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Nowadays, many studies have been conducted to assess driver fatigue, as it has become one 

of the leading causes of traffic crashes. However, with the use of advanced features and 

machine learning approaches, EEG signals may be processed in an effective way, allowing 

fatigue to be detected promptly and efficiently. An optimal channel selection approach and 

a competent classification algorithm might be viewed as a critical aspect of efficient fatigue 

detection by the driver. In the present framework, a new channel selection algorithm based 

on correlation coefficients and an ensemble classifier based on random subspace k-nearest 

neighbour (k-NN) has been presented to enhance the classification performance of EEG data 

for driver fatigue detection. Moreover, power spectral density (PSD) was used to extract the 

feature, confirming the presented method's robustness. Additionally, to make the fatigue 

detection system faster, we conducted the experiment in three different time windows, 

including 0.5s, 0.75s, and 1s. It was found that the proposed method attained classification 

accuracy of 99.99% in a 0.5 second time window to identify driver fatigue by means of EEG. 

The outstanding performance of the presented framework can be used effectively in EEG-

based driver fatigue detection. 
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1. INTRODUCTION

The frequent occurrence of traffic accidents has led to social 

problems that endanger human life and property. It is 

estimated by World Health Organization (WHO) that over 1.2 

million people die every year in traffic accidents, and millions 

are injured or crippled [1]. There is now an upswing in traffic 

accidents, which has gained widespread attention from society 

and government to this problem [2]. Since traffic accidents are 

so common, it is therefore absolutely essential to work on 

finding ways to prevent traffic accidents worldwide. 

Researchers found that 20–30% of all traffic accidents are 

caused by fatigued driving (FD), which means that FD is a 

major cause of traffic accidents [2]. When drivers are fatigued, 

they become easily distracted, less attentive, and their brain is 

less responsive, increasing the likelihood of a traffic accident 

[3]. FD detection (FDD) techniques have widespread use in 

the prevention of traffic accidents and have grown 

progressively in popularity among automotive industry, 

government organizations, and researchers in recent years. 

Currently, three distinct categories of driving fatigue 

detection methods are available, including vehicle-based 

approaches, facial behaviour-based approaches and 

physiological approaches [4]. Vehicle-based approaches 

mainly include drivers’ acceleration, braking, lane position, 

steering angle, and handle movement patterns [5-7]. Such 

measurements are easily obtainable but dependent on vehicle 

types, driving habits, or road conditions. The facial behaviour-

based approach is generally observed by the vehicle driver's 

behavioural and physical status, including head position, facial 

features, steering errors, reaction time and lane deviation [8]. 

However, these measurements tend to be unstable under 

certain conditions, such as poor lighting, bad weather, at night, 

or when a driver is wearing eyeglasses [9]. The physiological 

approach makes use of bio-signals that are associated with 

driving fatigue, including electrooculography (EOG) to assess 

eye movement [10], electroencephalography (EEG) [11] to 

assess brain state, electrocardiography (ECG) to measure heart 

rate variability [12], and electromyography (EMG) to assess 

muscle activity [5]. Most importantly, EOG, EEG, ECG, and 

surface EMG have all been investigated as physiological 

measures of driving fatigue detection with particular benefits 

and drawbacks to each other [4]. In the measurement of 

physiological approach, the electrodes are placed on the body 

surface, and this leads to it being considered intrusive in nature 

[13]. For example, EOG signals are retrieved through 

electrodes that are positioned near the eye, which can impair 

the ability to drive. Measurement of ECG can be performed 

using less intrusive methods; however, the inter-subject 

variability of ECG signals makes it difficult to design a generic 

driving fatigue detection system that is applicable to everyone. 

The usefulness of surface EMG in determining real-time 

driving fatigue is somewhat restricted [8]. More recently, 

researchers have started to apply the EEG for detecting driving 

fatigue in which several aspects of EEG make it potentially 

useful to detect driving fatigue, including the high portability, 

high temporal resolution and outstanding sensitivity to brain 

state. More specifically, EEG measures the neural activity of 

the scalp surface non-invasively to determine whether the 

brain is fatigued or not [4]. However, the multiple-electrode 

techniques to retrieve EEG signal is vulnerable to external 

influences, and extracting informative features from noisy 

EEG signals is crucial for successful fatigue detection while 

operating a vehicle [6]. Multichannel EEG recording provides 
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a thorough record of EEG activity, however, certain channels 

carry noise and reductant information [7]. Thus, the 

appropriate channel selection is crucial for optimizing the 

effectiveness of any EEG based systems [7]. Developing an 

excellent single classifier may be challenging due to the 

instability of EEG signals, and the training set's often limited 

size. As a result, single classifiers may perform poorly or be 

unreliable. 

In this work, a novel channel selection algorithm and 

ensemble learning-based classification algorithm is proposed 

for an EEG-based driver fatigue detection system. Initially, we 

select the most significant channels using a correlation 

coefficients-based channel selection algorithm. This algorithm 

finds the ranking of the 20 most significant channels among 

33 channels. Finally, utilizing the ensemble of random 

subspace k-NN (ERS-k-NN) classifier, the extracted features 

have been classified.  

