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The paper deals with the thermoelastic problem of a multilayered pipe subjected to normal 

loadings on its inner surface and temperature differences on its internal and external 

surfaces. Two types of nonhomogeneous pipe materials of pipe are considered: (1) a ring-

layered composite composed of two repeated thermoelastic solids with varying thickness 

and (2) a functionally graded ring layer. The ring-layered pipe with periodic structure is 

investigated by using the homogenized model with microlocal parameters. A 

homogenization approach is proposed for the modelling of the FGM pipe. The analysis of 

obtained circumferential, radial and axial stress is presented in the form of figures and 

discussed in detail. It was shown that the proposed approach to the homogenization allows 

us to correctly calculate the averaged characteristics in the representative cell (the macro-

characteristics) and also the characteristics dependent on the choice of the component in 

the representative cell (the micro-characteristics) for both microperiodic composites and 

functionally graded materials. 
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1. INTRODUCTION

The development of engineering structures and their 

applications in various industries require modern materials. 

The results in the formation of these solids are to be applicable 

in specific engineering branches. One of such materials is 

functionally graded materials (FGM). The FGM are 

characterized by the continuous or step changing mechanical, 

thermal and chemical properties [1]. Taking into account the 

chemical and physical properties, changes in the FGM 

materials can be divided into two groups [2]: a change in 

chemical composition gradation, a change in the structure or a 

change in porosity. Functionally graded materials are used as 

thermal barrier coatings [3] or as wear reduction layers. 

A comprehensive review of various ceramic materials 

applied as thermal barriers is presented by Lee et al. [4]. The 

thermomechanical properties of the FGM materials used for 

thermal barriers are discussed by Wang et al. [5], and Chen 

and Tong [6]. 

In the literature, many works deal with stress states under 

the influence of temperature fields for various types of 

considered bodies, e.g., an empty cylinder [7], plates [8] or a 

sphere [9, 10]. For the analysis of such problems, the methods 

used methods should allow to determine distributions of 

temperature, displacement, heat flux and stress with 

sufficiently high accuracy. 

The three-dimensional problem of thermomechanical 

deformation of a freely supported rectangular plate subjected 

to a sudden temperature pulse is analyzed by Vel and Batra 

[11]. The material of the plate is assumed to be characterized 

by thermomechanical properties in the form of power-type 

functions. A cylinder with FGM material is considered [12]. 

The optimal values of the circumferential stress component are 

shown to correspond to the shear modulus given in the form of 

a linear function. 

The basis for the analysis of thermoelastic temperature, 

temperature and stress is the prior determination of a solution 

to the problem of heat conduction for a solid with functionally 

graded properties. The papers [13-15] are devoted to the 

axisymmetrical heat condition problems in the case of the 

assumption that the heat conductivity coefficient is described 

by an exponential or power functions of the radius. 

The functional gradation of the materials leads to partial 

differential equations with variable coefficients. Solving such 

problems within the classical approach is rather difficult. One 

of the simplification methods relies on approximate averaging 

techniques. For example, in the paper [16], the approach 

related to the replacement of bodies with functionally graded 

properties by a heterogeneous solids consisting of a package 

of layers, in which the thermomechanical properties of 

sublayers are averaged and constants, is applied. However, in 

this case the solution of an approximate system of equations 

should fulfill the conditions of perfect thermal and mechanical 

contact on the interfaces and the assumed boundary conditions. 

Another approach to the problems of periodic body heat 

condition is a use of the homogenized model with microlocal 

parameters [17-19] or the application of the tolerance model 

[20, 21]. The homogenized model with microlocal parameters 

is widely used to solve a number of problems for the composite 

bodies with periodic structure [22-31]. 

A wide review of the literature on the thermomechanics of 

functionally graded bodies can be found by Noda [32]. For 

example, in the paper [33], an exact solution is presented to 

the three-dimensional thermoelastic problem of a circular plate 
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subjected to thermal and mechanical loadings. It was assumed 

there that, apart from the Poisson’s ratio, all the thermal and 

mechanical material are described by exponential functions of 

the depth of the boundary surface.  

