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In the traditional slow feature analysis (SFA), the expansion of polynomial basis function 

lacks the support of visual computing theories for primates, and cannot learn the uniform, 

continuous long short-term features through selective visual mechanism. To solve the 

defects, this paper designs and implements a slow feature algorithm coupling visual 

selectivity and multiple long short-term memory networks (LSTMs). Inspired by the visual 

invariance theory of natural images, this paper replaces the principal component analysis 

(PCA) of traditional SFA algorithm with myTICA (TICA: topologically independent 

component analysis) to extract image invariant Gabor basis functions, and initialize the 

space and series of basis functions. In view of the ability of the LSTM to learn long and 

short-term features, four LSTM algorithms were constructed to separately predict the long 

and short-term visual selectivity features of Gabor basis functions from the basis function 

series, and combine the functions into a new basis function, thereby solving the defect of 

polynomial prediction algorithms. In addition, a Lipschitz consistency condition was 

designed, and used to develop an approximate orthogonal pruning technique, which 

optimizes the prediction basis functions, and constructs a hyper-complete space for the basis 

function. The performance of our algorithm was evaluated by three metrics and mySFA’s 

classification method. The experimental results show that our algorithm achieved a good 

prediction effect on INRIA Holidays dataset, and outshined SFA, graph-based SFA (SFA), 

TICA, and myTICA in accuracy and feasibility; when the threshold was 6, the recognition 

rate of our algorithm was 99.98%, and the false accept rate (FAR) and false reject rate (FRR) 

were both smaller than 0.02%, indicating the strong classification ability of our approach. 
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1. INTRODUCTION

Slow varying signals, an expression of the invariant, convey 

the invariant information of the high-level abstract expression 

of high-frequency input signals. Based on invariant learning, 

slow feature analysis (SFA) aims to extract the slow attributes 

of signals, as well as the slow topology between these 

attributes. The relevant algorithms have been successfully 

applied in many fields. 

In 1989, Hinton [1] became the first to propose the basic 

concept, fundamental theories, and hypotheses of slow 

features, and formulated the preliminary theory of slow feature 

extraction. In 2002, Wiskott and Sejnowski [2] put forward an 

unsupervised learning algorithm for SFA, which overcomes 

the lack of samples and constant dimensionality of supervised 

learning approaches through nonlinear expansion of the 

feature space. This marks the official establishment of SFA 

theories and algorithms.  

In 2005, Berkes and Wiskott [3] and Wiskott applied the 

invariant learning results to receptive field learning of 

complex cells. In 2007, Franzius et al. [4] revealed the 

properties of invariant on brain cells in the hippocampus, 

laying the physiological basis for invariant learning. In 2008, 

Franzius et al. [5] extracted and recognized the invariant 

features of the position and rotation angle of cartoon fish 

through SFA, and demonstrated the ability of SFA to extract 

classification information. Their study provides the theoretical 

and experimental foundation for applying slow feature 

algorithms in feature extraction and pattern recognition. 

In 2009, Kalmpfl and Maass [6] trained the SFA algorithm 

with the data generated by Markov chain, and proved that the 

features extracted by the slow feature algorithm are equivalent 

to those extracted by feature decay algorithm (FDA), when the 

small parameter a approximates zero. The results show that 

invariant feature extraction algorithm is a correct and feasible 

way to extract features, and the Markov chain applies to slow 

feature training. 

In 2011, Ma et al. [7] provided a kernel-based SFA 

algorithm, which enables the expansion of the feature space, 

prevents the computing in high-dimensional space, and applies 

SFA algorithm in blind signal separation. At this point, the 

standard SFA finally matured. 

In 2012, Luciw et al. [8] presented a hierarchical SFA 

algorithm to reduce the computing complexity of the standard 

SFA. Inspired by the divide-and-conquer strategy, their 

algorithm can ease the computing complexity. But much 

information may get lost due to the hierarchical structure. Thus, 

the algorithm does not necessarily extract all global optimal 

features. In 2013, Escalante-B and Wiskott [9] developed an 

SFA based on the graph theory (GSFA) to overcome the 

difficulty in extracting global optimal features, which stems 

from information loss. The GSFA trains the SFA algorithm 

with the complex structure of the training images, trying to 

realize feature extraction according to the complex structure 
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features of the training images. 

In 2015, Zhao et al. [10] designed a feature extraction 

algorithm based on the complex visual information of natural 

images. From the angle of visual selectivity, the self-designed 

topologically independent component analysis (TICA) was 

adopted to extract the slow features of the topological 

relationship between information in the complex visual space 

of natural images, revealing the consistency between visual 

selectivity and slow features. 

In 2019, Zhao [11] improved the slow feature algorithm 

based on visual invariance, and successfully applied the 

improved algorithm to extract natural image features. In 2020, 

Zhao [12] developed an improved slow feature algorithm 

based on visual selectivity, and introduced it successfully to 

extract features from out-of-focus image series.  