The major goal of the present study is to enhance the 

classification accuracy of driver fatigue detection systems with 

reduced computational complexity. To reach the goal, the 

contribution of the present study can be summed up as follows:  

(1) The experiment has been conducted in a short time 

interval (0.5s, 0.75s, and 1s) in order to minimize the 

fatigue detection time and computational complexity, 

which shows the robustness and applicability of our 

proposed system in real-life applications. 

(2) This study has proposed a correlation coefficient 

based novel channel selection algorithm to eliminate 

the redundant channels in the driver fatigue detection 

system. This strategy has significantly reduced the 

channels from 33 to 3 with the best performance.  

(3) The present study proposed an ensemble of random 

subspace K-NN algorithms for the classification of 

the extracted features. The proposed architecture has 

achieved superior performance to recognize EEG 

based driver fatigue. 

The remainder of the article is presented as follows. Section 

2 describes the proposed methods under “Materials and 

Methods”. The findings and discussion of the study are found 

in Sections 3 and Section 4, respectively. The article finishes 

with Section 5, which serves as a summary of the article and 

future directions of the research.  

 

 

2. RELATED WORKS 

 

Numerous strategies have been utilized in channel selection, 

including wrapper technique, filtering technique, hybrid 

technique, embedded technique, and human-based technique 

[14]. Additionally, approaches for channel selection can be 

grouped into filter and wrapper approaches. Usually, filter 

approaches are based on specific criteria, including fisher 

criterion or mutual information [15]. Wrapper approaches are 

typically used to select channels in conjunction with a 

particular classifier, such as a decision tree and genetic 

algorithm [16]. Varsehi and Firoozabadi [17] proposed a novel 

EEG channel selection method known as Granger causality 

(GC), but here, the calculations of GC are all in the time 

domain. Jin et al. [18] introduced EEG channel selection based 

on the bispectrum approach. However, the influence of the 

filter's different frequency ranges on the bispectrum 

calculation is ignored. Liu et al. [19] proposed a technique 

based on Fisher's criterion for automatically determining the 

optimal subject-dependent channel distribution. To sum up, 

present approaches for channel selection are either low 

effective or lack a neurophysiological basis. 

The performance of numerous linear and nonlinear single 

classifiers, including DT, KNN, SVM, Neural Network, 

Hidden Markov Model (HMM) and Fisher discriminant 

analysis, have been evaluated for detecting driver fatigue using 

EEG signals [20]. Fu et al. [10] proposed a fatigue 

identification framework based on the HMM. Tuncer et al. 

[21] utilized k-NN to classify the extracted features from EEG 

fatigued and alert data. Nevertheless, developing an excellent 

single classifier may be challenging due to the instability of 

EEG signals, and the training set's often limited size. As a 

result, single classifiers may perform poorly or be unreliable. 

Although recent research has demonstrated that ensemble 

classifiers outperform single classifiers [22-24]; few studies 

have been undertaken on the use of ensemble classifiers based 

on EEG signals to examine driver fatigue detection. Hassan 

and Bhuiyan [22] suggested a method for sleep staging based 

on EEG data employing Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise and Bootstrap 

Aggregating (Bagging). Their outcomes demonstrated that the 

proposed approach was more accurate in terms of accuracy 

than state-of-the-art strategies. Moreover, Hassan and Subasi 

[23] developed an approach to perform seizure detection by 

employing linear programming Boosting in which the 

performance is superior to the existing works. Chatterjee et al. 

[25] developed an ensemble approach to classify MI data 

employing a different combination of Naive Bayes, SVM and 

k-NN. Additionally, they used a variety of ensemble learning 

architectures such as AdaBoost, loggitboost and bagging. 

However, ensemble learning-based classification is an almost 

new concept in EEG based driver fatigue detection. 

 

 

3. MATERIALS AND METHODS  

 

Figure 1 depicts the entire workflow for this study. This 

study contributes to the advancement of classification 

accuracy for binary-class EEG data containing fatigue and 

alert state. This study validated the proposed approach using a 

publicly available online dataset. At the outset, the time 

window for each trial has been specified. To minimize the 

computational costs, three distinct time windows has been 

selected. This study has utilized three different time windows, 

including 0.5s, 0.75s, and 1s, to identify the shortest window 

length shown in Figure 2. While multichannel EEG recording 

provides a comprehensive account of EEG activity, some 

channels carry noise and reductant data. Hence, a proper 

channel selection approach is required to minimize the 

computational cost. In this study, a novel channel selection 

technique has been applied, which is known as correlation 

coefficient analysis. After selecting the most significant 

channels, the feature from EEGF time series data should be 

extracted. For the present study, the feature has been extracted 

in terms of power spectral density. To avoid overfitting 

complexity, a five-fold cross-validation approach has been 

applied in this study. The data sets have been partitioned such 

that for testing, 5% of the feature vectors are applied, whereas 

95% of the feature vectors are applied for training in the first 

iteration. Likewise, another 95% feature vectors are applied 

for the training set as well as the rest has been utilized for the 

test set in the subsequent iteration. This procedure is repeated 

until the test set contains all features. To classify the extracted 

feature, a random subspace k-NN based ensemble classifier 
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has been utilized. The ensemble of random subspace K-NN 

was trained using the feature extracted from training trials. The 

training model has been validated through testing trials, 

whereas the different metrics have been utilized to evaluate the 

performance. Subsequently, a variety of metrics was employed 

to evaluate the performance of the classifier.   