The paper [34] presents an approach to solving two or three-

dimensional thermoelasticity problems for materials with 

functionally graded properties using the boundary element 

method combined with analytical methods. The authors 

showed that the proposed manner of solving is more effective 

than the finite element method. 

In this paper, the stress field in the nonhomogeneous pipe 

subjected to the normal pressures on the inner surface and to a 

temperature difference on the inner and outer surfaces is 

investigated. It is assumed that the external pipe surface is 

unloaded. The pipe is composed of materials with functionally 

gradation, in which the thermomechanical properties are 

described by continuous functions of the radius, as well as with 

the ring layered structures. In the last case, the ideal 

thermomechanical contact conditions on the interfaces are 

considered. As a special case, the periodic structure of the pipe 

material is considered. Certain novel approach to the 

homogenization with microlocal parameters to modeling of 

thermoelastic problem of FGM pipe is proposed. 

 

 

2. FORMULATION OF THE PROBLEM 

 

The state of stress in a long nonhomogeneous pipe with the 

radiuses: internal R0 and external R1 is investigated. The stress 

field is caused by normal pressures p0 applied to the inner pipe 

surface and by a temperature difference θ0 in its inner and 

outer surfaces (see Figure 1). The external pipe surface is 

unloaded. The considerations will be led using the 

dimensionless cylindrical coordinates (r, φ, z) related to the 

dimension R1. It is assumed that the considered problem is 

axially symmetrical and its solution is independent of the 

coordinate z in the axial direction. Similarly, as in the classical 

homogeneous pipe problem [35], it will be assumed that the 

axial displacement is equal to zero everywhere, but the axial 

stress is non-zero. In the case of the pipe with unloaded 

boundaries, the boundary conditions at the ends of the pipe are 

neglected. Additionally, applying uniform axial stress and 

taking its value in such manner that the total resultant force in 

the axial direction is zero, we obtain on both pipe ends the self 

-balanced distribution of axial pressures. According to the 

Saint-Venant principle, it causes only local effects near the end 

of the pipe ends [29]. Since imposing additional uniform axial 

stress does not cause changes in the distribution of radial and 

circumferential stress, its influence in the framework of this 

article will be omitted.  

The nonhomogeneous pipe in its cross section is composed 

of n=2m ring layers (see Figure 1), where m is the number of 

representative cells. The representative cell with 

dimensionless thickness δ=(1-r0)/m, (r0=R0/R1) contains two 

homogeneous ring layers with Young modules E1, E2, Poisson 

coefficients ν1, ν2, the coefficients of linear thermal expansion 

α1, α2, the thermal conductivity coefficients K1, K2, and 

dimensionless thickness δ1=ηδ, δ2=(1-η)δ, where the 

parameter η(0,1) describes the contents of the first kind of 

material and can vary along the thickness of the pipe. The pipe 

components are located in the regions 𝑟𝑖−1 < 𝑟 < 𝑟𝑖 , 𝑖 =
1,2, . . . , 𝑛  respectively, where 𝑟2𝑗 = 𝑟0 + 𝑗𝛿, 𝑟2𝑗−1 = 𝑟2𝑗 −

𝛿2, 𝑗 = 1,2, . . . , 𝑚. The ideal thermal and mechanical contact 

between the pipe components is taken into account. 

 
 

Figure 1. The scheme of considered problem 

 

Considering the nonhomogeneous pipe characterized by the 

mechanical and thermal properties, the fields of displacement, 

temperature and stress in its i-th, i=1,…,n components will be 

described using the following state functions: the radial 

displacement 𝑢(𝑖), the radial 𝜎𝑟𝑟
(𝑖)

, the circumferential 𝜎𝜑𝜑
(𝑖)

 and 

the axial 𝜎𝑧𝑧
(𝑖)

 components of stress tensor 𝜎 
(𝑖)  and the 

temperature 𝑇(𝑖). The introduced functions can be calculated 

by solving the following system of differential equations: 

 
( )

0

i
d dT

r
dr dr

 
=  

 
 (1a) 

 

( )( )
( )

( )

( ) ( )1 1
0;

1

i
i i i

i

d d
ru T

dr r dr






 +
− =  − 

 (1b) 

 
( )

( )

( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )1 1

2 1 2 1 2 1

i i i i i i
i irr

i i i i

du u
T

dr r

   


   

− +
= + −

− − −
 (1c) 

 
( )

( )

( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )1 1

2 1 2 1 2 1

i i i i i i
i i

i i i i

du u
T

dr r

   

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− +
= + −

− − −
 (1d) 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )1

;

, , 1,2,...,

i i i i i i i

zz rr

i i

E T

r r r i n

    

−

= + −

 =
 (1e) 

 

and satisfying the boundary conditions on the internal and 

external surfaces of the pipe: 

 
( ) ( ) ( ) ( )1

0 0 , 0
n

rr rr nr p r = − =  (2a) 

 
( ) ( ) ( ) ( )1

0 0 , 0
n

nT r T r= =  (2b) 

 

and the conditions of ideal mechanical and thermal contact 

between the pipe components 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

0 0 ,

0 0 ,

1,2,..., 1

i i

i i

i i

rr i rr i

u r u r

r r

i n

 

+

+

− = +

− = +

= −

 (3a) 
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( ) ( ) ( ) ( )

( )
( )

( ) ( )
( )

( )

1

1
1

0 0 ,

0 0 ,

1,2,..., 1,

i i

i i

i i
i i

i i

T r T r

dT dT
K r K r

dr dr

i n

+

+
+

− = +

− = +

= −

 (3b) 

 

where, (2j-1) = 1, (2j) = 2, (2j-1) = 1, (2j) = 2, K(2j-1) = K1, 

K(2j) = K2, µ(2j-1) = µ1, µ(2j) = µ2, E(2j-1) = E1, E(2j) = E2, j = 1, 2, ..., 

m are the Poisson’s coefficients, the coefficients of linear 

thermal expansion, the coefficients of heat conductivity, the 

Kirchhoff coefficients, and Young modulus of the subsequent 

pipe components. 

Case 1 

In the first place, the case in which the parameter η is 

constant along the pipe thickness will be investigated. The 

solution of the problem for multilayered pipe with periodic 

structure will be compared with the solution of the problem of 

the homogeneous pipe, in which the mechanical and thermal 

properties will be determined by using the method of 

homogenization with microlocal parameters [24]. The 

received boundary value problem has the form: 

• the equations: 

 

( )hom

00, ,1
dTd

r r r
dr dr

 
=  

 
 (4a) 

 

( )
( )

2

hom hom hom1

1 22 2

1 2hom

1 hom 0, ,1 ;

d u du uA
A A

r drdr r

dT
T r r

dr r

+ − =

 −
=  + 

 (4b) 

 

• the boundary conditions: 

 

( ) ( )hom hom

0 0 , 1 0rr rrr p = − =  (5a) 

 

( ) ( )hom 0 0 hom, 1 0.T r T= =  (5b) 

 

The stress state in the homogenized pipe can be calculated 

using the following equations: 

 

( ) ( )1 2 hom hom hom

1 1 homrr rr rr

du u
A B T

dr r
  = = = + −  (6a) 

 

( ) hom hom

hom , 1, 2;
j

j j j

du u
D E F T j

dr r
 = + − =  (6b) 

 
( ) ( ) ( )( ) hom , 1,2

j j j

zz j rr jG H T j  = + − =  (6c) 

 

In the Eqns. (4)-(6) the following notation is introduced: 
hom

hom , rru   and Thom denote the state functions that describe 

radial displacement, radial stress and temperature, respectively, 

which are averaged within the periodicity cell; 𝜎𝑟𝑟
(𝑖)

, 𝜎𝜑𝜑
(𝑖)

, 𝜎𝑧𝑧
(𝑖)

 

are the radial, circumferential and axial stress in the j-th 

component of the periodicity cell; 

 

( )( )

( )( ) ( )
1 1 2 2

1

1 1 2 2

2 2

1 2 2
A

   

     

+ +
=

− + + +
 (7a) 

( )( )( )

( )( ) ( )
1 2 1 1 2 2

2 1

1 1 2 2

4 1
;

1 2 2
A A

       

     

− − + − −
= +

− + + +
 (7b) 

 

( ) ( ) ( )

