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MRI image analysis of brain regions based on deep learning can effectively reduce the 

workload of doctors in reading films and improve the accuracy of diagnosis. Therefore, deep 

learning models have great application prospects in the classification and prediction of 

Alzheimer’s patients and normal people. However, the existing research has ignored the 

correlation between small abnormalities in local brain regions and changes in brain tissues. 

To this end, this paper studies an Alzheimer’s disease identification and classification model 

based on the convolutional neural network (CNN) with attention mechanisms. In this paper, 

the attention mechanisms were introduced from the regional level and the feature level, and 

the information of brain MRI images was fused from multiple levels to find out the 

correlation between the slices in brain MRI images. Then, a spatio-temporal graph CNN 

with dual attention mechanisms was constructed, which made the network model more 

attentive to the salient channel features while eliminating the impact of certain noise 

features. The experimental results verified the effectiveness of the constructed model in 

identification and classification of Alzheimer’s disease. 
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1. INTRODUCTION

Alzheimer’s disease is an incurable degenerative disease of 

the nervous system with insidious onset and chronic 

progression, mainly manifested in memory impairment, 

cognitive impairment, visual impairment and executive 

dysfunction, etc. [1-6]. Fortunately, with the continuous 

development of the magnetic resonance imaging (MRI) 

technology, MRI images have become a necessary tool for 

observation of brain activities and diagnosis of brain diseases 

[7-10]. However, due to the high efficiency of the MRI 

technology, the large number of MRI images generated has led 

to an increase in the workload of doctors in film reading, and 

what is more, manual film reading largely depends on doctors’ 

work experience, which may lead to misdiagnoses [11-14]. 

Therefore, analysis of brain MRI images based on the deep 

learning technology has become a good choice. Applying a 

deep learning model in the analysis of MRI images to classify 

and predict Alzheimer’s patients and normal people is helpful 

to the development of an intelligent auxiliary diagnosis system 

for Alzheimer’s disease, and realize accurate identification of 

the high-risk groups of this disease, and in this way, 

subsequent treatment can be well prepared [15-17]. 

Fu’adah et al. [18] proposed using the convolutional neural 

network of the AlexNet architecture as a method to develop an 

automatic classification system for Alzheimer’s disease. The 

experiment achieved classification of non-dementia, very mild 

dementia, mild dementia and moderate dementia from 664 

MRI datasets. Guan et al. [19] discussed the influences of 

different network architectures on the transferability of the 

model, found that appropriate deepening or widening of the 

network can increase transferability, analyzed the 

contributions of different parts of the 3D CNN to 

transferability, and verified that fine-tuning the CNN can 

significantly improve transferability. Villain et al. [20] 

proposed a new visualization technology to describe the 

decision-making of CNN in classification tasks, with the brain 

MRI images as the input to the traditional 3D CNN. The model 

can correct the brain images by linearly increasing the feature 

intensity of the corresponding regions, which is suitable for 

regions of different sizes, positions, and in closed brain tissues 

that contain different types of features. Folego et al. [21] 

customized and trained the convolutional neural network for 

brain MRIs based on the data sets available in online databases. 

The proposed method ADNet was evaluated in Alzheimer’s 

disease identification and proved superior to the several 

existing methods. Yildirim et al. [22] proposed a hybrid 

method. According to the architecture used, the disease 

progression was divided into 4 stages. The hybrid model was 

proposed based on the Resnet50 method. The results were 

obtained by Alexnet, Resnet50, Densenet201, Vgg16 and the 

hybrid method, respectively, and the hybrid model proposed 

reached an accuracy of 90%. Salehi et al. [23] used the 

convolutional neural network for early diagnosis and 

classification of MRI images of Alzheimer’s disease. It used 3 

types of ADNI images, with totally 1512 cases of mild 

Alzheimer’s disease, 2633 cases of normal and 2480 cases of 

Alzheimer’s disease. Compared with many other models, this 

model achieved an accuracy of 99%, showing good 

performance. 

