on the idea of the U-Net, the generator adopts an attention 

module to further improve the detection accuracy, and 

employs a residual module to retain some features from the 

previous network layer [29-34]. Each residual module is 

followed by a max pooling layer of the size 2×2. During up-

sampling, the attention module guides the subnetwork to focus 

on learning and extracting useful features. In this way, the 

image features will remain distinctive, despite the deepening 

of the network. 

The discriminator is responsible for distinguishing between 

real and generated samples. If the input is deemed as real, it 

will be labeled as true; otherwise, it will be labeled as false [24, 

25].  

The generator and discriminator are trained alternately. 

Through the continuous optimization of network parameters, 

the generator can generate more and more realistic new 

samples, while the discriminator can differentiate between real 

and generated samples with a growing accuracy. The 

alternative training will end, when the discriminator can no 

longer distinguish between real samples and generated 

samples. 

 

 

 
Note: BN and ReLU are short for batch normalization and rectified linear unit, 

respectively. 

 

Figure 4. Each Att-ResGAN network 

 

2.2.1 Residual module 

As shown in Figure 5, the residual module was adopted to 

avoid vanishing gradients and optimize the network. Each 

residual block consists of two 3×3 convolutional layers and 

one 1×1 convolutional layer. The results of these layers are 

superimposed through residual mapping as the output of the 

residual block. The two 3×3 convolutional layers are serial 

connected to produce a deep feature map. The convolutional 

layers are followed by a BN layer and a ReLU layer. The BN 

layer reduces parameters and speeds up the training, while 

ReLU, a nonlinear activation function, lowers the complexity 

of network computing and maintains the sparsity of training 

data [39-41].  

 

 
 

Figure 5. Two-layer residual block 

 

2.2.2 Attention module 

To improve the segmentation effect, an attention module 

was deployed to focus on the target structure, and readjust the 

output features of the encoder by computing the attention 

weight. The attention weight is large in the target area, and 

small in the background. As shown in Figure 6, the attention 

module consists of three 1×1 convolutional layers, one 3×3 

convolutional layer, one BN layer, two ReLU layers, an up-

sampling layer, and a sigmoid activation layer. The attention 

module learns an attention weight map from the high-level 

layer. The feature maps of the previous decoder are up-

sampled to the resolution of the parallel residual module for 

attention operation. Finally, the attention weights are 

multiplied with the current convolutional features, and 

concatenated into encoder features. The attention module 

improves the prediction effect and computing efficiency of the 

proposed network [30-33].  
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Figure 6. Attention module 

 

2.2.3 Discriminator 

The discriminator aims to differentiate between real and 

generates samples. As shown in Figure 7, our discriminator 

consists of five convolutional layers and a dense layer. Each 

convolutional layer contains two strided convolutions, 

followed by a BN layer and a LeakyReLU layer [42, 43]. Each 

convolutional layer uses a 3×3 kernel. The parameters of the 

convolutional layer can be reduced by selecting a small kernel 

and a deep network structure. The strided convolution and 

LeakyReLU were selected to replace the traditional max 

pooling and ReLU, which may cause sparse gradients. The 

parameter in LeakyReLU was set to 0.2. 

 

 
 

Figure 7. Discriminator 

 

 

3. EXPERIMENTS 

 

This section carries out experiments on DRIVE and STARE 

datasets, which have 40 and 20 subjects, respectively. The 

segmentation effect of our network was compared with that of 

different segmentation algorithms. Our network was 

implemented under TensorFlow and Keras on a personal 

computer (PC) with Intel Core™ i9, NVIDIA GeForce GTX 

1080Ti graphics processing unit (GPU), and 64G double data 

rate random-access memory (DDR-RAM) [44, 45].  

 

3.1 Datasets 

 

Our experiments use two public datasets: DRIVE 

(http://www.isi.uu.nl/Research/Datasets/DRIVE/) and 

STARE (http://cecas.clemson.edu/~ahoover/stare/) [9, 38]. 