 

 
 

Figure 1. The complete architecture of the current study 

 

 
 

Figure 2. Time-series representation of driver fatigue data 

 

3.1 Experimental data  

 

In this experiment, we have used a publicly available online 

EEG dataset for driver fatigue detection [26]. Before starting 

data collection, the participants were familiarized themselves 

with the procedures and purposes of the experiment by 

completing a 5-minutes driving task. Each experimental 

process was carried out in a controlled laboratory environment 

employing a static driving simulator. Each subject completed 

a sustained attention driving task on a static driving simulator 

equipped with a large screen comprised of 24-inch. The 

driving environment for this study was a low-traffic roadway, 

and the driving activity began at 9 a.m. The participants were 

offered 10 minutes away from the simulator after a 5-minute 

training run to perform an unstructured activity in the lab. 

Following a brief check of all instrumentation, the participants 

started around 1±2 hours of driving. In this instance, EEG 

recordings were carried out in two distinct stages. In the first 

round, the driving time was 20 minutes, and then for the last 5 

minutes of EEG recordings, the final state was marked as 

normal. The continuous driving persisted for 40±100 minutes 

until the individual indicated that he or she was fatigued, and 

the last 5 minutes of EEG recordings were grouped as a 

fatigued state. This EEG data were collected from 32 

electrodes, and the sampling rate was 1000Hz. The recorded 

horizontal and vertical EOG signals were used to monitor eye 

movements and blinks. Following the acquisition of EEG 

signals, the major phase of data preprocessing was performed 

through the Scan 4.3 software [27]. 

3.2 Correlation coefficient 

 

Correlation-based approaches are advantageous for 

detecting task-related brain activations [28]. The purpose of 

this phase is to minimize the number of possible EEG channels 

in our dataset by eliminating the channels that are substantially 

uncorrelated with one another across trials. We presume that 

the channels associated with driver fatigue contain specific 

information that is consistent across all trials in which every 

subject undertake the same driver fatigue tasks. In comparison 

to fatigue-related channels, other channels may comprise less 

common features, which are not irrelevant to the fatigue 

information. We use the correlation coefficient to determine 

similarity based on this assumption. Therefore, we are just 

concerned about the similarity between any two channels, not 

in their directional influence. The normalization has to be 

accomplished at first. The amplitudes of EEG signals recorded 

from various human scalps vary with respect to time. A 

normalization is a powerful tool for reducing this variability. 

The Z-score normalization is employed to normalize the mean 

of all data to zero and the standard deviation to 1 [16]. Z-score 

has been calculated using Eq. (1).  

 

( ) /xy xy x xZ S mean = −  (1) 

 

where, 𝑆𝑥𝑦  is the 𝑦𝑡ℎ  sampling value of 𝑦𝑡ℎ  channel, 𝑚𝑒𝑎𝑛𝑥 

is the mean value of 𝑦𝑡ℎ channel and 𝜎𝑥 denotes the standard 

deviation of 𝑦𝑡ℎ  channel. Secondly, the correlation 

coefficients are measured. Our approach makes use of 
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Pearson’s correlation analysis. Pearson’s correlation 

coefficient is a statistic that estimates the statistical 

relationship between two or more random variables or their 

linear dependency [29]. It is defined as, 

 

( )
1

1
,

1

trialN

i i

itrial A B

X A B B
A B

N


 =

  − −
=   

−   
  (2) 

 

where, A and B are represented as two observable variables, 

𝑁𝑡𝑟𝑖𝑎𝑙  is the number of observations, �̅� and B̅ are the means of 

the two variables. The standard deviations of the two variables 

are denoted by 𝜎𝐴 and 𝜎𝐵. In our circumstance, the value of 

𝜑(𝐴, 𝐵)  varies between 0 to 1, suggesting low to high 

correlation. Between every pair of EEG channels, the 

correlation coefficient is measured. For each trial, correlation 

measurement forms one correlation matrix R of dimensions N 

× N. The mean for each row can be obtained from this matrix. 

The row i with the highest mean correlation can be identified. 

This demonstrates that the channel i is highly correlated with 

other channels, implying that the channel i is quite significant. 