However, the existing research has some problems in the 

auxiliary diagnosis of Alzheimer’s disease - it has ignored 

small abnormalities in local brain regions, or used voxel-based 

methods generating high feature dimensions, which makes 
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classification time-consuming and prone to over-fitting. The 

changes of brain tissues over time actually have certain 

correlations, and failure to fuse regional features will greatly 

affect the accuracy of disease identification. Therefore, how to 

extract and learn the features of MRI images and further 

perform accurate classification is still the focus of the current 

research work. This paper studies the Alzheimer’s disease 

identification and classification model based on the CNN with 

attention mechanisms. Section 2 introduces in detail the 

operation steps involved in the deep CNN used. Section 3 

introduces attention mechanisms from the regional level and 

the feature level, realize the fusion of brain MRI image 

information from multiple levels, and finds the correlations 

between the slices in the brain MRI images. Section 4 

improves the deep CNN and constructs the spatio-temporal 

graph CNN with dual attention mechanisms, so that the 

network model pays more attention to the salient channel 

features and eliminates the impact of certain noise features. 

The experimental results prove the effectiveness of the 

proposed model in the identification and classification of 

Alzheimer’s disease. 

 

 

2. CONSTRUCTION OF THE DEEP 

CONVOLUTIONAL NEURAL NETWORK 

 

The operations involved in the deep CNN mainly include 7 

aspects, namely convolution, batch processing, activation 

function processing, pooling, fully connected layer processing, 

separable convolution processing and receptive field. 

Specifically, convolution is to slide the convolution kernel 

over the input brain MRI images, that is, to perform point-wise 

multiplication and summation of the elements on the 

convolution kernel and the pixels on the corresponding input 

brain MRI image. 

Batch processing is approximately equivalent to the 

normalization of images, that is, the operation of normalizing 

the pixel values of a small batch of pixels in the input brain 

MRI images to a certain range to avoid large numerical 

oscillations during network training. Suppose that the pixel 

values of the input pixels with a batch size of n is denoted as 

A=(a1,...,ai,...,an). Batch processing may damage the features 

that the neural network has learned through network training. 

In order to mitigate this problem, the learnable parameters set 

are represented by δ and α. 

Assuming that the parameter set to avoid the denominator 

being zero is represented by υ, that the mean value by λa, that 

the variance by ε2, that the normalized output by ȃi, and that 

the output after batch processing by pi, the calculation process 

of batch processing is given in Eq. (1)-(4): 
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The nonlinear activation functions commonly used in deep 

CNNs include the Sigmoid function and the ReLU function, 

expressed as Eq. (5) and (6): 
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The pooling operations of deep CNNs include maximum 

pooling, average pooling, and global average pooling, as 

shown in Figure 1. The fully connected layer is composed of 

multiple neurons with multiple inputs. All the inputs are 

weighted and then added to the bias term. After the processing 

by the activation function, the network output can be obtained. 

 

 
 

Figure 1. Different forms of pooling operations 

 

Suppose that the m-dimensional input values of the neurons 

in the fully connected layer are denoted as a1,...,ai,...,am, that 

the connection weight of each input value to the j-th neuron as 

θ1j,...,θij,...,θmj, that the bias term of the j-th neuron as rj, that 

the activation function as Φ, that the output value of the j-th 

neuron as bj, the calculation process of the fully connected 

layer is given in Eq. (7): 
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=
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In order to improve the nonlinear fitting ability of the 

network and enable it to complete the complex logic task of 

Alzheimer’s disease identification and classification, it is 

necessary to build a deep CNN model with multiple hidden 

layers. A multi-layer perceptron where each neuron in the 

upper layer is connected to all the neurons in the lower layer 

can be regarded as a form of full connection. Suppose that in 

the first network layer of a multilayer perceptron with a hidden 

layer and an output layer, the bias term of the first neuron is 

denoted as r1
1, where the superscript and the subscript indicate 

the network layer No. and the neuron No., respectively. 