In 2020, Zhao [13, 14] improved the SFA algorithm by 

multiple long short-term memory networks (LSTMs) and 

spatiotemporal correlations, implemented the algorithm to 

dynamic forecast of particulate matter 25 (PM25), and 

demonstrated the excellent prediction ability of the LSTM-

improved algorithm. 

In recent years, the SFA algorithm has achieved desired 

effects in various fields, ranging from human behavior 

recognition [14-16], blind signal analysis [7, 17], dynamic 

monitoring [18], three-dimensional (3D) feature extraction 

[19], and multi-person path planning [20]. Great progress has 

been realized on the theories and applications of SFA. 

However, there remain two defects with traditional SFA: (1) 

The expansion of polynomial basis function lacks the support 

of visual computing theories for primates; (2) The expansion 

of polynomial basis function cannot learn the uniform, 

continuous long short-term features through selective visual 

mechanism. To solve the defects, this paper designs and 

implements a slow feature algorithm coupling visual 

selectivity and multiple LSTMs. 

 

 

2. UNIFORM CONTINUITY OF VISUAL COMPUTING 

THEORIES AND ITS APPLICATION IN SLOW 

FEATURE ALGORITHM  

 

Visual sparsity theory shows that the primates can express 

the unlimited nature with a limited number of visual neurons, 

and the expression can be illustrated with families of Gabor 

basis functions. According to the visual selectivity theory, the 

families of Gabor basis functions obey the visual selectivity 

rules of small intra-class distance and large between-class 

distance. Statistically, the basis functions of the same family 

have a low dispersion, while those of different families have a 

high dispersion. On image appearance, the Gabor basis 

functions containing similar visual selectivity features 

characterize the image blocks with similar textures, while 

those containing different visual selectivity features 

characterize image blocks with different textures. On the same 

image, the number of Gabor basis function families, and the 

basis functions in each family have stable visual information, 

and stable spatial topology of the information. 

Under the constraint of visual selectivity theory, the Gabor 

basis functions in each family have stable and uniform global 

visual features, i.e., each Gabor basis function has uniform, 

continuous visual features. The LSTM algorithm can learn the 

uniform, continuous property of the family (series) of basis 

functions effectively, and generate expanded Gabor basis 

functions through prediction. The visual selectivity 

consistency of the generated basis functions can be 

constrained by the Lipshitz uniform consistency theory. By 

this theory, it is possible to prune the basis functions, optimize 

the family of Gabor basis functions, and ensure the uniform, 

consistency of visual features in the function family. 

According to the visual flow feature theory, when the 

primate visual system observes the external environment, the 

slow changes are covered up by the rapid changes of the 

observation features. In terms of images, the image signals 

contain a stable number and families of Gabor basis functions. 

In the same family, the visual features of Gabor basis functions 

are uniform and continuous. In the visual space, the Gabor 

basis functions in the same family have a slowly changing 

topology. The visual processing of primates is a layered serial 

process involving multiple parallel links [21, 22]. Through 

long-term training on an unlimited number of images, the links 

slowly form a stable structure and uniform, continuous 

functions. The link structure can learn the long and short-term 

visual selectivity features of images. The LSTM, as an 

improved recurrent neural network (RNN), can effectively 

learn or predict the long and short-term memory features of 

time series, thanks to its stable link structure. On visual 

information processing, the learning/prediction process bears 

resemblance to visual link theory. After link learning, the 

family of Gabor basis functions and their visual space 

topology become consistent in slow changing and visual 

selectivity.  

Inspired by the theory of visual selection consistency, this 

paper adopts the multi-LSTM algorithm to predict the four key 

parameters of Gabor basis functions, and derives Gabor basis 

functions based on visual selectivity theory. This derivation 

approach was used to replace the basis function prediction 

method of SFA, i.e., the polynomial product method. This is 

the major innovative point of this research. 

 

 

3. OUR ALGORITHM 

 

3.1 Related results 

 

The Introduction has already summarized the theories and 

applications of SFA, and identified the strengths and 

weaknesses of traditional SFA algorithms. Table 1 compares 

the research results related to our study. 