We classified 𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  channels into a single class of highly 

correlated channels using this criterion. After 𝑁𝑡𝑟𝑖𝑎𝑙  trials, 

𝑁𝑡𝑟𝑖𝑎𝑙 × 𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙  channels have been recorded. Due to 

the fact that the majority of channels are repeated, the 

𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙  channels that appear most frequently are 

selected. As a result, the data dimensions reduced from 

𝑁𝑡𝑟𝑖𝑎𝑙 × 𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑁𝑠𝑎𝑚𝑝𝑙𝑒  to 𝑁𝑡𝑟𝑖𝑎𝑙 × 𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ×

𝑁𝑠𝑎𝑚𝑝𝑙𝑒. It will reduce the time complexity and enhance the 

efficiency of feature extraction. The flowchart of the proposed 

algorithm is expressed as follows (See Figure 3). 

 

 
 

Figure 3. Flow-chart of the proposed channel selection algorithm 

 

3.3 Power spectral density  

 

PSD measures have repeatedly been reported in the 

literature to be reliably correlated to mental fatigue [30]. In a 

study [31], the authors found that overall PSD of EEG changed 

across the 2-h driving session. The frontal PSD for the delta 

EEG band showed an inverted U-shaped quadratic trend, while 

the power spectra of the beta band linearly increased as the 

driving session progressed [31]. At the same time, other 

studies [32, 33] have reported increased levels of all EEG-

spectral power across the entire scalp due to arousal 

decrements. Moreover, the PSD is widely used and appeared 

excellent performance in a variety of studies related to EEG 

based emotion recognition and fatigue detection. Motivated 

from these, we have employed PSD based feature extraction 

techniques. The power spectrum of the EEG has been 

computed using fast Fourier transformation (FFT). The 

following equations represent the FFT [Eq. (3)] [34] and 

power spectral density [Eq. (4)]. 
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1
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where, k = 0, 1… N-1 and one particular value of k are 

composed of N complex multiplications. Owing to the value 

of n between 0 to N-1, the multiplication of wkn and x (n) was 

performed for N times. 

 

3.4 Ensemble of random subspace KNN 

 

Nowadays, such learning models have become the most 

popular, as they improve the fundamental learner's 

performance and capabilities. These characteristics are present 

in ensemble-based learners. Ensemble learning is the 

technique of incorporating multiple classification approaches 

in order to create a highly effective composite model from the 

data. The goal of this strategy is to achieve a higher accuracy 

rate from multiple models than any single model. The most 

frequently used ensemble techniques are Random Subspace, 

Bagging and Adaboost. An ensemble inducer can be 

composed of any type of base classifier algorithm, including 

decision tree, k-nearest neighbour (k-NN) and other sorts of 

base learner algorithms. The k-NN and random subspace have 

been utilized as the base learner and ensemble approach, 

respectively, in the proposed study. 

The k-NN algorithm is an essential machine learning 

method that divides the feature space into distinct clusters 

based on the features associated with the different classes. This 

classifier considers the k metric distances between the test 

sample features and those of the nearest classes while 

classifying a test feature vector [35]. In K-NN architecture, the 

number of neighbours and the sort of distance metric are 

significant factors. Owing to its strong generalization and 

simplicity of implementation, K-NN is extensively employed 

in pattern recognition [36]. Nevertheless, the high 
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dimensionality of EEG typically hinders the effectiveness of 

K-NN. These characteristic spaces get exponentially more 

complex as the number of features increases [36]. In this 

circumstance, a strategy that takes advantage of the K-NN 

classifier without being significantly affected by the sparsity 

of high-dimensional data is highly recommended. The well-

known ensemble learning approach successfully exploits the 

benefits of high-dimensionality [37]. The ensemble classifier 

develops a robust classifier by integrating the output of several 

weak or base classifiers in order to enhance the overall 

classification accuracy. While k-NN is stable in terms of 

adjusting training datasets, it is susceptible to feature set 

variation [38]. Due to the perceptive nature of the input 

selection of k-NN, ensemble systems based on random 

subspaces are capable of enhancing the efficiency of single k-

NN classifiers [39]. Random subspace is a frequently utilized 

ensemble technique that generates individual classifiers from 

randomly chosen subspaces of data [40]. Additionally, the 

output of each independent classifier is eventually integrated 

using a conventional majority vote to produce the final 

outcome. The entire procedure is depicted in Figure 4. When 

a test sample is chosen as a prototype for the k-NN classifier, 

just the selected features are input to the distance. However, in 

subspace k-NN, it is the projection of all points to the specified 

subspace, and it uses the distances to determine the k nearest 

neighbours. After selecting a random subspace, a new set of k-

nearest neighbours is established. By combining k adjacent 

neighbours in each subspace chosen, a majority vote on the 

test sample's class membership is obtained. In this ensemble, 

the same training sample reappears if it is confined to be in 

multiple chosen subspaces in the centre of adjacent k 

neighbours. 

 

 
 

Figure 4. A random subspace-based ensemble K-NN 

architecture 

 

3.5 Performance evaluation 

 

To facilitate the evaluation of classification quality; the 

classification results and classifier performance are defined in 

terms of classification accuracy (CA), specificity, sensitivity, 

recall, F1 score, precision, MCC, and AUC, which are 

expressed as follows:  

 

100%
TP TN

CA
TP FN TN FP

+
= 

+ + +
 (5) 

100%
TP

Sensitivity
TP FN

= 
+

 (6) 

 

100%
TN

Specificity
TN FP

= 
+

 (7) 

 

Pr 100%
TP

ecision
TP FP

= 
+

 (8) 

 

The precision intuitively indicates the classifier's ability to 

assess the whole sample in which the positives are classified 

as positives and the negatives are classified as negatives. 

