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To record all electrical activity of the human brain, an electroencephalogram (EEG) test 

using electrodes attached to the scalp is conducted. Analysis of EEG signals plays an 

important role in the diagnosis and treatment of brain diseases in the biomedical field. One 

of the brain diseases found in early ages include autism. Autistic behaviours are hard to 

distinguish, varying from mild impairments, to intensive interruption in daily life. The non-

linear EEG signals arising from various lobes of the brain have been studied with the help 

of a robust technique called Detrended Fluctuation Analysis (DFA). Here, we study the EEG 

signals of Typically Developing (TD) and children with Autism Spectrum Disorder (ASD) 

using DFA. The Hurst exponents, which are the outputs of DFA, are used to find out the 

strength of self-similarity in the signals. Our analysis works towards analysing if DFA can 

be a helpful analysis for the early detection of ASD. 
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1. INTRODUCTION

Autism Spectrum Disorder (ASD) is defined by a 

heterogeneous constellation of behavioural symptoms that 

appear over the initial growth stages of an individual. It is a 

type of neurodevelopmental disorder. ASD has changed from 

being a narrowly defined area to a highly researched field. 

Since its original delineation, the description of the core 

features of ASD as being social communication deficits and 

repetitive and unusual sensory–motor behaviours has not 

changed substantially. In a recent study, the Center for Disease 

Control (CDC), USA, estimates that the prevalence of ASD in 

the United States is 1 in 68, a significant increase in the past 

decade [1]. As research on ASD progresses at a rapid pace, 

ethology and development studies appear to be very different, 

leading to the perception of ASD in a variety of cognitive, 

behavioural and neural pathways and subtypes. The power of 

the EEG used as a function of brain analysis continues to 

evolve as new methods of analysing and extracting 

information from biophysical signals are developed. Methods 

of analysing complex time series generated by complex 

networks, such as the human brain, may allow for network 

variability to be viewed from time series estimates. Based on 

this, a set of non-linear or 'invariant measures’ from EEG 

signals must reflect the neural potential in the brain that 

produces the signals [2]. Ionic current flows in the signals 

causes voltage fluctuations as measured by EEG within the 

neurons of the brain and then run into algorithms of 

classification based on band frequency [3, 4], custom signal 

thresholds [5], alpha band frequency (SVM, ML algorithms) 

[6] and Higuchi Fractal Dimension [7]. These procedures give

normal or abnormal EEG activity that might not be normally

seen [8]. These procedures record in-brain activity in patients

suffering from Cerebral Palsy (CP), Parkinson and

schizophrenia and autism [9]. Diagnostic applications

generally focus on the spectral content of EEG, that is, the type 

of neural oscillations that can be observed in EEG signals. In 

recent years, a number of non-linear analytical methods, 

including DFA, have been developed as an important tool for 

obtaining long-range (auto-)correlations in time series and 

have become the most widely used method for determining 

(mono-) fractal scaling properties and long-distance noisy, 

nonstationary time series [10]. Earlier studies using DFA talk 

about investigating heart signals [11], where the 

autocorrelation of non-stationary Electrocardiogram (ECG) 

signals was analysed. Arsac and Deschodt-Arsac [12] 

exploited DFA to evaluate the multifractality displayed in 

electroencephalogram (EEG) signals obtained from subjects 

with sleep apnea. Nonlinear primitive features can effectively 

analyse brain dynamics in the EEG signal produced. Recent 

research shows that applications of fractal-based techniques 

are effective to estimate the degree of nonlinearity in a signal. 

Autism at early ages has been a tough complexity in the field, 

as trials have proved to be at most random in coherence to 

short term or long term anomaly. With regressive results, 

implications of imitation, motor, and play deficits for 

communication-based intervention are tested and prevented to 

some degree [13]. Without a definite distinction, given the few 

randomized and controlled treatment trials that have been 

carried out, the existing models that have been tested, and with 

the large differences in interventions being published, using 

DFA we intend to provide an undemanding analysis of Autism 

Spectrum Disorder [14]. 

2. PROPOSED METHODOLOGY

The process followed for the entire research is shown in 

Figure 1. 
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Figure 1. The workflow process followed 

 

2.1 EEG data collection 

 

The first step in processing any kind of signal is to collect 

initial raw data. Metadata includes the sampling interval, the 

position of the EEG electrodes, the number of electrodes, the 

total number of sample points, etcetera. The signals were 

sampled at 500 Hz (hertz). EEG values are always taken as a 

relative measure, and this is known as EEG montage. Different 

montages include bipolar, Laplacian, common electrode 

reference, average and weighted averaged references [15]. For 

this research, the EEG data were collected with average 

reference electrodes. The research participants were aged 3-7 

years. Equal number of datasets were acquired from both TD 

and children diagnosed with ASD.  