DRIVE dataset contains 40 fundus images of the resolution 

584×565. As the outcomes of Diabetic Retinopathy Screening 

Program in the Netherlands, these images were captured with 

a Canon CR5 nonmydriatic 3- charge-coupled device (CCD) 

camera (field of view: 45°). Twenty of these fundus images 

were allocated to the training set, and the remaining 20 to the 

test set. Each image in the dataset has a corresponding hand-

labeled image and a mask image [38]. 

STARE dataset contains 20 fundus images of the resolution 

605×700. These images were captured by University of 

California with a TopCon TRV-50 fundus camera (field of 

view: 35°). Each fundus image has a corresponding hand-

labeled image, which can be used to evaluate the result of 

retinal vessel segmentation [9]. There is no officially 

recommended split ratio between training and test sets. Hence, 

this paper randomly chooses 10 images for training, and uses 

the other 10 for testing. 

 

3.2 Evaluation metrics 

 

To objectively evaluate the segmentation effect, several 

general metrics were selected to measure the performance of 

retinal vessel segmentation: accuracy (Acc), sensitivity (Se), 

specificity (Sp), F1-score (F1), and the area under the receiver 

operating characteristic (ROC) curve (AUC) [46]: 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 (1) 

 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3) 

 

𝐹1 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

where, TP is true positive (the number of pixels correctly 

segmented as vessels); TN is true negative (the number of 

pixels correctly segmented as non-vessels); FP is false 

positive (the number of pixels incorrectly segmented as 

vessels); FN is false negative (the number of pixels incorrectly 

detected as non-vessels) [46, 47]. Table 1 records the 

discriminations of positive and negative segmentation results. 

 

Table 1. Discriminations of positive and negative 

segmentation results 

 
Our network 

Gold standard  
Vessel Non-vessel 

Vessel TP FN 

Non-vessel FP TN 

 

In addition, the AUC is a common measure for the effect of 

segmentation [46, 47]. 

 

3.3 Experimental results 

 

Multiple experiments were conducted to test and evaluate 

the performance of our network against other advanced 

approaches. 

 

3.3.1 Segmentation results 

Figures 8 and 9 report the segmentation results on DRIVE 

and STARE datasets, respectively. The images in the two 

figures were randomly selected from the test results on the two 

datasets, providing an intuitive display of the effect of our 

network. From left to right in each image, subgraphs (a) to (d) 

offer the original images, ground truth, our results, and the 

comparison between our results and ground truth, respectively; 
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green, red, and blue represent true segmentation results, under 

segmentation, and over segmentation, respectively.  

In Figure 8, the first and third rows display the normal 

retinal images from DRIVE dataset, which have no sign of 

diabetic retinopathy. As shown in subgraphs 8 (c) and (d), the 

retinal vessels segmented by our network are similar to the 

ground truth, including the main and distal vessels. The second 

and fourth rows display images with background diabetic 

retinopathy, i.e., noisy images affected by lesions. Despite the 

interference of the lesions, our network achieved a good 

segmentation effect: the problem of vessel fragmentation was 

solved in the presence of lesion-induced noises.  
 

 
(a) Original images, (b) Ground truth, (c) Vessel 

segmentation results, (d) Our results compared vs. ground 

truth  
 

Figure 8. Vessel segmentation results on DRIVE 
 

 
(a) Original images, (b) Ground truth, (c) Vessel 

segmentation results, (d) Our results compared vs. ground 

truth  
 

Figure 9. Vessel segmentation results on STARE 
 

As shown in Figure 9, the vessel segmentation results of our 

network are close to the ground truth in subgraph 9(b). In 

subgraph 9(d), which compares our results with the ground 

truth, there are very few red and blue areas (under 

segmentation and over segmentation). Apparently, our 

network achieved an excellent effect on vessel segmentation. 