 

Re
TP

call
TP FN

=
+

 (9) 

 

The recall value intuitively represents the proportion of 

correctly identified positive samples. 

 

2 Pr Re
1

Pr Re

ecision call
F

ecision call

 
=

+
 (10) 

 

The F1 score can be considered as a weighted average of 

precision and recall, with the optimal value at one and the 

worst value at 0. 

 

( )( )( )( )

MCC

TP TN FP FN

TP FP TP FN TN FP TN FN

 − 
=

+ + + +

 (11) 

 

where, TP, TN, FP and FN denote true positive, true negative, 

false positive and false negative, respectively. 

In machine learning, the Matthews correlation coefficient 

(MCC) can be used to assess the quality of two-class 

classifications [41]. The MCC is essentially a value for the 

correlation coefficient between -1 and +1. 

 

 

4. RESULTS 

 

4.1 Performance in different time window 

 

Initially, we have analyzed the classifier performance using 

the combination of all subject’s trials. For the time windows 

selection, we applied three different time windows (i.e., 0.5s, 

0.75s and 1s) to assess their performance. As shown in Figure 

5, the three-time windows achieved almost equal classification 

accuracy (e.g., 99.9%). The number of samples in 0.5s, 0.75s 

and 1s, are 500, 750 and 1000, respectively. To reduce the time 

used for a single trial, we chose 0.5s as the time window. This 

short time window makes the system faster by reducing the 

number of samples in each trial. Hence, the rest of the analysis 

of this study has been subjected to 0.5s of time window.  

Initially, the combination of all subject’s trials was applied 

to analyze the classifier performance. In this study, two mental 

states of the driver, including fatigue state and normal state, 

were utilized. During labelling, normal state and fatigue state 

has been denoted by 1 and 2, respectively. The datasets consist 

of 14436 trials where class-1 and class-2 have 7215 and 7221 
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trials, respectively. The k-fold cross-validation technique has 

been applied to evaluate the performance of the classifier. In 

this experiment, the value of k has been set at 5 in the k-fold 

cross-validation approach. Figure 6 shows the confusion 

matrix of the ERS-KNN classifier, in which only one trial from 

the normal class has been misclassified. A total of 14435 trials 

has been accurately identified out of 14436 trials. Hence, the 

classification accuracy is 99.99%. 

 
 

Figure 5. Classification accuracy in three different time 

windows 

 

 
 

Figure 6. Confusion matrix of ERS-KNN classifier 

 

 
Figure 7. Performance of the ERS-KNN with different 

metrics 

 

Apart from classification accuracy, we have evaluated the 

classifier's performance by applying a variety of performance 

metrics. Several performance evaluation measures, including 

specificity, F1-score, sensitivity, MCC, kappa, precision, and 

AUC, are utilized in this study. The performance of the ERS-

kNN classifier is depicted in Figure 7 using several 

performance evaluation indicators. The value of sensitivity, 

specificity, precision, F1-score, MCC, kappa and AUC are 

0.9994, 0.9995, 0.9995, 0.9995, 0.999, 0.999 and 0.9999 

respectively.  

In general, the random subspace approach produces low-

correlated multiple weak learners since it randomly selects 

feature subsets. The prediction accuracy is typically improved 

when predictions are made using low-correlated several weak 

learners. Randomly picked features within a feature subset 

may also be highly correlated if the majority of the features are 

highly correlated [42]. 

Figure 8 illustrates the receiver operating characteristic 

(ROC) of the ERS-KNN classifier. Figure 5 illustrates the 

same performance of the ERS-KNN classifier. The cause for a 

classifier's better accuracy can be inferred by evaluating the 

true positive rate vs false positive rate curve for each class on 

the ROC curve. 

 
 

Figure 8. ROC of ERS-KNN classifier 

 

4.2 Performance of each subject 

 

We have also assessed the performance of the classifier with 

the individual subject. All the subjects have performed 

perfectly. Table 1 shows the accuracy, sensitivity, specificity, 

precision, F1_Score, MCC, kappa and AUC of each subject 

separately. All the subjects have achieved the highest 

performance. We have also calculated the average and 

standard deviation of accuracy, sensitivity, specificity, 

precision, F1_Score, MCC, kappa and AUC of each subject 

separately. It also shows the highest performance with zero 

standard deviation. These performances indicate that the 

proposed ERS-KNN may recognize the driver’s fatigue or 

normal state efficiently.  

Figure 9 illustrates the receiver operating characteristic 

(ROC) curve of the ERS-KNN classifier for all subjects 

separately. True positive rate (TPR) on the Y-axis and false 

positive rate (FPR) or 1-specificity on the X-axis is shown 

using different threshold ratios as sweeping variables in order 

to produce the ROC graph. A classifier's random performance 

would be represented by a straight line linking (0, 0) to (1, 1). 