Around 13,000 sample points were recorded for each EEG 

channel in each dataset. A total of 10,000 EEG signal samples 

were selected for each child across 19 different EEG channels. 

The sample points picked were the first 10,000 sample points 

of the EEG signals for all children. Since each child had a 

different number of sample points recorded, that ranged from 

10,000 to 15,000, the first 10,000 sample points were chosen 

for all to ensure uniformity in the number of sample points. 

The research participants were all engaged in some visually 

stimulating activity.  

The International 10-20 system of electrode placement 

positions was adopted. Figure 2 shows the pictorial 

representation of the electrode placement. The positions were 

Fp1, Fp2, F7, F3, Fz, F4, F8, P3, P4, Pz, T3, T5, T4, T6, O1, 

O2, C3, C4 and Cz [16] as shown in Figure 2. 

 

 
 

Figure 2. International 10-20 system of EEG electrode 

placement 

 

2.2 Preprocessing the acquired EEG signals 

 

Data preprocessing is the first and foremost step in signal 

data analysis. EEG data in particular contain a lot of noise and 

inconsistencies. Noise in EEG data exists due to both 

external/environmental conditions, as well as 

internal/physiological conditions [17]. Several methods exist 

to remove such existing noise from the data. Here, bandpass 

[18] and Gaussian filters were chosen as noise removal 

techniques. The parameters for the bandpass filter were chosen 

in such a way that only frequencies between 8 and 12 Hz were 

allowed to pass through, the sampling rate being 500 Hz. The 

Gaussian filter used here is a narrow-band filter that calculates 

the Gaussian noise in the frequency domain and removes it. 

This filter was specifically designed for this analysis. The 

inputs of the filter are the signal data, the sampling rate of the 

signals, peak frequency (10 Hz: since alpha band ranges from 

8-12 Hz) and a standard deviation of 2 Hz (10 ± 2 Hz). The 

bandpass filtered signal is depicted in Figure 3. 

 

 
 

Figure 3. Original (blue) and bandpass filtered signals 

(orange) superimposed for comparison 

 

Since the focus of the analysis is on the alpha band as in 

Table 1, band pass filters were used to allow only the required 

band of frequencies to pass through for analysis [19] (Figure 

3). The alpha band comprises the range of EEG signal 

frequencies from 8-12 Hz. This is the most prominent and 

easy-to-observe band of frequencies during wakefulness and 

mental concentration. At the time of recording the EEG signals, 

the subjects were engaged in some visually stimulating 

activities that required their mental attention and thinking and 

a sense of relaxed awareness. Beta waves are normally found 

in adults at the time of heightened mental concentration. 

Gamma waves are also found to be most prominent during 

heightened emotions such as fear or anxiety. 

 

Table 1. The ranges for different frequency bands of EEG 

signals 

 
FREQUENCY (HZ) BAND 

0-3 Delta 

4-7 Theta 

8-12 Alpha 

13-30 Beta 

30-100 Gamma 
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2.3 Feature extraction by detrended fluctuation analysis 

 

DFA is used to determine the self-affinity of a signal [20]. 

Self-affinity is a property of fractal type time-series data [20, 

21]. It describes the way in which a small segment of the signal 

represents the whole signal structure. The output of DFA is the 

Hurst Parameter (a dimensionless parameter), which describes 

the ‘long-term memory’ of the signal, i.e., it determines if the 

series is more/less/equally likely to increase if it has increased 

in the previous steps. If the Hurst exponent is close to 0.5, it 

indicates that the series progresses as a random noise structure. 

Hurst values closer to 1 indicate strong positive auto-

correlation [22]. 

It is recommended to perform the analysis on the power-

spectrum or on the amplitude spectrum of the signal rather 

than on the original time-series signal. To do that, wavelet 

convolution is performed on the signal to convert it into 

amplitude time-series shown in Figure 4 and then DFA is 

performed on the signal [23]. 

 

 
 

Figure 4. Analysis of the EEG signals 

 

In Figure 4, the blue graph represents the bandpass filtered 

EEG signal, whereas the orange graph lines correspond to the 

amplitude time-series signal.  

Steps to perform DFA are (1) Convert the signal into a 

mean-centered cumulative sum of values (Eq. (1)) (Figure 5), 

(2) Define log-spaced scales, (3) Choose a scale, split the 

signal into epochs based on the chosen scale, detrend it and 

compute its individual Root Mean Square (RMS) values (Eq. 

(2)), (4) Repeat step 3 for all the other scales, and find the 

overall average of each scale’s RMS, (5) Compute a linear fit 

between the log-scales and the RMS values [22]. The slope of 

the obtained linear fit gives the Hurst parameter depicted in 

Figure 6.  