Based on the comparison of Table 1, this paper pursues 

innovation in terms of slow feature extraction, flow feature 

basis function expansion, and feature structure. The visual 

selectivity theory was integrated with the Lipshitz uniform 

consistency theory, and LSTM theory. Specifically, a spatial 

expansion algorithm was developed for the basis function of 

the LSTM algorithm based on visual selectivity. The 

expansion method for slow feature basis functions was 

effectively integrated with the uniform, consistent visual 

selectivity, based on the approximate pruning of Lipschitz 

condition. On this basis, the hyper-complete set of out-of-

focus image series was predicted and extracted, supporting the 

recognition of the out-of-focus image series. The innovation 

process of our algorithm is introduced step by step below. 
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Table 1. Comparison of relevant results 

 

Contents 
Key  

literature 

Feature extraction 

method 

Feature expansion 

method 

Feature  

structure 

Slow features 

Wiskott and Sejnowski 

in 2002 [2] 
PCA Polynomial expansion Global set of slow features 

Luciw et al. in 2012 

[8] 
PCA 

Polynomial expansion Slow feature set of hierarchical 

sampling 

Escalante-B. and 

Wiskott in 2013 [9] 
PCA 

Polynomial expansion 
Graph structure feature set 

Zhao in 2015 [10] myTICA 
Feature-based probability 

distribution  

Slow feature set of visual space 

topology 

Zhao in 2019-2020 

[11, 12] 
mySFA 

Visual invariance and 

visual selectivity 

3D visual information and 

information of visual space topology  

Improvement 

of LSTM 

prediction 

algorithm 

Zhao in 2020 [13] 

Spatiotemporal correlated 

micro-features of long and 

short-term memory  

Not involved 

Global and local spatial correlation 

matrices with long and short-term 

properties (microscale) 

Zhao in 2020 [14] 

Spatiotemporal correlated 

macro-features of long and 

short-term memory 

Not involved 

Global and local spatial correlation 

matrices with long and short-term 

properties (macroscale) 

 

3.2 Innovations 

 

To overcome the defects of the original SFA, our algorithm 

achieves innovation in the following four aspects, based on the 

above theoretical analysis. 

Innovation 1: receptive field modeling based on visual 

selectivity 

The receptive field of visual cells can be modeled by Gabor 

function, which uses four key parameters to depict the visual 

selectivity of the visual cells of primates. The four parameters 

contribute differently to selectivity. By the degree of 

contribution, they are ranked as frequency, direction, phase, 

and visual space position. Based on the theory of visual 

selectivity, the generalized Gabor model can be established as:  

 

( , , , )

1

f o p d

f o p d

f o p d

gabor gabor    

   

   

=


+ + + =
   

 (1) 

 

where, λf and λo are the frequency and direction of visual space 

in the receptive field of visual cells, respectively (as 

distinguishing properties of the receptive field of visual cells, 

these two parameters determine the visual space distribution, 

and bear on the calculation of intra-class and between-class 

dispersions); λp is the visual spatial lag of the receptive field of 

primary visual cells (this parameter plays an important role in 

the calculation of intra-class dispersion in the receptive field 

of primary visual cells); λd is the position of the receptive field 

of primary visual cells in the visual space (this parameter plays 

an important role in the calculation of between-class 

dispersion). The four parameters work together to determine 

the global properties of the receptive field. 

Inspired by visual selectivity theory, the four parameters of 

the Gabor function can be normalized by contribution: 

 

2 2 2 2

i

i

f o p d




   
=

+ + +
 (2) 

 

Experimental results show that the proportional relationship 

of the four parameters of the receptive field was 

�̄�𝑓: �̄�𝑜: �̄�𝑝: �̄�𝑑 = 4: 4: 1: 1, which basically reflects the degree 

and amount of contribution of each receptive field parameter. 

Innovation 2. Improvement of feature extraction method 

In the original SFA algorithm, the features are extracted 

through PCA. The main components are mined from the 

original image, while the visual space topology of the natural 

image is not extracted. Thus, the PCA results cannot convey 

the intrinsic visual features of the image. Inspired by the theory 

of visual selectivity, the basis functions in the basis function 

space Visual_sub_set(i) have similar or the same global visual 

selectivity, and are distributed close in the visual space. 

Therefore, these functions are clearly uniform and consistent 

in visual selectivity. Hence, the PCA in the original SFA 

algorithm was replaced with myTICA [20] to extract the slow 

visual features from the natural image, that is, Visual_sub_set 

was modeled by Gabor function as: 

 
_ _ { _ _ { }

( , , , ) | i 1, 2,3,..., }f o p d

Visual sub set Visual sub set i

Gabor N   

=

= =
 

(3) 

 

where, f, o, p, and d are the frequency, direction angle, phase, 

and visual space location of the receptive field, respectively. 

Innovation 3. The spatial expansion algorithm for the basis 

functions of the LSTM algorithm based on visual selectivity 

(Base_Extend_of_LSTM_Selectivity, BELS). 

Orignally, the feature space of the SFA algorithm is mostly 

expanded by polynomial method. The complex computing 

process lacks the support from visual computing theories for 

primates, or the ability to learn the long and short-term features, 

which are uniform and continuous in visual selectivity. From 

the intrinsic visual features, this paper expands the feature map 

to generate a hyper-complete set of invariant features, which 

reflects the nature of natural images. 

 

3.3 Algorithm structure 

 

The flow of the BELS algorithm is shown in Figure 1.  