If the classifier's ROC curve appears in the bottom right 

triangle, it performs poorer than random guessing; if the ROC 

curve appears in the upper left, the classifier is likely to 

perform better than random guessing [33]. For quantitative 

assessment of classification efficiency, the areas under the 

curve of ROC (AUC) were also measured (see the last column 

of Table 1). In contrast to accuracy measurement, AUC 

measures the likelihood that the classifier would score a 

randomly given positive example greater than a randomly 

1264



 

selected negative example [33]. The AUC value ranges from 

0 to 1, with a larger AUROC value signifying enhanced 

classification success. Every subject's AUC with an ERS-

KNN classifier is 1. 

The proposed method gets benefitted from the use of 

random subspaces for both classifier construction and 

aggregation. The small sample size problem can be solved by 

building classifiers in random subspaces when the number of 

training objects is small compared to the data dimensionality 

[42]. As a result, the overall size of the training population 

grows. Random subspaces may produce stronger classifiers 

than the original feature space when the data contains 

numerous redundant features. An ensemble of these classifiers 

may be better than a single classifier trained on the original 

training data throughout the entire feature space for making 

decisions. 

 

Table 1. Performance of ERS- k-NN based classification algorithms for every subject separately 

 

Subject 
Performance Metrics 

Accuracy  Sensitivity  Specificity  Precision  F1_Score MCC Kappa  AUC 

S-01 1 1 1 1 1 1 1 1 

S-02 1 1 1 1 1 1 1 1 

S-03 1 1 1 1 1 1 1 1 

S-04 1 1 1 1 1 1 1 1 

S-05 1 1 1 1 1 1 1 1 

S-06 1 1 1 1 1 1 1 1 

S-07 1 1 1 1 1 1 1 1 

S-08 1 1 1 1 1 1 1 1 

S-09 1 1 1 1 1 1 1 1 

S-10 1 1 1 1 1 1 1 1 

S-11 1 1 1 1 1 1 1 1 

S-12 1 1 1 1 1 1 1 1 

Mean±SD 1±0 1±0 1±0 1±0 1±0 1±0 1±0 1±0 

 

 
 

Figure 9. ROC of ERS- k-NN based classification algorithms for every subject separately 

 

The proposed method gets benefitted from the use of 

random subspaces for both classifier construction and 

aggregation. The small sample size problem can be solved by 

building classifiers in random subspaces when the number of 

training objects is small compared to the data dimensionality 

[42]. As a result, the overall size of the training population 

grows. Random subspaces may produce stronger classifiers 

than the original feature space when the data contains 

numerous redundant features. An ensemble of these classifiers 

may be better than a single classifier trained on the original 

training data throughout the entire feature space for making 

decisions. 

When building classifiers in random subspaces, the number 

of training objects is considerably increased; hence the 

implemented method is especially effective for weak linear 

classifiers obtained on small and critical sample sizes of 

training data [43]. As a result, linear classifiers that are 

vulnerable to the dimensionality curse now perform better 

with random subspace. 
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Table 2. Classification accuracy of selected electrode 

 
No. of Selected Electrode  Electrode Name  Accuracy (%) 

1 C3 93.7 

2 C3, Cz 94.24 

3 C3, Cz, CP4 99.96 

4 C3, Cz, CP4, CP3 99.96 

5 C3, Cz, CP4, CP3, P3 99.97 

6 C3, Cz, CP4, CP3, P3, Fz 99.94 

7 C3, Cz, CP4, CP3, P3, Fz, FCz 99.96 

8 C3, Cz, CP4, CP3, P3, Fz, FCz, C4 99.94 

9 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7 99.94 

10 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7 99.94 

11 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4 99.95 

12 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6 99.96 

13 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6, TP8 99.96 

14 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6, TP8, T5 99.97 

15 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6, TP8, T5, FP1 99.97 

16 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6, TP8, T5, FP1, FP2 99.97 

17 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6, TP8, T5, FP1, FP2, T4 99.97 

18 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6, TP8, T5, FP1, FP2, T4, F7 99.98 

19 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6, TP8, T5, FP1, FP2, T4, F7, T3 99.97 

20 C3, Cz, CP4, CP3, P3, Fz, FCz, C4, TP7, FT7, F4, T6, TP8, T5, FP1, FP2, T4, F7, T3, F3 99.98 

 

4.3 Performance of channel selection algorithms 

 

A total of 33 EEG electrodes were used in this experiment 

to generate the EEG datasets. Due to the fact that not all 

electrodes convey the desired information, electrode selection 

is important to reduce the computational burden. To discover 

the crucial electrodes, a correlation coefficient-based electrode 

selection approach was introduced. We have computed the 

best 20 electrodes, which are C3, Cz, CP4, CP3, P3, Fz, FCz, 

C4, TP7, FT7, F4, T6, TP8, T5, FP1, FP2, T4, F7, T3 and F3. 