In the second and forth rows, the original images contain many 

micro-vessels. It can be observed that our network segmented 

the micro-vessels effectively and coherently.  

3.3.2 Comparison with relevant methods 
 

 
(a) Original images, (b) Ground truth (c) U-Net [15], (d) 

GAN [24], (e) U-Net + joint losses [17], (f) Our network  
 

Figure 10. Vessel segmentation results of different methods 

on DRIVE dataset 
 

 
(a) Original images, (b) Ground truth (c) U-Net [15], (d) 

GAN [24], (e) U-Net + joint losses [17], (f) Our network 
 

Figure 11. Vessel segmentation results of different methods 

applied on STARE dataset 
 

 
(a) Original images, (b) Enlarged patches, (c) Ground truth, 

(d) U-Net [15], (e) GAN [24], (f) U-Net + joint losses [17], 

(g) Our network 
 

Figure 12. Enlarged views of the red-boxed patches obtained 

by different models on DRIVE and STARE datasets 

 

Our network was compared with several advanced methods, 

such as U-Net, GAN, and U-Net + joint losses [15, 17, 24]. 

Figures 10 and 11 compare the vessel segmentation results of 
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the different methods on DRIVE and STARE datasets, 

respectively. It can be inferred that our network could 

accurately delineate micro-vessels, and keep the vessel 

structure integrated, despite the low contrast, varied 

morphologies, and pathological changes of the test images. In 

the two figures, red boxes indicate that our network 

outperforms the other methods. For clarify, the area enclosed 

by each red box was enlarged in Figure 12. From left to right, 

subgraphs (a)-(g) present the original images, enlarged patches, 

ground truth, patches obtained by U-Net segmentation [15], 

patches obtained by GAN segmentation [24], patches obtained 

by U-Net + joint losses [17], and segmentation results of our 

network, respectively. It can be observed that the retinal 

vessels segmented by our network were richer in details, and 

closer to the ground truth than those obtained by the other 

methods. Our network, Deep Att-ResGAN, ensures the 

segmentation precision of micro-vessels, performs well on 

boundaries, and obtains integrated vessel structures. 

Tables 2 and 3 compare the performance metrics of our 

network with those of many other methods on DRIVE and 

STARE datasets, respectively. As shown in Table 2, our 

network achieved the highest accuracy (0.9565) and F1 (0.829) 

on DRIVE dataset. As shown in Table 3, our network reached 

the highest accuracy (0.9690) on STARE dataset. Our network 

also did well in terms of AUC. To sum up, the Deep Att-

ResGAN achieves excellent performance on most metrics. 

Figures 13 and 14 further compare our network with U-Net, 

GAN, and U-Net + joint losses on fundus images from DRIVE 

dataset and STARE dataset, respectively. Our network clearly 

realized higher accuracy and sensitivity than the other vessel 

segmentation methods, and the specificity of our network was 

also relative stable. 

We also evaluate the models by using the ROC curves on 

the DRIVE and STARE datasets, which is shown in Figure 15 

and Figure 16 [48]. Figure 15 shows that Deep Att-ResGAN 

ranks second in AUC on the DRIVE data set, and Figure 16 

indicates that Deep Att-ResGAN improves the AUC by at least 

0.2% on the STARE dataset. It can be seen from the ROC 

curves that our proposed method has a smaller blood vessel 

segmentation error. 
 