The basis function space is formed by dividing the basis 

functions of the natural image. Reflecting the visual space 

selectivity of the natural image, the basis function space can 

be expressed as 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡 =
{𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑖}|𝑖, 2,3, . . . , 𝑁} . Inspired by the visual 

selectivity of primates (small intra-class distance and large 

between-class distance), the basis function space 

Visual_sub_set(i) is divided into four subsets 

Visual_sub_set{k,λ1}, Visual_sub_set{k,λ2}, 

Visual_sub_set{k,λ3} and Visual_sub_set{k,λ4}by the degree 
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of contribution of basis function parameters. The technical 

pointer of the dynamics of basis function space is described by 

a counter p_add, while the number of elements in the basis 

function space is depicted as number1. The K-subset 

generation algorithm collects K samples randomly from the set 

Visual_sub_set(i). The value of K is smaller than or equal to 

the number of elements in that set. The LSTM operations in 

Gabor frequency, direction, phase and spatial distance are 

formulated into four algorithms: F_LSTM, O_LSTM, 

P_LSTM and D_LSTM. 

 
Figure 1. Flow of BELS algorithm 

 

3.4 BELS algorithm 

 

Step 1. Initialize 𝑘 =
𝑔𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ(𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑})/2, and extract subset 

𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑, 𝑘}  from the normalized 

Visual_sub_set, where 𝑔𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ(∗) is the number of 

elements in set *. The K value is initialized as half of the length 

of 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑} . The K randomly selected 

elements from Visual_sub_set are grouped into 

𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑, 𝑘}. 

Step 2. Using K-subset generation algorithm to randomly 

choose k elements from normalized Visual_sub_set, and group 

them into a subset 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑, 𝑘} . Then, 

sequentially import 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑, 𝑘, 𝜆1} , 

𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡 {𝑝_𝑎𝑑𝑑, 𝑘, 𝜆2} , 

𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑, 𝑘, 𝜆3} , and 

𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑, 𝑘, 𝜆4}  to algorithms F_LSTM, 

O_LSTM, P_LSTM, and D_LSTM, thereby predicting 

parameters λ1, λ2, λ3, and λ4 and obtaining visual selectivity 

parameters λf, λo, λp, and λd. The visual selectivity parameters 

are thereby predicted. 

Step 3. Normalize parameters based on visual selectivity, 

using contribution-based normalization method (2). In this 

way, the normalized parameters λf, λo, λp, and λd are obtained. 

Step 4. Output the predicted parameter vector α=(λf, λo, λp, 

λd) of Gabor basis functions, and normalize the relevant count 

relation_s=0. Given that ∀𝛽 = （�̄�𝑓，�̄�𝑜，𝜆𝑝，�̄�𝑑） ∈
𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡(𝑝_𝑎𝑑𝑑) , compute Correlation_value =
Correlating_operation(𝛼, 𝛽) . If Correlation_value ≥ 𝛾 , 

then 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑠 + +, where γ=0.8 is a preset threshold for 

correlation. Traverse the entire Visual_sub_set(p_add) to 

compute the correlation coefficient. If 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 𝜃, 𝜃 =
𝜌 × 𝑙𝑒𝑛(𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡(𝑝_𝑎𝑑𝑑)), vector  is not related to 

set Visual_sub_set(p_add). Then, K should be increased by a 

step length δ, i.e., 𝑘 = 𝑘 + 𝜎 𝑎𝑛𝑑 𝑘 ≤

𝑙𝑒𝑛(𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡(𝑝_𝑎𝑑𝑑)) , with δ be a parameter 

controlling the step length, which is measured through 

experiments. After that, jump to Step 2. Otherwise, go to Step 

5. 

Step 5. Output prediction parameter α=(λf, λo, λp, λd) to 

Visual_sub_set(p_add). 

 

3.5 Approximate orthogonal pruning based on Lipschitz 

condition (Lipschitz_Orthogonal_Pruning_Method, 

LOPM) 

 

In series 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡 = {𝛾(𝑖)|𝛾(𝑖) =

(𝜆𝑓
𝑖 , 𝜆𝑜

𝑖 , 𝜆𝑝
𝑖 , 𝜆𝑑

𝑖 ),i=1,2,3,...,M,...,N} , the first M elements are 

basis functions extracted by myTICA, and the elements M+1 

to N are the expanded basis functions predicted by our 

algorithm. Let (𝜇 , ∑ ) be the mean and covariance of samples, 

respectively; ∀𝛽, �̄� ∈ 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡 ; 𝛼 = {𝜆𝑓
∗ , 𝜆𝑜

∗ , 𝜆𝑝
∗ , 𝜆𝑑

∗ } 

be the basis function parameter vector predicted by the LSTM 

algorithm. 

This paper proposes the LOPM to ensure that the predicted 

basis function α and the functions in the set Visual_sub_set 

have similar, uniform, and continuous visual features. 