Suppose that the connection weight of the i-th neuron in the k-
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th layer and the j-th neuron in the k+1-th layer is denoted as 

θτij, and that the output of the j-th neuron in the i-th layer is 

denoted as pi
j. The calculation process of b1 and b2 is shown in 

Eq. (8), (9) and (10): 
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In order to effectively reduce the number of parameters in 

the constructed deep CNN and increase the computation rate 

of Alzheimer’s disease identification and classification, this 

paper proposed setting the deep separable convolutional layer. 

The deep separable convolution takes two steps - spatial 

relationship learning and inter-channel relationship learning. 

In the first step, the last dimension of the convolution kernel is 

1, and in the second step, channel information is fused based 

on the 1×1 convolution. 

To obtain better Alzheimer’s disease identification and 

classification results, the network needs to extract more 

complete image feature information, that is, it needs to have a 

larger network receptive field. In fact, the size of the receptive 

field of the convolutional layer, which is the basic layer of the 

network, is determined together by the size of the convolution 

kernel and the brain MRI image feature map of the previous 

layer. As the resolution of the feature map decreases, the 

receptive field of the network will enlarge, and the reduction 

of the feature map resolution can be achieved through setting 

of multiple downsampling layers in the network. 

The loss functions involved in the network training of the 

constructed deep CNN mainly include the least absolute 

deviation, the least square error and the cross entropy error, 

denoted as LSD, LSE and CEE, respectively. Specifically, the 

LSD loss function is to minimize the sum of the absolute 

values of the differences between the predicted classification 

results and the real situation. Suppose that the i-th predicted 

classification result is denoted as YCi, and that the i-th real 

situation as ZSi. The calculation formula is shown in Eq. (11): 
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The LSE loss function is to minimize the sum of squares of 

the differences between the predicted classification results and 

the real situation. The calculation formula is shown in Eq. (12): 
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The CEE loss function can be used to characterize the 

distance between two probability distributions. The smaller 

the CEE, the smaller the difference between the two 

probability distributions. The calculation formula is shown in 

Eq. (13): 

 

( ) ( )( )CEE ZS a log YC a= −   (13) 

 

In order to minimize the values of the loss functions, the 

gradient descent algorithm was adopted as the optimization 

algorithm. Assuming that the deep neural network model is 

denoted as DN(ω), that the derivative of the j-th variable ωj of 

the model can be derived according to the chain rule, and that 

the learning rate that controls the size of the parameters in each 

update is denoted as β. The calculation formula is shown in Eq. 

(14): 
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3. DESIGN OF THE DUAL ATTENTION 

MECHANISMS 

  

For the Alzheimer’s disease identification and classification 

task based on brain MRI images, since the feature map and the 

input image need to be consistent dimensionally, the CNN 

constructed in the previous section was used as the basic 

skeleton for model design. In the slice sequence of brain MRI 

images, adjacent slices with higher similarity have more 

similar information. In order to realize the fusion of brain MRI 

image information from multiple levels, the attention 

mechanisms were introduced from two levels - the regional 

level and the feature level, with a view to finding the 

correlations between the slices in the brain MRI images. 

 

 
 

Figure 2. Design of the attention mechanism at the regional 

level 

 

Figure 2 shows the design principle of the attention 

mechanism at the regional level. Regarding this level, pooling, 

which is the easiest to operate, was chosen to capture regional 

features. Specifically, maximum pooling is performed to each 

layer in the feature map G1
d of the brain MRI image, and then 

the deep-level feature map after extraction of the important 

features from different regions is stretched to further obtain the 

salient feature vector, which is represented by aφ. With the 

vector representation of the salient features of brain MRI 

images, it is possible to analyze and explore the relationship 
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between the slice regions based on different deep learning 

models. 

Then, with the analysis result of the correlations between 

the feature regions of the slices, the weight vector 

o=[o1-...,oi,...,o16]T that increases the information of different 

slices can be further obtained. Assuming that the parameter 

matrices are represented by Q1∈ℜA×L and Q2∈ℜL×A, that the 

bias vector by r1∈ℜA×1 and r2∈ℜL×1, and that the number of 

neurons in the hidden layer by A. Let the constructed deep 

neural network be denoted as DN(.), and the sigmoid (.) 

activation function as SIG(.). And there is: 

 

( )( )( )( )2 1 1 2io SIG g Q RELU g Q a r r= + +   (15) 

 

Assuming that the maximum pooling process with a pooling 

window of 2*2 is represented by the MP(.) function, and that 

the feature vector is represented by a=[a1...,ai,...,a16]T, then the 

maximum pooling can be expressed as Eq. (16): 
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where, Gnm is a layer in the brain MRI image feature map G1
d. 

