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The traditional fractional lower-order (FLO) spectrum estimation method cannot observe a 

sufficient volume of data, leading to a large variance of estimation results. To solve the 

problem, this paper puts forward a FLO bi-spectrum estimation method based on 

autoregressive (AR) model, and gives new definitions for FLO three order cumulant. The 

author discussed the determination of AR model parameters, and introduced how to implement 

the bi-spectrum estimation method based on AR model. Then, a series of tests were performed 

to verify the correctness of our method. The results show that our method outperformed the 

traditional approaches in suppressing FLO noise and identifying relevant information of 

signals. 
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1. INTRODUCTION

In the field of signal processing, the noise is mostly 

described by Gaussian distribution model, which has an 

excellent effect on two-order statistics of normal distribution 

[1]. When it comes to the frequency-domain analysis of noise, 

the existing theoretical methods include spectral feature 

analysis, time-frequency analysis, spectrum estimation, 

colored noise whitening, spatial spectrum estimation, 

frequency estimation, harmonic estimation and spectral line 

restoration. Most of these methods are based on two-order 

statistics like bi-spectrum and tri-spectrum [2]. 

Gaussian white noise and colored noise models have always 

occupied the leading position in signal processing, and the 

criterion of white noise and colored noise based on correlation 

function and power spectral density has been regarded as a 

classical rule. In practical applications, however, many noises 

do not conform to the normal distribution. Typical examples 

include low-frequency atmospheric noise and underwater 

noise. A viable option to describe such noises lies in setting up 

an α stable distribution, whose statistical features can be 

characterized by the relevant parameters of the feature 

function [3]. 

The best way to solve the non-Gaussian α stable distribution 

is the fractional lower-order (FLO) statistics. If α is greater 

than 2, the harmonic frequencies can be estimated accurately; 

otherwise, the second-order matrix does not exist, making it 

impossible to effectively analyze the noise [2]. To solve the 

problem, the FLO bi-spectrum has been conceptualized. 

Traditionally, the lower-order bi-spectrum is estimated by bi-

spectrum and nonparametric methods. Nonetheless, these 

methods cannot observe a sufficient volume of data, leading to 

a large variance of estimation results. 

In view of the above, this paper puts forward an FLO bi-

spectrum estimation method based on autoregressive (AR) 

model [5], and compares the method with traditional 

approaches. The comparison shows that our method 

outperformed the traditional ones in spectral flatness and 

suppression of FLO noise. 

2. α STABLE DISTRIBUTION AND FLO STATISTICS

This section briefly introduces the α stable distribution, a 

generalized conceptual Gaussian distribution with a wide 

application scope, and gives the definition to the relevant FLO 

statistics, which is the best way to filter the noise of non-

Gaussian α stable distribution. 

2.1 α stable distribution 

A random variable X satisfies the α stable distribution if the 

parameters 0≤α≤2, γ≥0 and -1≤β≤1 have the following 

relationship with real numbers α: 
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Note that α is a feature index in the interval (0, 2]. The index 

determines the shape of the distribution. The value of the index 

is negatively correlated with the trailing thickness and the 

pulse feature [6]. 

2.2 FLO statistics 

(1) FLO moments. The FLO moments refer to the various

moments existing at 0<α<2 (i.e. the absence of secondary 

moment). For the random variable SαS, the FLO moments can 

be described by its dispersion coefficient and feature index. 

Meanwhile, the covariation of the two random variables η and 

ζ can be expressed as the function of FLO moments:  
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where the right superscript * is a complex conjugate; γη is the 

bias coefficient of the stochastic process η: 
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where E(·) is the mathematical expectation; Г(·) is the function 

gamma: 
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The covariation coefficients η and ζ can be described as: 
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If η and ζ are real numbers, then 0.5<p<α; If η and ζ are 

complex numbers, then 0<p<α.  

In engineering application, it is customary to take the 

improved FLO moments as the estimators of covariation 

coefficients: 
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(2) Negative moment. Let X be a random variable SαS, with 

δ=0 being its position function and γ being its dispersion 

coefficient. Then, the negative moment can be expressed as: 
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where C(P, α) has the same meaning as in (4). 