According to Lipschitz consistency [23-25], the following 

inequalities can be obtained:  
 

 

( ( ), ( )) ( , )D Gabor Gabor L D

Max

   

  

 


 + 

 

 

Since  

 

( , ) ( ( , ), ( , ))D Max D D       

 

When �̄� = 𝑀𝑎𝑥(𝐷(𝛼, 𝛽), 𝐷(𝛽, �̄�)) , the finetuning 

parameter of consistency 𝜂 =
𝐷(𝛼,𝛽)

𝐷(𝛼,𝛽)+𝐷(𝛽,�̄�)
. If, 
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L
L

L

 

  

 
= 

+ 
 

 

where, ξ is a random small integer preventing 

overconvergence of the elements in the set Visual_sub_set; 

𝐿 << 𝐷(𝑉𝑖𝑠𝑎𝑢𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡(𝑘1), 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑒𝑏_𝑠𝑒𝑡(𝐾2)) ; 𝑘1 ≠
𝐾2, 𝑘1, 𝑘2 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑉𝑖𝑠𝑎𝑢𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡). 

Then, there must be: 

 

( ( ), ( )) ( , )D Gabor Gabor L D      

 

Hence, the value of L is determined, and the Lipschitz 

consistency is basically guaranteed. In this case, function D is 

introduced to measure the block distance between two vectors: 

 

( , ) f f o o p p d dD                 = − + − + + − + −  

 

If ⟨𝛼, 𝛽⟩ ≤ 𝜀 , vector α is similar to vector β, carry out 

pruning and retain β; otherwise, add α to set Gabor_set. Note 

that ε is pruning coefficient, a random small integer controlling 

the degree of pruning. 

Innovation 4. Invariant feature formation 

The original SFA algorithm extracts only the PCA features 

of the natural image, failing to extract slow features from out-

of-focus image series or the spatial topology between these 

features, using the visual computing theory of natural images. 
 

 
 

Figure 2. Feature forest reflecting the visual invariance of 

the natural out-of-focus image series 
 

Note: tree(m), m=1,2,3,… is the m-th series feature of the out-of-focus 

image series in the visual space. It is designed according to the global 
parallel and local serial processing mechanism of visual information of 

primates, with the aim to facilitate parallel algorithm design. 

 

Inspired by the theory on the consistency of visual 

selectivity of primates, it is certain that the Gabor basis 

functions satisfy the consistency of visual selectivity in the 

complex visual space Visual_sub_set, which corresponds to 

the target out-of-focus image series. Due to the uniformity and 

continuity (or invariance) of the four visual parameters f, o, p, 

and d of basis functions determine the number of basis 

function spaces and the spatial topological relationship of the 

out-of-focus image series, as well as the consistency between 

the type of basis functions in the basis function family and 

spatial topology. 

Through the above improvement, the feature forest can be 

constructed to reflect the visual invariance of the out-of-focus 

image series, based on the improved SFA architecture (Figure 

2). 

To sum up, the slow features of the out-of-focus image 

series can be expressed as: 

 

{ ( ) | 1,2,3...}IS tree m m= =  (5) 

 

( ) {( ( , ), ( , ))}tree m index m j gabor m j=  (6) 

 

where, m is the visual space basis; j is the position of an 

element in m, j=1,2,3,…,360. In the IS matrix, the columns 

have frequency selectivity, and the rows have direction angle 

selectivity. The elements are ranked in ascending order, with 

the direction angle falling in [1, 360]. Hence, the features 

can be described by the following matrix. 

 

Table 2. Feature matrix index (each row contains 360 

features) 

 
Index(1,j) 1 0 0 … 1 

Index(2,j) 0 0 1 … 0 

Index(3,j) 1 1 0 … 1 

. .     

Index(n,j) 0 1 1 … 1 

 

In the feature matrix index, 1 means the receptive field 

exists at that position; otherwise, the receptive field does not 

exist at that position. Each node index(i,j) contains the 

corresponding gabor(i,j) function. These functions form a 

feature matrix (Tables 2 and 3). 

 

Table 3. Receptive fields corresponding to GMindex 

 
chain(1) g11 g12 g13 … g1360 

chain(2) g11 g12 g13 … g1360 

chain(3) g11 g12 g13 … g1360 

      

chain(n) g11 g12 g13 … g1360 

 

 

4. ALGOITHM DESIGN 

 

4.1 Algorithm structure 

 

Reflecting the above innovations, the proposed basis 

function expansion algorithm can be implemented in the 

following flow (Figure 3). 

