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This paper deals with the analysis of unsteady flow and heat transfer of second-order fluid 

with fluid-particle suspension in a vertical channel in the presence of transverse magnetic 

field with viscous dissipation. The fluid is driven by a constant pressure gradient. The 

governing partial differential equations are converted in to ordinary differential equation 

by similarity transformation and solved analytically. The expressions for velocity, 

temperature, skin friction and heat transfer are obtained. The numerical results depicting 

the effects of visco-elasticity in combination with other flow parameters involved in the 

problem are presented graphically and discussed qualitatively.
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1. INTRODUCTION

It is noticed that the linear relationship between stress and 

strain rate tensors unable to describe the rheology of industrial 

fluids, multi-phase mixture and biological fluids. The 

generalization of the one-dimensional constitutive equation 

led to the discovery of various types of non-Newtonian fluid 

flow. To describe the flow behaviour of these type of fluids 

several constitutive equations have been put forward under 

several rheological behaviour and visco-elastic fluid is one of 

them. Visco-elastic fluids exhibits two types of phenomena (a) 

viscosity of fluid and (b) elastic solid. Applications of visco-

elastic fluid are observed in medical science, chemical 

industry and material processing. Due to its substantial 

demand significant interest have been developed and a large 

number of research papers have been contributed by various 

scientist and researchers [1-8]. 

Saffman [9] has proposed a dusty fluid model to analyse the 

stability of laminar flow of dusty gas. The flow of fluids with 

particle suspension finds its application in lubrication industry, 

combustion, petroleum industry, poly technology etc. Because 

of its wide range of application in industry significant interest 

have been developed on its utility in recent years and a large 

number of research papers have been contributed by various 

researchers [10-21]. In most of the cases, the fluid was taken 

to be Newtonian but from the practical point of view the study 

of non-Newtonian fluid is also important. 

In the present analysis, hydromagnetic flow of visco-elastic 

fluid in a channel with fluid particle suspension along with 

viscous dissipation is considered. In this analysis, second order 

fluid model has been considered as it characterizes the visco-

elastic fluid.  

The constitutive equation of second-order fluid was put 

forward by Coleman and Markovitz [22] and Coleman and 

Noll [23] and is associated with dust as proposed by Saffman 

[9]. 

2. MATHEMATICAL FORMULATION

Consider the flow of conducting visco-elastic fluid with 

fluid particle suspension in vertical channel with radiative heat 

transfer. The vertical channel is filled with saturated porous 

medium. In the two-dimensional Cartesian coordinate system, 

x-axis lies along the centre of the channel and y-axis is in the

normal direction. The vertical channel walls are located at y=0

and y=a. Also, the non-conducting channel walls are

maintained at the temperature θ0 and θw. A uniform magnetic

field of strength B0 is applied perpendicularly to the flow

region.

It is assumed that fluid particle suspension is: 

1) Solid, spherical and uniform in size.

2) Chemically inert, non-conducting and interaction

between them are not considered.

3) Evenly distributed in the flow region and number

density (N0) is fixed and maintained at uniform

temperature in the flow region.

The governing equations are as follows: 
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The initial boundary conditions are: 
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where, u, up - velocities of fluid and dust particles in the x- 

direction, t - time, ω - frequency of oscillation, θ, θf - fluid 

temperature and the initial fluid temperature, θ0, θw -the left 

and right wall temperature, P - fluid pressure, g- acceleration 

due to gravity, q- radiative heat flux, β- coefficient of volume 

expansion, K0- Stokes constant, D - average radius of dust 

particles, cp- specific heat at constant pressure, k- thermal 

conductivity, K- permeability porous medium, σe - 

conductivity of the fluid, ρ - fluid density, 𝜈𝑖 =
𝜇𝑖

𝜌
 where i=1, 

2, μe is the magnetic permeability and Ho is the intensity of 

magnetic field. 

 

 
 

Figure 1. Physical description of the problem 

 

The fluid is assumed to be optically thin with a relatively 

low density and the radiative heat flux is given by Cogley et 

al. [24], 
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where, α is the mean radiation absorption constant. 

We introduce the following dimensionless variables: 
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where, U is the velocity of the mean flow and d is the visco-

elastic parameter. 