 

(3) Covariation. The concept of covariation was presented 

by Miller in 1978 [7]. If 0<α≤2, then the covariation of two 

random variables, X and Y, with joint stable distribution 

relations, can be defined as: 
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where S is an unit circle; m(·) is the spectral measure in SαS 

distribution. Then, the covariation coefficient can be defined 

as: 
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Let γy be the dispersion coefficient of Y. Under 0<α≤2, the 

covariation of random variables X and Y of SαS distribution 

can be established as: 
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(4) FLO covariance. The existing covariation applies to the 

range of 1<α≤2, but not defined for the range α≤1 in the SaS 

distribution. Reference [8] proposes a more general FLO 

statistic that applies to the entire value range of α. Under 

0<α≤2, the FLO covariance of random variables X and Y of 

SαS distribution can be defined as: 
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3. FLO BI-SPECTRUM 

 

3.1 Definition of FLO bi-spectrum 

 

The statistical moment of a signal tells a lot about the signal 

features. The spectra in statistical moments extend from low 

order to infinite order [9]. Only secondary moments were 

explored in traditional signal processing. Nevertheless, the 

processing methods may suffer from poor performance and 

high error, using variance or second-order statistics only. 

Recent years has seen the emergence of signal processing 

techniques for higher-order statistics, especially third- or 

fourth-order statistics. The emerging techniques not only 

utilize the second- or higher-order statistics, but also many 

fractional order statistics under the second order, i.e. the FLO 

statistics [10].  

Both theoretical and empirical analyses prove that the FLO 

statistics are suitable for processing impulsive feature signals 

and noises. However, the FLO statistics also have two 

prominent defects [11]. First, there is no universal framework 

against algebraic smearing. Second, there is a theoretical 

connection between the priori knowledge of the order p and 

the random variable α, because the order p of moments is 

generally limited to (0, α). If p≥α, the FLO statistics cannot 

work normally. As a result, the traditional α stable distribution 

does not contain bi-spectrum or tri-spectrum. 

Based on the traditional bi-spectrum, this paper proposes 

the FLO bi-spectrum, and develops the nonparametric bi-

spectrum estimation method for the environment of FLO noise, 

and verifies its performance through comparative experiments. 

The FLO bi-spectrum can be defined as: 
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Besides, the FLO three order cumulants were redefined as: 
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where x(i) is the signal sequence; γ3e is an adjustment 

coefficient; 0<A+B+C≤α (0<α<2). 

 

3.2 FLO bi-spectrum estimation with nonparametric 

direct estimation 

 

The FLO bi-spectrum estimation with nonparametric direct 

estimation refers the nonlinear transformation of the data x(n): 
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After the transformation, the three order statistics of the 

stochastic process x(n) remain the same. Next, the transformed 

data can be divided into K segments, each of which has M 

samples, i.e. N=KM. Then, the sample mean of each segment 

can be determined [12], allowing the overlap between two 

adjacent two segments. Then, the discrete Fourier transform 

(DFT) coefficients can be calculated as: 
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where λ=0, 1, ..., M/2; k=1, ..., K. According to the DFT 

coefficients, the FLO bi-spectrum estimation of each segment 

can be obtained [13]: 
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where k=1, … , K; 0 ≤ λ2 ≤ λ1, 𝜆1 + 𝜆2 ≤ 𝑓𝑠 2⁄ ; 𝛥0 = 𝑓𝑠 𝑁0⁄  

(N0 and L1 satisfy M=(2L1+1)N0). The bi-spectrum estimation 

of the given data x(0), x(1), …, x(N-1) can be determined by 

the mean value of the K  segment bi-spectrum estimation: 
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3.3 FLO bi-spectrum estimation with nonparametric 

indirect estimation 

 

Assuming that the observed data {x(i)}(i=1,2,⋯,N) is a real 

random sequence, the three order cumulants of the observed 

data {x(i)} should be estimated, and then subjected to the DFT, 

completing the bi-spectrum estimation. The algorithm 

procedure can be described as: 

(1) Divide the observed data {x(i)} of the length N into K 

segments, each of which has M points, N=KM, or divide the 

data in such a manner that the adjacent segments have a half 

overlap, 2N=KM; 

(2) Remove the mean value of each segment, and make the 

mean value of the data to be analyzed zero; 

(3) Let {xj(i)}(i=1,2,⋯,M; j=1,2,⋯,K) be the j segment. 

Then, estimate the lower-order three order cumulant of each 

segment: 
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where 0<A+B+C≤α; k1=max{0, -m, -n}; k2=min{M, M-n, M-

m}. 