The basis function space is formed by dividing the basis 

functions of the natural image. Reflecting the visual space 

selectivity of the natural image, the basis function space can 

be expressed as 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡 =
{𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑖}|𝑖, 2,3, . . . , 𝑁} . Inspired by the visual 

selectivity of primates (small intra-class distance and large 

between-class distance), the basis function space 

Visual_sub_set(i) is divided into four subsets 

Visual_sub_set{k,λ1}, Visual_sub_set{k,λ2}, 

Visual_sub_set{k,λ3} and Visual_sub_set{k,λ4} by the degree 

of contribution of basis function parameters. The technical 

pointer of the dynamics of basis function space is described by 

a counter p_add, while the number of elements in the basis 

function space is depicted as number1. The K-subset 
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generation algorithm collects K samples randomly from the set 

Visual_sub_set(i). The value of K is smaller than or equal to 

the number of elements in that set. The LSTM operations in 

Gabor frequency, direction, phase and spatial distance are 

formulated into four algorithms: F_LSTM, O_LSTM, 

P_LSTM and D_LSTM. 

 

 
Figure 3. Flow of our algorithm 

 

4.2 Feature prediction algorithm 
 

Step 0. Initialize control variable p_add=1.  

Step 1. Establish the set of description information for 

primates’ visual space by myTICA [10]: 𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡 =
{𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡(𝑝_𝑎𝑑𝑑)|𝑖, 2,3, . . . , 𝑁} , and compute 

number1=(𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡{𝑝_𝑎𝑑𝑑})). 

Step 2. Normalize parameters in each subset of 

Visual_sub_set based on visual selectivity, using contribution-

based normalization method (2).  

Step 3. Call the BELS algorithm to obtain the prediction 

vector α=(λf, λo, λp, λd). 

Step 4. Call the LOPM. If pruning is executed, jump to Step 

5; otherwise, insert vector α=(λf, λo, λp, λd) into 

Visual_sub_set(p_add) before jumping to Step 5. 

Step 5. p_add++. 

Step 6. If 𝑝_𝑎𝑑𝑑 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟1, jump to Step 3. 

Step 7. Otherwise, terminate the algorithm, and complete 

the prediction of slow features. 

Step 8. Generate the feature forest 𝐼𝑆 = {𝑡𝑟𝑒𝑒(𝑚) |𝑚 =
1,2,3. . . }. 

 

4.3 Prediction evaluation and classification algorithm 
 

The algorithm performance is evaluated by three metrics: 

root mean squared error (RMSE), mean absolute error (MAE), 

and mean absolute percentage error (MAPE): 
 

* 2

1

1
R ( )

n

N

i i

i

MSE y y
=

= −  (7) 

  

*

1

1
| |

n

i i

i

MAE y y
n =

= −  (8) 

* 2

*
1

| |1 n
i i

i i

y y
MAPE

n y=

−
=   (9) 

 

where, 𝑦𝑖
∗ is the basis function generated by myTICA; yi is the 

basis function predicted by our algorithm; n is the number of 

observations. The classification is carried out by Zhao’s 

method [11].  

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

5.1 Image set generation and display 

 

Table 4. Affine transform parameters (the last column is for 

comparison) 

 
Type Parameters (rotation angle, number of 

translation pixels, and scaling factor) 

Rotation 0.1 0.3 0.5 0.7 1 5 

Translation 1 3 5 7 9 9 

Scaling 1/8 1/4 1/2 2 3 4 

 

According to the previous theoretical analysis, out-of-focus 

images can be approximated through the affine transform of 

original clear images. Hence, 1,000 images are selected from 

INRIA Holidays dataset, and subjected to affine transform 

using the parameters in the first five columns of Table 4, 

producing an image set of 15,000 images. The first 12,000 

images were allocated to the training set, and the latter 3,000 

into the test set. Each set contains 1,000 original images. 

Figure 4 shows the samples from the experimental image set. 
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Figure 4. Samples from the experimental image set based on 

INRIA holidays dataset 

 

5.2 Relationship between initial K and BELS performance 

 

In our algorithm, the K value determines the visual 

selectivity consistency of the predicted basis functions. It also 

bears on the prediction and computing performance of the 

BELS. This parameter could be configured adaptively 

according to the learning results. Therefore, the initial K value 

determines the prediction performance and execution process 

of the BELS. The selection of K value is critical to whether the 

predicted basis functions can learn the global distribution 

features of set Visual_sub_set(i). Experiments show that the 

initial K should satisfy 𝐾 =
𝑀𝑖𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡(𝑖), 𝑖 = 1,2,3, . . . , 𝑁)/2) . 

Through random sampling, the K-subset generation algorithm 

collects K elements from set visual_sub_set(i), forming a new 

set Visual_sub_set(i,λt) with t(λf, λo, λp, λd). 

On the training set, the relationship of initial K and the 

prediction performance of the BELS is shown in Table 5. 

With the growth of initial K, more basis functions in 

Visual_sub_set(i) participate in the prediction, and the 

learnable global visual features are enhanced. Meanwhile, the 

predicted basis function α has stronger global features of the 

basis function set Visual_sub_set(i), and exhibit a more 

uniform and continuous visual selectivity. The results of 

RMSE, MAE, and MAPE all gradually decrease. Therefore, 

the BELS can achieve a very strong prediction performance. 