These electrodes are arranged according to their importance. 

Hence, the C3 electrode contains the most significant 

information among others. After arranging the electrodes 

based on their importance, we have calculated the accuracy of 

ERS-KNN. Table 2 has tabulated the classification accuracy 

with different combinations of electrodes. The C3 electrode 

selected using the correlation coefficient has achieved an 

accuracy of 93.7%. The achieved accuracy using a single 

electrode is very encouraging. The accuracy of the ERS-KNN 

classifier using two electrodes (C3 and Cz) is 94.24%. The 

accuracy of the ERS-KNN classifier using three electrodes 

(C3, Cz and CP4) is 99.96% which is almost equal to 100%. 

This accuracy indicates the effectiveness of the correlation 

coefficient and ERS-KNN. The ability to select the optimum 

electrode in advance provides an opportunity to decrease 

computational complexity. The proposed correlation 

coefficient based electrode selection method has reduced the 

electrodes from 33 to 3, resulting in the minimize of 

computational complexity.  

 

 

5. DISCUSSION  

 

The goal of this study was to develop a framework for 

determining driver fatigue using EEG measurements. 

Although EEG signals can be effectively used to detect driver 

fatigue, there are certain drawbacks to this method, including 

higher computational cost, a large number of electrodes, 

overfitting problem of classifiers and so on. An optimum 

combination of the channel selection algorithm, the feature 

extraction methods, and the classifier must be employed to 

overcome those issues and achieve good classification 

accuracy. Besides, a shorter time window of each trial should 

be taken to make the system faster. Consequently, in this study, 

a novel EEG channel selection algorithm and ensemble 

classifier are introduced to identify driver fatigue. The 

proposed ERS-KNN classifier achieved a classification 

accuracy of 99.99% with only three selected channels at 0.5 

seconds of the time window. The best significant three 

channels were selected using a correlation coefficient. To the 

authors' knowledge, this may be the first study that proposes 

correlation coefficient as channel selection algorithm and 

ERS-KNN as classification algorithm for EEG based driver 

fatigue detection with the highest accuracy within a concise 

time window. The developed system has the potential to give 

an innovative approach for drivers monitoring their fatigue or 

alert state by means of an EEG signal. 

The classification ability of the proposed method is 

compared with the earlier fatigue detection researches. 

Numerous good researches have also been conducted to detect 

driver fatigue based on EEG data, as detailed in Table 3. It 

demonstrates that the classification efficiency of the developed 

framework is more successful than the other state-of-the-art 

for driver fatigue detection. Feature extraction was performed 

with an AR model developed by Nguyen et al. [44] and a 

Bayesian neural network used for classification, in which they 

obtained an accuracy of 88.2%. In a study done by Li et al. 

[45], they used 16 channels of EEG data to calculate 12 

different energy features and then reached the maximum level 

of accuracy at 91.5% with only two electrodes (FP1 and O1). 

Chai et al. [33] showed that by employing AR feature extractor 

and sparse-deep belief networks, they were able to increase the 

classification performance of fatigue detection with an 

accuracy of 93.1%. Xiong et al. [46] used a hybrid feature 

consisting of AE and SE in conjunction with an SVM classifier 

to reach the maximum accuracy of 91.3% with the single 

electrode (P3). Using EEG signals from two electrodes (O1 

and O2) and other physiological signals, Fu et al. [10] 

developed a method for fatigue identification based on the 

Hidden Markov Model (HMM). Min et al. [26] developed a 

multimodal entropy fusion strategy to identify driver 

weariness using electroencephalography (EEG). They utilized 

four different classifiers, including SVM, BP, RF and KNN 

and achieved an accuracy of 98.3%. 
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Wearable devices with very few sensors should be used in 

the future to deliver fatigue alerts. This will have an impact on 

the comfort and usability of the system. Moreover, unlike the 

32-channel EEG system utilized in this study, multichannel 

EEG acquisition devices like this one would only be utilized 

in the lab environment. Therefore, it would be more practical 

and feasible to use an EEG device with fewer channels or 

perhaps a single electrode. System algorithm performance 

may be improved by optimizing the channel selection 

algorithm. As mentioned earlier, the proposed correlation 

coefficient based channel selection algorithm has achieved 

almost 100% accuracy with only three electrodes. No other 

study achieved similar accuracy with a such number of 

electrodes. Moreover, the proposed channel selection 

algorithm employed in only 0.5s of the time window. Fu et al. 

[10] achieved the highest accuracy of 92.5% using two 

electrodes (O1 and O2). Xiong et al. [46] obtained the 

maximum accuracy of 91.3% at electrode P3. Compared with 

these studies, the performance of the proposed correlation 

coefficient based channel selection algorithm is considered to 

be the best. 

Recent research has demonstrated that ensemble classifiers 

outperform single classifiers [23, 24], but limited research has 

studied the use of ensemble classifiers based on EEG signals 

to detect driver weariness. Hu et al. [47] presented a gradient 

boosting decision tree (GBDT) method for detecting 

drowsiness using EEG signal and obtained up to 94.0%. Using 

a single electrode, Wang et al. [48] introduced an ensemble 

learning technique for measuring driver fatigue. Using three 

base classifiers, the authors applied three ensemble techniques 

(bagging, random forest, and boosting) and compared them. 