(4) Compute the statistical mean of 𝐶
∧

3𝑥
𝑗
(𝑚, 𝑛) , and 

determine cumulative estimates of K segments: 
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(5) Estimate the three order cumulants through Fourier 

transform, and thus obtain the FLO bi-spectrum estimation: 
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where L<M-1. During the estimation of the bi-spectrum 

𝐵
∧

𝑥(𝜔1, 𝜔2), a 2D window function θ(m,n) can be adopted: 
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4. PARAMETER DETERMINATION FOR AR MODEL 

 

If the excitation of a physical network by white noise ω(n) 

is viewed as a random signal of the power spectral density 

under normal conditions [14], then the p-order AR model can 

be established as: 
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If a z transformation is performed, the transfer function of 

the AR model can be expressed as: 

 


=

−+

==
p

k

kakz
zA

zB
zH

1

1

1

)(

)(
)(                                        (26) 

 

where the H(z) belongs to the all-pole type, i.e. it only has 

poles [15]. The power spectral density of the AR model can be 

described as: 
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where 𝜎𝜔
2  is the power spectral density of white noise. 

The parameters of the AR model can be determined in three 

ways, namely, correlation function, reflection coefficient and 
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normal equation. The last approach is adopted in our research. 

Assuming that {x(i)} is a stochastic process satisfying the 

difference equations of the AR model, we have: 

 

 
= =

−=−
p

l

q

l
ll lieblixa

0 0

'

'

' )()(                                    (28) 

 

where al and 𝑏1′ are two key parameters in the AR model. Then, 

the following three conditions must be satisfied: 

(1) e(i) is zero-mean and a stationary, identically distributed, 

independent sequence; there must exist at least one nonzero 

K(K>2) order cumulant. 

(2) The model is causal with a minimum phase; there must 

be no zero pole cancellation; the index must remain stable [16]; 

the transfer function can be expressed as: 
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(3) The additive noise n(i) must be present in x(i): 
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where n(i) is the FLO noise, which is independent of x(i), in 

the stable distribution of symmetric distributed noise. 

Under these conditions, the relation between the output and 

the impulse response of this system can be expressed as: 
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From the definition of the impulse response, we have: 
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According to (28)~(32), we have: 
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If m>q, i≥0 and b(i+m)=0, then the normal equation of the 

three order cumulant can be expressed as: 

 

0),(
0

=−
=

p

l
kxl nlmCa                                                    (34) 

 

The parameters of the AR model can be determined by 

solving the equation. 

 

 

5. IMPLEMENTATION OF AR-BASED BI-SPECTRUM 

ESTIMATION 

 

The AR-based bi-spectrum estimation can be implemented 

in four steps: 

Step 1: Divide x(i) into several segments with N being the 

segment length, N=KM. Then, the three order cumulant of 

each data can be expressed as: 
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where k1=max{0,-m,-n}; k2=min{M,M-n, M-m}. 

Step 2: calculate the mean value of the K segment, and 

estimate the three order cumulants [17] as: 
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Step 3: Determine the parameters of the AR Model, al(l, 

2, …,p); 

Step 4: Estimate the bi-spectrum using the parameters 

determined in Step 3: 
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6. VERIFICATION 

 

The proposed method was verified through comparative 

tests on the following sequence: 
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where n is an integer in the interval [0, N-1], with N being the 

sequence length; s(n)=cos(2πf1n)+cos(2πf2n), with of f1=0.2 

and f2=0.4; v(n) is a symmetrically distributed noise. 

 

 
(a) Contour map of FLO bi-spectrum direct estimation 

method 

 
(b) Contour map of FLO bi-spectrum indirect estimation 

method 
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(c) Contour map of FLO bi-spectrum estimation based on the 

AR model 

 

Figure 1. Contour maps of the three methods 

 

 
(a) 3D graph of FLO bi-spectrum direct estimation method 

 
(b) 3D graph of FLO bi-spectrum indirect estimation method 

 
(c) 3D graph of FLO bi-spectrum estimation based on the AR 

model 

 

Figure 2. 3D graphs of the three methods 

During the tests, the mixed noise ratio was set to -20dB, and 

the value of a to 1.5. The proposed method, the traditional 

nonparametric direct estimation method and the 

nonparametric indirect estimation method were all applied to 

the tests. The test results are displayed in Figures 1 and 2. As 

shown in Figures 1 and 2, the proposed method outperformed 

the traditional methods in signal identification and background 

noise suppression. In addition, our method managed to 

perverse the amplitude and phase information of the signal 

excellently, and achieve the best spectral flatness, laying the 

basis for the optimal whitening effect. 

 

 

7. CONCLUSIONS 

 

In practice, most background noises belong to the FLO, 

which cannot be suppressed well by traditional methods. In 

this paper, a FLO bi-spectrum estimation method is proposed 

based on the AR model, and new definitions are given for FLO 

three order cumulant. The author discussed the determination 

of AR model parameters, and introduced how to implement 

the bi-spectrum estimation method based on AR model. Then, 

a series of tests were performed to verify the correctness of our 

method. The results show that our method outperformed the 

traditional approaches in suppressing FLO noise and 

identifying relevant information of signals. 
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