 
 

Figure 5. Relationship between k value and BELS 

performance 

 

The K value has the following correspondence with K: 

𝐾(𝑘_𝑣𝑎𝑙𝑢𝑒) =
𝑁

2
+ (𝑘_𝑣𝑎𝑙𝑢𝑒 − 1) × 𝑑, where d=1/38 is the 

tolerance; N is the size of Visual_sub_set(i). 

As shown in Figure 5, with the growth of initial K, the 

BELS witnesses an improvement in prediction performance; 

the predicted basis function α can better learn and inherit the 

global features of elements in set Visual_sub_set(i), and 

achieve a more uniform and continuous visual selectivity. 

Therefore, the recognition performance of our algorithm 

increases with the K value. 

 

5.3 Relationship between initial δ and prediction 

performance 

 

In our algorithm, the growth rate of K is described by 

parameter δ: 
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This parameter is an integer that determines the learning rate 

of the BELS. Hence, the initial value of this parameter is 

correlated with the prediction performance of the algorithm. 

The relationship between parameter δ and parameter K on the 

training set is shown in Table 6. 

 

Table 5. Relationship of initial K and our algorithm’s prediction performance 

 
 K 

Metric 
N/2 

7

16
𝑁 

5

8
𝑁 

11

16
𝑁 

3

4
𝑁 

13

16
𝑁 

7

8
𝑁 

15

16
𝑁 N 

RMSE 15.23 14.78 13.82 13.15 12.09 11.54 9.78 9.02 8.36 

MAE 7.91 7.53 7.05 6.85 6.28 6.08 5.89 5.56 5.31 

MAPE 9.82 9.45 9.03 8.86 8.19 7.56 7.12 6.64 6.01 

 

Table 6. Relationship between parameter δ and our algorithm’s prediction performance 

 
δ 

Metric 
-5 -4 -3 -2 -1 1 2 3 4 5 

RMSE 15.67 14.54 13.61 12.45 11.63 10.75 9.01 8.36 7.26 6.76 

MAE 8.98 8.32 7.86 7.01 6.52 5.76 5.09 4.65 4.01 3.81 

MAPE 12.16 11.82 11.09 10.76 9.67 8.54 7.69 6.54 5.84 4.98 
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As initial δ increases from -5 to 5, the K value increases, 

and the predicted basis function α can better learn and inherit 

the global features of elements in set Visual_sub_set(i), and 

achieve a more uniform and continuous visual selectivity. That 

is, the BELS acquires stronger learning ability. Thus, the 

greater the K value, the smaller the changes of RMSE, MAE, 

and MAPE. 

 

5.4 Relationship between initial θ and prediction and 

recognition performance  

 

In this paper, parameter 𝜃 ∈ [0,1] describes the uniformity 

and continuousness of visual features between predicted basis 

function 𝛼 = {𝜆𝑓
∗ , 𝜆𝑜

∗ , 𝜆𝑝
∗ , 𝜆𝑑

∗ }  and basis function 𝛽 ∈

𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡(𝑖). Table 7 shows the relationship between 

𝜃 ≥ 0.5 and the prediction ability of our algorithm. 

 

Table 7. Relationship between parameter θ and our 

algorithm’s prediction performance 

 
θ 

Metric 
0.5 0.6 0.7 0.8 0.9 1 

RMSE 10.75 10.03 9.54 9.05 8.76 8.45 

MAE 5.76 5.10 4.52 4.22 3.92 3.27 

MAPE 8.54 7.89 7.50 6.34 6.09 5.31 

 

As parameter θ increases from 0.5 to 0.8, the uniformity and 

continuousness of visual features improve between basis 

functions α,β. The visual selectivity of predicted basis function 

α are uniform and correlated with those of the basis function 

set Visual_sub_set(i). The greater the value of θ, the predicted 

basis function α can better learn and inherit the global features 

of elements in set Visual_sub_set(i), achieve a more uniform 

and continuous visual selectivity, and reduce the error with 

Visual_sub_set(i). Thus, the greater the θ value, the smaller the 

changes of RMSE, MAE, and MAPE. 

 

 
 

Figure 6. Relationship between parameter θ and our 

algorithm’s prediction performance 

 

As shown in Figure 6, when parameter θ increases from 0.5 

to 0.8, the uniformity and continuousness of visual features 

improve between basis functions α,β; the predicted basis 

function α can better learn and inherit the global features of 

elements in set Visual_sub_set(i), achieve a more uniform and 

continuous visual selectivity, and acquire a stronger 

classification ability. Meanwhile, the algorithm becomes more 

excellent in classification, at the cost of rising time complexity. 

Overall, our algorithm has the best prediction effect at θ=0.8. 