Given a bounded time-series xt of length N, the mean-

centered cumulative sum would be given as, 

 

𝑋𝑡 =∑(𝑥𝑖 − 〈𝑥〉)

𝑡

𝑖=1

 (1) 

 

where, Xt is an unbounded mean-centered cumulative sum of 

the series and <x> is the mean of the series. xi represents each 

point in the signal. 

In the second picture of Figure 5, both the axes show a set 

of values in the negative range and a sharp increase of 

magnitude in signal amplitude. This is a plot of the mean-

centered cumulative sum of values. This helps us identify the 

mean of the sample points in relation to the sample points 

(10,000 sample points) of the process at that time. Some of the 

initial sample points of the EEG signal tend to be lesser than 

the overall mean, giving rise to negative ordinates. When the 

cumulative sum is calculated, the amplitude tends to 

increase/decrease based on the previous calculated values. 

This erratic behavior is to be expected at this stage and hence 

is reflected on the ordinates of the plot.  

 

 
 

Figure 5. Mean-centered cumulative sum output of the input 

EEG 

 

The RMS deviation from the trend is given by, 

 

𝐹(𝑛) = √
1

𝑁
∑(𝑋𝑡 − 𝑌𝑡)

2

𝑁

𝑡=1

 (2) 

 

where, Yt is the resulting piecewise sequence of straight-line 

fits, X. A linear fit is determined using the obtained RMS 

values.  

 

 
 

Figure 6. Sample of the linear fit of the log scales and the log 

RMS for both the signal and a random noise input 

 

In Figure 6, slope of the linear fit of the signal gives the 

value of the Hurst parameter, and here, the observed fit (blue) 

is for the Fz electrode of a TD child, H=0.9069. The signal was 

1517



 

first converted into a zero-mean Gaussian, upon which Hilbert 

transform was performed. Based on the sampling rate, the 

signal was converted into frequency domain using Fourier 

transform and the frequency was normalised. Using the peak 

frequency as 10 Hz and a standard deviation of ± 2 Hz, 

Gaussian functions were used for conversion, upon which 

Hilbert transform functions were applied. The output of this 

step gives us an amplitude time-series, similar to that of Morlet 

Wavelet Convolution. 20 log scales were chosen and the log 

range was taken from 1% of the signal to 20% of the signal.  

The above steps were performed on all the processed 19 

channels to analyse the Hurst Parameter individually.  

Significance testing: For analysis of our obtained results, 

significance analysis was done in addition to the basic 

statistical parameters such as mean and standard deviation. 

The threshold for the p-statistic was taken as 0.1, and values 

above 0.1 were deemed statistically insignificant for analysis 

and were rejected. Significance analysis was done on all the 

channels for both TD children and children with ASD. 

 

 

3. RESULTS AND DISCUSSIONS 

 

Analysis was carried out at the alpha band (8 - 12 Hz) shown 

in Table 1 of frequencies. 10 Hz was chosen for the purpose of 

analysis.  

Analysing the overall mean of an entire brain region may 

produce tangible results, but may not be fully accurate to 

ascertain the working of the brain. Each channel must be 

analysed individually to compare and contrast the effects of 

long-term time-series memory. For TD children, there were 5 

particular channels that had the least standard deviation across 

different children. This implies that the values of the Hurst 

parameter followed a certain consistency in these particular 

channels for TD children. The 5 channels that had the least 

standard deviation and high similarity for different TD 

children were found to be F3, P4, T5, C3 and O1. Similarly, 

for children with ASD, there were 3 particular channels that 

had the least standard deviation across different children. This 

implies that the values of the Hurst parameter followed a 

certain consistency in these particular channels for children 

with ASD. The 3 channels that had the least standard deviation 

and high similarity for different children with ASD were found 

to be Fp1, Fp2 and O2.  

 

 
 

Figure 7. (Left) TD children. (Right) Children with ASD. 

Electrodes showing least standard deviation 

 

It can be seen from Figure 7 that 4 out of 5 regions are on 

the left side of the brain, indicating that TD children of 3-7 

years of age typically showed similar strengths of self-affinity 

on the left side of the brain. Similarly, for children with ASD, 

it can be seen that 2 out of 3 regions are on the frontal part of 

the brain. This observation could help us differentiate between 

TD children and children with ASD with respect to the regions 

of the brain that show similarity/dissimilarity. Based on the 

results, it was observed that the Hurst values on the left side of 

the brain for TD children showed some similarity when 

compared to children with ASD that showed the same on the 

frontal region. This observation could be a possible 

differentiating factor.  

 

 
 

Figure 8. The channels that showed the least standard 

deviation in both TD children and children with ASD (the 

green cones on the plots represent the mean) 

 

The channels in Figure 8 showed the least deviation from 

the mean across different children, and can be used as a 

comparative measure. The expected mean and standard 

deviation are tabulated in Table 2. 