The constructed CNN realizes the learning of the correlation 

coefficients between the salient feature regions of the slices, 

and achieves the enhancement of the feature vector χ based on 

element-wise multiplication:  

 

a o = •   (17) 

 

Further perform the inverse pooling operation to obtain the 

brain MRI image feature map Gi
s ∈ ℜ(2l+1)×P×Q after its 

information is enhanced: 

 

1 1 1

s d dG G o G= •   (18) 

 

where, “○” and “•” indicate element-wise addition and 

element-wise multiplication, respectively. It can be seen from 

the above formula that the information of the slice determined 

by the weight vector o is effectively enhanced by Gs
1. Through 

the attention module at the regional level, the correlations 

between the feature regions of different slices and the similar 

features of the regions are enhanced. 

 

 
 

Figure 3. Design of the attention mechanism at the feature 

level 

After the convolution process of the CNN, the feature 

channels of the deep-level feature map fused can be 

characterized by the potential features that are correlated. In 

order to obtain effective information that is conducive to the 

identification and classification of Alzheimer’s disease based 

on the central slices in the brain MRI images, the attention 

mechanism was introduced from the feature level to calculate 

the potential feature correlation coefficients between the slices. 

Figure 3 shows the design principle of the attention 

mechanism at the feature level. 

The feature map G1
d is transformed into ℜ(2l+1)×M(M=P×Q), 

and G1
d and the transpose of G1

d go through matrix 

multiplication. Suppose that the correlation value of the i-th 

feature channel and the j-th one on the feature map is denoted 

as oij. The more similar the two channels, the greater the value 

of oij, and the larger the weight coefficient assigned. The self-

attention coefficient can be calculated based on the softmax(.) 

function, and the self-attention weight matrix can be further 

obtained. Suppose that the correlation coefficient between the 

slice features of the weight matrix is represented by 

γ∈ℜ(2l+1)×(2l+1), and that the impact of the feature information 

of the i-th slice on that of the j-th one is represented by the 

matrix element γij, there is 
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In order to eliminate the impact of noise on the feature 

information, the max-softmax(.) function can be used to 

optimize the self-attention coefficient. And there is: 
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When γij is smaller than γij
*, the impact of noise on the main 

features can be ignored. Let γij be 0, and at the same time keep 

the γij greater than the mean value. Further, perform matrix 

multiplication of G1
d by the transpose of γ, and then add the 

result to G1
d in an element-wise manner to obtain the feature 

map G1
r∈ℜ(2l+1)×P×Q, as shown in Eq. (21): 

 

1 1 1

r d dG G G= •   (21) 

 

From the above formula, it can be seen that G1
r is the 

weighted summation of the original features and deep-level 

features of all brain MRI image slices. In order to improve the 

presentation of the deep-level feature map, the feature-level 

attention module was used to extract the potential correlations 

between the features of the slices. This facilitates the 

identification and classification of Alzheimer’s disease based 

on the central slices in the brain MRI images. 

 

 

4. ESTABLISHMENT OF THE ALZHEIMER’S 

DISEASE IDENTIFICATION AND CLASSIFICATION 

MODEL 

 

In order to effectively cope with the dynamic changes in the 

features of the slice sequence of the brain MRI image samples, 

the image features are dynamically adjusted in the time and 

space domain to achieve a better characterization of the 
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dynamic image samples. In this section, some improvements 

were made to the constructed deep CNN and a spatio-temporal 

graph CNN with the attention mechanisms at the regional level 

and the feature level was built, which made the network model 

more attentive to the salient channel features and eliminated 

the impact of some noise features. Figure 4 shows the basic 

structure of the spatio-temporal graph CNN with dual attention 

mechanisms. 