 

5.5 Distribution consistency between predicted basis 

function and basis function set 

 

Using the above optimal parameters, our algorithm is 

executed on the training set. The distribution of the predicted 

basis function 𝛼 = {𝜆𝑓
∗ , 𝜆𝑜

∗ , 𝜆𝑝
∗ , 𝜆𝑑

∗ }  and that of ∀𝛽, �̄� ∈

𝑉𝑖𝑠𝑢𝑎𝑙_𝑠𝑢𝑏_𝑠𝑒𝑡(𝑖) are obtained as shown in Figure 7. 

 

 
 

Figure 7. Distribution of the predicted basis function and 

basis function set 

 

The global visual selectivity of basis function set 

Visual_sub_set(k3) is learned by the basis function α predicted 

by the BELS. The predicted basis function α achieves a strong 

consistency in visual selectivity with the set. In terms of visual 

selectivity, the predicted basis function has a small intra-class 

dispersion with its family Visual_sub_set(k2), and a large 

between-class dispersion with the other families 

Visual_sub_set(k1) and Visual_sub_set(k3). This satisfies the 

theoretical requirements of uniform and continuous visual 

selectivity within the class, and the differential visual 

selectivity across classes, and demonstrates the visual 

selectivity features of primates. Hence, our BELS can generate 

basis functions consistent in visual selectivity, and uniformly 

distributed across families. 

 

5.6 Feasibility of our algorithm 

 

Using k=N/2, σ=1, and θ=0.75, our algorithm is applied to 

the training set. The intra-class and between-class distribution 

performance of our algorithm is recorded in Figure 8.  

Our algorithm is improved from the original SFA algorithm 

with the aid of BELS and LOPM. In visual selectivity, the 

predicted basis function has a strong uniformity and 

consistency with the basis function set Visual_sub_set(k3). 

Hence, the predicted basis function α has a relatively small 

intra-class dispersion and a relatively large between-class 

dispersion. Under k=N/2, σ=1, θ=0.75, and threshold of 6, the 

receiver operating characteristic (ROC) curve shows that the 

recognition rate of our algorithm was 99.98%, and the false 

accept rate (FAR) and false reject rate (FRR) were both 

smaller than 0.02%, indicating the strong classification ability 

of our approach. 
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(a) Intra-class distance; 

 
(b) Between-class distance 

 

Figure 8. Intra-class and between-class distribution 

performance of our algorithm 

 

5.7 Superiority of our algorithm  

 

Using k=N/2, σ=1, and θ=0.75, our algorithm is compared 

with SFA [1], GSFA [8], TICA [9], myTICA [10], and mySFA 

[11] (Figure 9). 

 

 
 

Figure 9. Recognition performance of different algorithms 

 

Based on these conventional approaches, our algorithm 

replaces the polynomial method of basis function expansion in 

the original SFA with the BELS, such that the predicted basis 

function α is highly uniform and continuous with the basis 

function set Visual_sub_set(i) in terms of visual selectivity. In 

addition, LOPM pruning technique is adopted to realize the 

Lipschitz consistency condition of the predicted basis function. 

As a result, under k=N/2, σ=1, and θ=0.75, the basis function 

α predicted by our algorithm has strong uniformity and 

continuity, and realizes uniform and continuous visual 

selectivity. Besides, the basis function boasts a small intra-

class dispersion and a high between-class dispersion. These 

results show that our algorithm has a stronger classification 

effect than conventional approaches. 

 

 

6. CONCLUSIONS 

 

This paper designs and applies a slow feature algorithm that 

fuses visual selectivity and multi-LSTM algorithm. 

Specifically, myTICA is adopted to replace the PCA of 

conventional SFA, aiming to extract the Gabor basis functions 

reflecting the visual invariance of natural images, and to 

initialize the basis function space and basis function set. 

Drawing on the learning ability of the LSTM of long and short-

term features, four LSTM algorithms are established to predict 

the long and short-term visual selectivity features of Gabor 

basis functions, based on the basis function set. The Gabor 

basis functions are combined into a new basis function, 

overcoming the defect of the polynomial prediction of 

conventional SFA. In addition, the predicted basis function 

and basis function space are optimized by designing a 

Lipschitz condition and proposing an approximation pruning 

technique under that condition. Through experiments on 

images obtained from INRIA Holidays dataset, our algorithm 

is found to have an excellent prediction performance. The 

algorithm is superior to and more feasible than SFA, GSFA, 

TICA, myTICA, and mySFA. At the threshold of 6, the 

recognition rate of our algorithm was 99.98%, and the FAR 

and FRR were both smaller than 0.02%, indicating the strong 

classification ability of our approach. 

To further improve its application effect in visual 

computing, our algorithm will be further optimized in terms of 

parameter initialization of BELS, and the construction of 

Lipschitz condition. The future work will also explore the 

application of the algorithm in signal analysis and recognition. 
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