The dimensionless governing equations together with the 

appropriate boundary conditions can be written as: 
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The corresponding boundary conditions are 
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where, s - porous medium shape factor parameter, Da - Darcy 

number, Gr- Grashof number, H- Magnetic parameter, l- 

particle concentration parameter, M- particle mass parameter, 

N- radiation parameter, Re- flow Reynolds number and Pr - 

Prandtl number.

 

 

 

3. METHOD OF SOLUTION 

 

In order to solve the Eqns. (6), (7) and (8) for pure 

oscillatory flow, let 
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where, L- constant oscillation amplitude for pressure gradient. 

On using the relation (10) in the Eqns. (6)-(8), we obtain: 
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The corresponding boundary conditions are 
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we assume 
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as Ec<<1. 

We obtain the following sets of differential equations: 
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Skin Friction (ST-1) for the dusty fluid at y=1 is given by: 
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and Skin Friction (ST-1) for the dusty fluid at y=1 is given by: 
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The coefficient of heat transfer in terms of Nusselt number 

(Nu) at y=1 is given by: 

 

0 1

0 0

i t

at y at y

T TT
Nu e Ec

y y y



= =

    
= = +   

       

 

 

4. RESULTS AND DISCUSSIONS 

 

The main purpose of this work is to investigate the effect of 

visco-elastic parameter (d) in association with other flow 

parameters on hydromagnetic second order fluid flow in a 

vertical channel with fluid particle suspension and viscous 

dissipation. In order to get the physical insight of the problem 

the numerical values obtained for velocity of visco=elastic 

fluid (u), velocity of fluid particle suspension (up), temperature 

(T0), shearing stress of both visco-elastic (cf) and fluid particle 

suspension (cf1) and the rate of heat transfer (Nusselt number) 

are represented in graphically using MATLAB software. Few 

physical parameters as l=1; t=1; L=0.5; are remain fixed 

throughout the numerical calculation. 

In the discussion for the nonzero valus of visco-elastic 

parameter (d) exhibits the flow of visco-elastic fluid (non-

Newtonian fluid) otherwise it exhibits the flow of Newtonian 

fluid. 

Figures 2-5 present the velocity profile of visco-elastic fluid 

(u) and fluid particle suspension (up). 

Figures 2 and 3 show the effect of visco-elastic parameter 

on velocity of fluid (u) and particle suspension (up) in the 

channel. Figures 1 and 2 indicate that with the growth of visco-

elastic parameter (d) reduces the speed of both visco-elastic 

fluid (u) and fluid particle suspension (up). 

Figures 4 and 5 represent the influence of magnetic 

parameter (H) and Grashof number (Gr) on the velocity of 

visco-elastic fluid (u) and fluid particle suspension (up). When 

the strength of the applied magnetic field increases then the 

strength of Lorentz force which is resistive type of force also 

intensifies results in reduction of velocity of both visco-elastic 

fluid (u) and fluid particle suspension (up). On the other hand, 

Grashof number studies the process of free transmission of 

heat transfer. With the rise in Grashof number the buoyancy 

force also rises. The velocity of visco-elastic fluid (u) and fluid 

particle suspension (up) show a rising trend with the rise of 

Grashof number (Gr). 

 

 
 

Figure 2. Effect of visco-elastic parameter(d) on velocity 

profile u against y for Gr=4, H=5, Pr=6, Ec=0.04, M=0.2, 

Re=0.2, N=1, s=1, ω=1 

 

 
 

Figure 3. Effect of visco-elastic parameter(d) on velocity 

profile up against y for Gr=4, H=5, Pr=6, Ec=0.04, M=0.2, 

Re=0.2, N=1, s=1, ω=1 

 

 
 

Figure 4. Effect of Grashof number (Gr) and Magnetic 

parameter(H) on velocity profile u against y for Ec=0.04, 

M=0.2, Pr=6, Re=0.2, N=1, s=1, ω=1, d=-0.3 
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Figure 5. Effect of Grashof number (Gr) and Magnetic 

parameter(H) on velocity profile up against y for Ec=0.04, 

M=0.2, Pr=6, Re=0.2, N=1, s=1, ω=1, d=-0.3 

 

 
 