 

 
 

Figure 4. Basic structure of the spatio-temporal graph CNN 

with dual attention mechanisms 

 

Spatially, image slices of different frames can be regarded 

as spatio-temporal maps. Suppose that the vertex on the image 

slice is denoted as u and that the feature map as YSin. Suppose 

that the sampling area for the convolution of the target vertex 

uφi, that is, the set of all first-order pixels adjacent to uφj, is 

denoted as Ri, and that the weight vector as q. Then, based on 

the vertex uφi on the image slice of the φ-th frame, the graph 

convolution operation can be defined as in Eq. (22): 
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Since the number of pixels adjacent to each pixel is different, 

the total number of elements in Ri is not fixed. However, the 

number of weight vectors in q is fixed, and its weight values 

can be assigned through the mapping function k. Suppose that 

the cardinal number of the subset Ri where uφj is located is 

denoted as CAij, that the size of the convolution kernel as SCu, 

that the normalized form of the adjacency matrix as LI, and 

that a learnable weight matrix as WZ. Through transformation 

of the above formula, the expression of the graph convolution 

in the spatial dimension can be obtained as follows: 

 

( )( )
uSC

out l in l l

l
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To achieve better identification and classification of 

Alzheimer’s disease, the attention mechanism modules are 

then introduced into the spatial graph convolutional layer, so 

that the model can simultaneously complete the network 

parameter learning and the connected graph optimization to 

obtain the graph features that are more suitable for describing 

Alzheimer’s lesions. Eq. (24) shows the spatial graph 

convolution expression after the attention modules are 

introduced: 

 

( )( )'
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l

YS q YS LI TM= +   (24) 

Through comparison of Eq. (23) with Eq. (24), it can be 

seen that the attention module includes two parts - the data-

driven graph matrix LI' and the attention matrix TM. The 

former is mainly used to complete parameter initialization and 

update, and the latter is used to improve the adaptability of the 

model to the dynamic changes in image slices. 

Specifically, first use two convolutional layers to map a 

certain input feature TZ(uφi) into the vectors SC and WC, as 

shown in Eq. (25). Assuming that the weight matrices 

corresponding to the two convolutional layers are represented 

by ξSC and ξWC, respectively, there is: 
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It is assumed that uφi and uφj are in the same time step. 

Assuming that the inner product symbol is <.>, the inner 

product of WCφi and SCφj is calculated as follows: 

 

( ) ( ), ,
,i ji j
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The similarity between uφi and uφj is characterized by the 

inner product v(φ,i)→(φ,j). Assuming that the similarity 

characterized by the inner product v after normalization is 

represented by SE, it can be calculated according to Eq. (27): 
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Figure 5. Structure of the constructed neural network for 

classification 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The brain MRI image samples used in this paper can be 

divided into three types - Alzheimer’s disease (AD), normal 

control (NC), and mild cognitive impairment (MCI). Table 1 

shows the specific information of the brain MRI image 

samples. There were 100, 114, and 112 samples for AD, NC 

and MCI, of which 55, 48, and 65 were from females, and 45, 

64, and 47 from males. It can be seen that there was little 

difference in the male-female ratios and the average ages of 

the samples of these three types. In addition, the results of 

clinical dementia assessment and mini-mental state 

examination of all the subjects were also summarized. Figure 

6 visually shows the distribution of samples. 
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Table 1. Information of the brain MRI image samples 

 
Type AD NC MCI 

Female 55 48 65 

Male 45 66 47 

Age 76.52±6.25 75.29±5.28 78.24±7.29 

CDR 0.95±0.51 0.05±0.28 0.48±0.39 

MMSE 21.58±3.82 29.15±1.35 25.84±3.28 

Total number of 

subjects 
100 114 112 

 

 
 

Figure 6. Distribution of samples 

 

Considering that the attention mechanisms were introduced 

into the model from the regional level and the feature level, in 

order to further study the performance of the two modules, a 

subdivided ablation experiment was conducted. Table 2 shows 

the experimental results of the different attention mechanisms. 