The gradient boosted DT achieved the mean accuracy is >94% 

on 12 subjects. Unlike bagging, the features are randomly 

picked for each learner in the random subspace method. When 

compared to more traditional machine learning approaches, 

our method encourages individual learners to pay less 

attention to attributes that seem to be very important in the 

training set but have little correlation with points outside of 

that training set. Because of this, random subspaces are an 

attractive option for issues where there are many more 

variables than training points, such as when training from EEG 

data. It is therefore an even better choice for online BCI 

operations because it requires less computing complexity. 

This study's methodological strengths are as follows: 

1) The proposed framework achieved the highest accuracy 

(i.e., almost 100%) with 0.5 seconds of the time window. 

This short time window makes the system faster by 

reducing the number of samples in each trial.  

2) Due to its efficacy and robustness, the ensemble random 

subspace K-NN algorithm may be successfully used in the 

identification of driver fatigue using EEG data. Ensemble 

classifiers can train independently and perform tasks 

simultaneously. 

3) The proposed ERS-KNN required a little bit higher time 

than the single classifier to complete the training process; 

However, when compared to other classification 

algorithms, this one was able to perform as fast as the 

other single classifiers at the time of testing. Not only the 

test duration is brief, but it is also unbiased of the training 

samples. Additionally, the method presented here is 

relevant to portable devices. 

4) In the proposed channel selection method, the highly 

correlated channels were identified based on correlation 

analysis. The proposed channel selection algorithm has 

achieved almost 100% accuracy with only three 

electrodes which can greatly benefit the driver fatigue 

detection system using EEG. 

 

Although the proposed approach could significantly 

outperform other competing driver fatigue detection systems 

studied, the proposed approaches have many drawbacks. 

Unfortunately, the number of subjects and dataset size is 

limited, which hinders the effectiveness of the study. 

Additional investigations should be conducted to see if the 

proposed strategy works on large datasets. Furthermore, 

ensemble learning results in a substantial increase in 

computing costs. However, the problem can be resolved by 

using cloud-based parallel processing solutions such as 

Hadoop. Despite the fact that the EEG has extremely artefact-

prone features, no artefact reduction algorithm was applied in 

this work. As a result, accuracy may be compromised in the 

presence of noisy EEG signals. Certain artefact-removal 

techniques may be employed to mitigate this issue, which 

needs future exploration. We will further evaluate the efficacy 

of the presented method by taking into account several 

frequency bands and automatic time window selections, both 

of which have the potential to lower the computing complexity 

of the proposed method even more. This multi-parameter 

optimization challenge will be addressed in greater depth in 

our subsequent research. 

 

Table 3. Performance comparison of related driver fatigue detection studies 

 

Reference 
Channel Selection 

Algorithm 
Feature Extraction 

Number of 

Selected Channel 

Classification 

Algorithm 

Performance 

[33] - AR model 32 electrodes sparse-DBN 93.1 

[46] - AE and SE P3 SVM 91.28 

[49] - Adaptive multi-scale fuzzy entropy Fp1, Fp2 - 95.37 

[50] - 
Time Analysis, Spectral analysis, 

Wavelet decomposition 

C3, O1, C4, A1, 

O2, A1 

NN 83.6 

[51] - FFT Single channel Linear regression 90 

[44] - Statistical tests 64 FLDA 88.6 

[52] - wavelet entropy 8 electrodes SVM 90.7% 

[11]  Multiple Entropy Fusion 32 electrodes SVM 98.3 

[21] RFNCAPCA DCBP and MTTP 32 electrodes KNN 97.29% 

Proposed 

Method 

Correlation 

coefficient 
PSD 

3 ERS-KNN 99.96 
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6. CONCLUSIONS 

 

One of the biggest traffic safety issues is driver sleepiness, 

which contributes to hundreds of accidents and fatalities every 

year. Among numerous subjective and objective detection 

methods, driver physiological parameters especially, EEG has 

emerged as the most trustworthy contemporary technique to 

assess the driver's alert or fatigue states. The findings in this 

study show that by analyzing EEG waves during a simulated 

driving job, it is possible to distinguish between being fatigued 

or alert. A novel channel selection algorithm known as 

correlation coefficient has been proposed to select the most 

significant EEG electrodes. To reduce the computational cost, 

three different time windows (i.e. 0.5s, 0.75s and 1s) have been 

utilized during a trial separation. The PSD was used for the 

feature extractor, and then an ensemble classifier known as 

ERS-KNN was used as a classifier. The proposed method 

provides superior classification accuracy (i.e. 99.99%) with 

only three electrodes at 0.5s of time windows. The results of 

the experiments indicate that the combination of correlation 

coefficient, PSD and ERS-KNN algorithm has the potential to 

greatly improve the accuracy of EEG-based driver fatigue 

detection systems. 
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