Table 2. Performance comparison of multiple vessel segmentation methods on DRIVE dataset 
 

Methods Year Acc Se Sp F1 AUC 

U-Net [15] 2015 0.9531 0.7537 0.9820 - 0.9755 

GAN [24] 2017 0.9560 0.8300 0.9744 0.829 0.9803 

U-Net + joint losses [17] 2018 0.9544 0.7668 0.9818 - 0.9767 

RetinaGAN [25] 2019 0.9552 0.8469 0.9713 0.8275 0.9810 

Guo [26] 2020 0.9542 0.8283 0.9726 0.8215 0.9772 

SUD-GAN [27] 2020 0.9560 0.8340 0.9820 - 0.9786 

AAU-Net [32] 2020 0.9558 0.7941 0.9798 - 0.9847 

Uysal [19] 2021 0.9527 0.7778 0.9784 - - 

MPS-Net [22] 2021 0.9563 0.8361 0.9740 0.8287 0.9805 

IBA-U-Net [33] 2021 0.9550 0.7858 0.9832 0.8214 0.9878 

Our network 2021 0.9565 0.8314 0.9757 0.829 0.9795 

Note: SUD-GAN and AAU-Net are short for deep convolution adversarial network combined with short connection and dense block, and asymmetric attention up 
sampling network, respectively. The same below. 

 

Table 3. Performance comparison of multiple vessel segmentation methods on STARE dataset 
 

Methods Year Acc Se Sp F1 AUC 

U-Net [15] 2015 0.9639 0.8270 0.9842 - 0.9779 

GAN [24] 2017 0.9657 0.8350 0.9812 0.834 0.9838 

U-Net+joint losses [17] 2018 0.9612 0.7581 0.9846 - 0.9801 

RetinaGAN [25] 2019 0.9667 0.8169 0.9845 0.8378 0.9873 

SUD-GAN [27] 2020 0.9663 0.8334 0.9897 - 0.9734 

AAU-Net [32] 2020 0.9640 0.7598 0.9878 - 0.9824 

Uysal [19] 2021 0.9589 0.7558 0.9811 - - 

MPS-Net [22] 2021 0.9689 0.8566 0.9819 0.8491 0.9873 

Our network 2021 0.9690 0.8378 0.9838 0.841 0.9858 
 

 
 

Figure 13. Comparisons of our network, U-Net, GAN, and U-Net + joint losses on the test images 1-20 from DRIVE dataset 
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Figure 14. Comparison of our network, U-Net, GAN, and U-Net + joint losses on test images 1-10 from STARE dataset 

 

 
 

Figure 15. ROC curves of different methods on DRIVE 

dataset 

 

 
 

Figure 16. ROC curves of different methods on STARE 

dataset 

 

 

4. CONCLUSIONS 

 

The automatic and precise segmentation of retinal vessel 

images help doctors diagnose diseases quickly, and facilitate 

many practical applications. However, the traditional methods 

cannot segment low-contrast micro-vessels and vessels in 

lesion areas, or achieve a high segmentation 

accuracy/sensitivity. This paper proposes a novel network 

named Deep Att-ResGAN to segment the vessels in fundus 

images. Specifically, the U-Net architecture was extended into 

a generator with an attention module and a residual module. 

The residual network, which is sensitive to the change of 

eigenvalues, can retain the feature information of different 

granularities accurately, while the attention module helps the 

network focus on the target vessel structure. In addition, four 

identical subnetworks of GAN were arranged to reduce the 

segmentation error. The output of each GAN was imported to 

the next GAN. Our network can extract vessel areas 

excellently, especially the micro-vessels and vessels in lesion 

areas, which are generally difficult to detect. 

Our network was compared with several advanced methods 

on DRIVE and STARE datasets. The comparison shows that 

our network can effectively segment the structure of retinal 

vessels and preserve the details, laying a good basis for clinical 

diagnosis. The accuracy and F1 of our network reached 0.9565 

and 0.829 on DRIVE, and 0.9690 and 0.841 on STARE, 

respectively. In general, our network realized better 

performance than existing methods on most metrics. 

The future work will test our network on more clinical data 

to further improve the network performance, and realize the 

detection of microaneurysms and other types of fundus lesions. 

Our network will also be extended to the segmentation of the 

optic disc and other structures [49, 50], and continuously 

improved to facilitate the diagnosis of ophthalmological 

diseases. 
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