 

Table 2. Experimental results of the different attention 

mechanisms 

 
Module type Region Feature 

Dice (brain tissues) 0.958 0.932 

Dice (Alzheimer’s lesions) 0.795 0.821 

Mean 0.865 0.869 

 

It can be seen from the table that the attention mechanism 

module at the regional level performed better in the 

recognition of normal brain tissues in the brain MRI images. 

Generally, in the brain MRI image slices visible to the naked 

eye, the brain tissues of a normal person including white 

matter, gray matter and cerebrospinal fluid, are more clearly 

presented and easier to recognize than those of an Alzheimer’s 

patient.  

The attention mechanism module at the feature level has a 

better effect in the recognition of the lesion areas in the brain 

MRI images. If the lesion areas are concentrated in a certain 

region of the brain MRI image slices and the features are 

relatively concentrated, the loss functions can fully play their 

roles to ensure the excellent classification performance of the 

model. 

Figure 7 compares the classification performance of 

different modular architectures. LeNet 1, AlexNet 2, ZFNet 3, 

VGGNet 4 and ResNet 5 were compared with the proposed 

model 6, with the accuracy of each model in the binary and 

ternary classification tasks evaluated based on the collected 

sample sets. From this figure, it can be seen that the 

classification precision and the recall rate of the proposed 

model were the highest, reaching 85.65% and 80.51%. 

 

 
 

Figure 7. Comparison of the classification performance of 

different modular architectures 

 

Figure 8 shows the ROC curves of different network models 

in different classification tasks. It can be seen that, compared 

with the other deep learning models, the proposed model had 

better performance in the classification of brain MRI image 

sample sets. 

 

 
 

Figure 8. ROC curves of different models in different 

classification tasks 

 

 

Table 3. Experimental results of different classification tasks 

 
Model LeNet AlexNet ZFNet VGGNet ResNet Proposed model 

AD/NC 93.35 93.84 94.25 94.16 94.28 95.26 

AD/NC 83.26 85.26 82.14 85.46 86.59 87.29 

NC/MCI 79.28 76.59 78.62 79.85 81.26 82.42 

AD/NC/MCI 79.28 78.35 80.29 81.34 83.29 85.24 

 

Table 3 shows the experimental results of different 

classification tasks. It can be seen that the other five models 

did not perform well in feature extraction after the collected 

brain MRI images were sliced, mainly because part of the 
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brain MRI image information was lost during the slicing 

process. The proposed model had better performance in the 

four classification tasks - AD/NC, AD/NC, NC/MCI and 

AD/NC/MCI, showing that the model with dual attention 

mechanisms is more effective in the identification and 

classification of Alzheimer’s disease than the conventional 

deep learning models and that the fusion of the brain MRI 

image information from multiple levels can help obtain more 

valuable and complete lesion feature information. At the same 

time, it also verified the effectiveness of the dual attention 

mechanisms in the classification of brain MRI image sample 

sets. The introduction of dual attention mechanisms can make 

the constructed CNN more inclined to learn the salient slice 

sequence, which further improves its performance in the 

classification of Alzheimer’s disease.  

 

 

6. CONCLUSION 

 

This paper carried out research on the Alzheimer’s disease 

identification and classification model based on the CNN with 

attention mechanisms. In order to find the correlations 

between the slices in brain MRI images, the attention 

mechanisms were introduced into the deep CNN from the 

regional level and the feature level and the brain MRI image 

information was fused from multiple angles. Then, a spatio-

temporal graph CNN with dual attention mechanisms was 

constructed to eliminate some noise features. Through an 

experiment, the distribution of the collected brain MRI image 

samples was analyzed. The performance of the two modules – 

regional attention and feature attention was further studied, 

and the experimental results of different attention mechanisms 

were given. After that, the classification performance of 

different modular architectures was compared, and the ROC 

curves of different models in different classification tasks were 

drawn, proving that the proposed model has better 

performance in the classification of brain MRI image sample 

sets. 
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