 

Table 2. Depicting the channels in both TD children and 

children with ASD with the least standard deviation. (STD 

DEV = Standard deviation) 

 
STATE CHANNEL MEAN ± STD DEV P-VALUE 

TD F3 0.98 ± 0.04 0.28 

P4 1.10 ± 0.05 0.05 

T5 0.99 ± 0.04 0.56 

C3 1.15 ± 0.04 0.08 

O1 0.98 ± 0.04 0.23 

ASD Fp1 1.12 ± 0.05 0.6 

Fp2 1.1 ± 0.04 0.6 

O2 1.00 ± 0.04 0.26 

 

The p-statistic was calculated for Hurst values for each 

channel and for all TD children and children with ASD. The 

threshold value was chosen as 0.1. Only for p-values below the 

threshold, the values were deemed statistically significant, and 

the null hypothesis was rejected. Otherwise, the null 

hypothesis was accepted.  

Normally, the p-statistic is chosen as 0.05. During analysis, 

it was found that only two channels showed a p-statistic below 

0.05. Since these two channels showed highly fluctuating 

Hurst values with a high standard deviation, they are not 

appropriate for distinguishing between TD children and 

children with ASD. As a result, for this application, the p-value 

threshold was increased to 0.1 instead. When this was done, 

the C3 channel with p-value 0.08 produced better results while 

differentiating between the two (TD children and children with 

ASD). 
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Figure 9. Plot depicting the p-value for all the channels. Red 

line marks the 0.1 threshold 

 

Table 3. The p-values of the 5 channels with p < 0.1 

 
CHANNEL P-VALUE 

P3 0.002 

P4 0.052 

Pz 0.066 

T6 0.018 

C3 0.083 

 

It can be observed from Figure 9 that the p-statistic attains 

a value < 0.1 only in 5 channels, P3, P4, Pz, T6 and C3, 

indicating that these channels hold a statistically significant 

difference between the TD children and children with ASD, in 

terms of the Hurst parameter. The corresponding values can be 

seen in Table 3 (The p-values for these channels lie below the 

marked threshold of 0.1). Some of the other 4 channels show 

a p-value lesser than 0.08 and theoretically and statistically, 

those could have been better choices for differentiation. 

However, it was the C3 channel (owing to a much lower 

standard deviation), that showed a better accuracy while 

classification. 

Amongst all the 5 channels with p-values below 0.1, the C3 

channel with p = 0.08, showed a 71% accuracy while 

differentiating between TD children and children with ASD.  

 

 
 

Figure 10. The C3 channel (p=0.08) showed the highest 

accuracy while differentiating, amongst all other channels 

that had p-statistic values < 0.1 

 

In Figure 10, only 2 out of 7 participants had Hurst values 

which fell in the range of TD children’s Hurst values. It should 

also be noted that the C3 channel is one of the 5 channels that 

showed the least standard deviation in TD children.  

Higher the value of the Hurst exponent, stronger the positive 

auto-correlation. After the analysis of both TD children and 

children with ASD, it was found that no channel showed a 

Hurst value less than or equal to 0.5. This means that the 

signals were not random walk signals or anti-persistent time-

series signals in nature. 

 

 

4. CONCLUSIONS 

 

While the Hurst exponent can tell us about the strength of 

positive auto-correlation of a signal very well, it is quite 

specific to the signal being analysed and the activity being 

performed by the individuals. Finding a common ground of 

similarities/dissimilarities between different groups is quite 

challenging, but not impossible nonetheless. This also makes 

the process of classification harder.  

There were a few limitations/constraints that were 

experienced while this research was carried out. One such 

limitation was that the values obtained are highly specific to 

the datasets acquired. The analysis was not carried out for EEG 

signals with different metadata, so it is challenging to 

generalise this approach. The datasets were acquired from less 

than 20 subjects making the results more prone to bias and less 

accuracy. Due to ethical and legal restrictions, it is quite 

difficult to obtain data pertaining to individuals with ASD. The 

discussed nonlinear algorithm has not been applied to a variety 

of subjects at a large scale in the real-world, so its effect on a 

large number of subjects has not yet been determined. 

Although there are numerous models for classification of ASD, 

there is no specific standard to compare results with. This is 

because ASD is a broad spectrum disorder that encompasses 

different types of neurodevelopmental issues over a large scale.  

All the participants in the study were exposed to the same 

audio and visual stimulus. This could be inferred as a possible 

reason as to why there were no drastic differences in the Hurst 

values of the two types of individuals.  

Possible future directions could be the acquisition of EEG 

data from a variety of different subjects on a larger scale, with 

varying metadata for added diversity, the devising of a 

reasonably accurate classification model to deal with the 

randomness, real-world deployment of the models to assess its 

accuracy and some optimisation techniques to further improve 

results.  
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