Figure 6. Effect of Reynolds number (Re) and frequency of 

oscillation (ω) on velocity profile u against y for Ec=0.04, 

M=0.2, Pr=6, Gr=4, H=5, N=1, s=1, d=-0.3 

 

 
 

Figure 7. Effect of Reynolds number (Re) and frequency of 

oscillation (ω) on velocity profile up against y for Ec=0.04, 

M=0.2, Gr=4, H=5, N=1, Pr=6, s=1, d=-0.3 

 

Figures 6 and 7 represent the effect of Reynolds number 

(Re) and frequency of oscillation (ω) on the velocity of visco-

elastic fluid (u) and fluid particle suspension (up). From these 

figures it is observed that with the rise of Reynolds number 

(Re) the intensity of viscous force will be less in governing in 

the flow of fluid and fluid particle suspension hence the 

velocity of visco-elastic fluid (u) and fluid particle suspension 

(up) also increases. But with the development of frequency of 

oscillation (ω) velocity of visco-elastic fluid (u) and fluid 

particle suspension (up) show a diminishing trend. 

Figures 2-7, suggest that the velocity of visco-elastic fluid 

and fluid particle suspension (up) are maximum at y=0.5 i.e., 

at the centre of the channel. 

Figures 8-11, presents the influence of visco-elastic 

parameter(d), Eckert number (Ec) and Grashof number (Gr) 

on temperature profile (T0) independent of time. 

Figure 8, indicates that for increase in visco-elastic 

parameter (d) increases the temperature (T0) in the channel. 

Thus, it can be concluded that the temperature of visco-elastic 

fluid is amplified as compared to Newtonian fluid. 

The effect of radiation parameter (N) on temperature (T0) is 

demonstrated in Figure 9. During the flow of visco-elastic 

fluid internal heat generation takes place accompanied by 

emission. This leads to the rise in temperature (T0) with the 

growth of radiation parameter (N). 

 

 
 

Figure 8. Effect of visco-elastic parameter(d) on 

temperature(T0) against y for Gr=4, H=5, Pr=6, Ec=0.04, 

M=0.2, Re=0.2, N=1, s=1, ω=1 

 

 
 

Figure 9. Effect of radiation parameter (N) on 

temperature(T0) against y for Gr=4, H=5, Pr=6, Ec=0.04, 

M=0.2, Re=0.2, s=1, ω=1, d=-0.3 

 

 
 

Figure 10. Effect of Eckert number (Ec) on temperature(T0) 

against y for Gr=4, H=5, M=0.2, Re=0.2, N=1, s=1, Pr=6, 

ω=1, d=-0.3 

 

The influence of Eckert number (Ec) on temperature profile 

is exhibited in Figure 10. Due to rise in Eckert number (Ec) 

kinetic energy within the flow system also increases 

consequently. As a result, the temperature(T0) of the visco-

elastic fluid also increases. 

Also, it is noticed from the Figure 11 that increase in 

Grashof number (Gr) increases the temperature (T0) of the 

visco-elastic fluid. 

Figures 12-15 represent the shearing stress of visco-elastic 

fluid and fluid particle suspension. 

The effect of magnetic parameter (H) and radiation 

parameter (N) on the shearing stress of fluid phase (cf) and 

particle phase (cf1) are represented in Figures 12 and 13. 

During the growth of radiation parameter (N) the shearing 

stress of both visco-elastic fluid (cf) and fluid particle 

suspension (cf1) at the wall y=1 also show a rising trend. This 
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may be regarded as there is a rise in velocity gradient of visco-

elastic fluid along with fluid particle suspension at the channel 

wall. But with growth of magnetic parameter (H) shearing 

stress of both visco-elastic fluid and fluid particle suspension 

show a diminishing trend due to fall in velocity gradient at the 

channel wall. 
 

 
 

Figure 11. Effect of Grashof number (Gr) on 

temperature(T0) against y for H=5, Ec=0.04, Pr=6, M=0.2, 

Re=0.2, N=1, s=1, ω=1, d=-0.3 
 

 
 

Figure 12. Effect of magnetic parameter (H) and Radiation 

parameter(N) on shearing stress(cf) for Gr=4, Ec=0.04, 

M=0.2, Re=0.2, Pr=6, s=1, ω=1, d=-0.3 
 

 
 

Figure 13. Effect of magnetic parameter (H) and radiation 

parameter (N) on shearing stress(cf1) for Gr=4, Ec=0.04, 

Pr=6, M=0.2, Re=0.2, s=1, ω=1, d=-0.3 
 

 
 

Figure 14. Effect of Grashof number (Gr) and visco-elastic 

parameter(d) on shearing stress (cf) for H=5, Pr=6, Ec=0.04, 

M=0.2, Re=0.2, N=1, s=1, ω=1 

 
 

Figure 15. Effect of Grashof number (Gr) and visco-elastic 

parameter(d) on shearing stress(cf1) for H=5, Ec=0.04, Pr=6, 

M=0.2, Re=0.2, N=1, s=1, ω=1 

 

 
 

Figure 16. Effect of radiation parameter (N) and Eckert 

number (Ec) on Nusselt number (Nu) for Gr=4, H=5, Pr=6, 

M=0.2, Re=0.2, s=1, ω=1, d=-0.3 

 

 
 

Figure 17. Effect of Prandtl number (Pr) and time (t) on 

Nusselt number (Nu) for Gr=4, H=5, Ec=0.04, M=0.2, 

Re=0.2, N=1, s=1, ω=1, d=-3 

 

Figures 14 and 15 describe the effects of Grashof number 

and visco-elastic parameter on visco-elastic fluid (cf) and fluid 

particle suspension (cf1) at the wall y=1. From these figures it 

can be concluded that rise in visco-elastic parameter (d) and 

buoyancy force in terms of Grashof number increases the 

shearing stress of both visco-elastic fluid (cf) and fluid particle 

suspension (cf1). 

Figures 16 and 17 present the heat transfer in terms of 

Nusselt number. 

The effect of dissipation parameter i,e, Eckert number (Ec) 

and radiation parameter (N) on the rate of heat transfer 

(Nusselt number) are observed in Figure 16. Due to growth of 

radiation parameter (N) there is a reduction in temperature 

gradient in the channel wall. Hence, the Nusselt number 

decreases with the rise of radiation parameter. Again, with the 

rise of dissipation parameter the internal heat generation 

capacity also increases. Thus, there is a growth in Nusselt 

number with the rise in Prandtl number. 

The variation of Nusselt number (Nu) with time(t) and 

Prandtl number is observed in Figure 17. In heat transfer 
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process for Prandtl number (Pr)>5 gives significance to 

momentum boundary layer than thermal boundary layer. So, 

due to increase in fluid momentum at the boundary surface the 

rate of heat transfer in terms of Nusselt number also increases 

with an increase in Prandtl number (Pr). Also, the rate of heat 

transfer increases with time (t). 

 

 

5. CONCLUSIONS 

 

In the present investigation, an effort has been made to 

observe the effects of thermal radiation, visco-elasticity, 

Lorentz force and buoyancy force on hydromagnetic flow of 

visco-elastic fluid in a channel with fluid particle suspension 

along with viscous dissipation. The results are obtained by 

perturbation technique for smaller values of Eckert number 

(Ec). 

Some of the major findings are concluded below: 

1. With the growth of magnetic parameter (H) and visco-

elastic parameter (d), there is reduction in the velocity of 

visco-elastic-fluid and fluid particle suspension. 

2. The velocity of visco-elastic-fluid and fluid particle 

suspension increases with the increase in Grashof number 

(Gr). 

3. Temperature of visco-elastic fluid show a rising trend 

during the enhancement of visco-elastic parameter (d), 

Grashof number (Gr), Eckert number (Ec), radiation 

parameter (N). 

4. Shearing stress of both visco-elastic-fluid and fluid 

particle suspension show a rising trend with the growth of 

Grashof number (Gr) and radiation parameter (N). 

5. Shearing stress of both visco-elastic-fluid and fluid 

particle suspension show a declining trend with the 

growth of magnetic parameter (H) and visco-elastic 

parameter (d).  

6. The rate of heat transfer (Nusselt number) shows an 

accelerating trend with the rise in Eckert number (Ec), 

Grashof number (Gr), Prandtl number (Pr) and time(t) but 

deaccelerating trend with the rise in radiation parameter 

(N). 
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