( )( ) ( )
2 1 1 1 2 2

1 1 2 2

1 2 2

1 2 2
B

      

     

− + + +
=

− + + +
 (7c) 

 

( ) ( )( )

( )( ) ( )

( )( )

( )( ) ( )

2 2 2 1 1

1

1 1 2 2

1 1 1 2 2

1 1 2 2

1 3 2 2

1 2 2

3 2 2
;

1 2 2

     

     

    

     

− + +
 = +

− + + +

+ +
+

− + + +

 (7d) 

 

( ) ( )

( )( ) ( )

( )

( )( ) ( )

( )( )

( ) ( ) ( )( )
( )( ) ( )

2 2 2 1

2

1 1 2 2

1 1 1 2

1 1 2 2

2 1

1 1 1 2 2 2

1 1 2 2

1 3 2

1 2 2

3 2

1 2 2

2 1

3 2 1 3 2
;

1 2 2

    

     

   

     

  

      

     

− +
 = +

− + + +

+
+ +

− + + +

+ + − 

+ + − +


− + + +

 (7e) 

 

( )1
4

; , 1,2
2 2

j j j jj

j j

j j j j

BA
D E j

   

   

+ +
= = =

+ +
 (7f) 

 

( ) 12 3 2
, 1,2

2

j j j j j

j

j j

F j
    

 

+ + 
= =

+
 (7g) 

 

( )
( )3 2

, , 1,2
2

j j j jj

j j

j jj j

G H j
   

  

+
= = =

++
 (7h) 

 

The constants λj, μj in Eqns. (7) are Lame constants of the j-

th, j=1,2, component of the periodicity cell, and  

 

( )( ) ( )
;

1 1 2 2 1

j j j

j j

j j j

E E
 

  
= =

+ − +
 (8) 

 

It should be emphasized that the proposed homogenization 

method allows us to directly calculate the stress component in 

each component of the periodicity cell. It is especially 

important in the case of the circumferential and axial stress 

that receive jumps on the interfaces between the pipe 

components. The radial stress is continuous at the interfaces 

and they are the same, as follows from the Eq. (6a), in both 

components of the periodicity cell, and they are equal to the 

averaged radial stress within the periodicity cell. It is easy to 

verify, that 

 

( )

( )

( )

1 2

2 1 2

2 1 2

1 ,

1 ,

1 .

B D D

A E E

F F

 

 

 

= + −

= + −

 = + −

 (9) 

 

Therefore, the averaged circumferential stress is given by 
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( ) ( ) ( )1 2hom

hom hom

2 2 hom

1

du u
B A T

dr r

     = + − =

= + −
 (10) 

 

The analogous dependence takes place in the case of 

averaged axial stress. 

Because the considered boundary problems are linear, the 

state functions in both approaches can be presented in the form 

of a sum of two components. The first component describes 

the solution to the problem of the elasticity theory related to 

the loading of the internal pipe surface with normal pressure 

p0. This solution is constructed under assumption that the 

temperature is equal to zero. The second component of the 

solution is associated with the calculation of thermal stress 

caused by the difference in temperature difference on the inner 

and outer pipe. It enables an independent analysis of each of 

the mentioned problems. 
 

 

3. THE CALCULATIONS OF THE SOLUTION OF 

ELASTICITY PROBLEM 
 

In the first direct approach, we are integrating the 

homogeneous equivalent to Eq. (1b). Their general solutions 

can be written in the form: 
 

( ) ( ) ( )( ) 1

2 1 2

1

1 ,

, 1,2,..., .

i i

i i

i i

u r s r s r

r r r i n

 −

−

−

= −  −

  =
 (11) 

 

The radial displacement u(i) generates the stress tensor, 

which has nonzero components: 

 

( )( ) ( ) ( )
1

2

2 1 2

1

2 ,

, 1,2,..., ;

i i

rr i i

i i

r s s r

r r r i n

 
−

−

−

−

= +

  =

 (12a) 

 

( )( ) ( ) ( )
1

2

2 1 2

1

2 ,

, 1,2,..., ;

i i

i i

i i

r s s r

r r r i n

 
−

−

−

−

= −

  =

 (12b) 

 
( ) ( ) ( ) ( )( ) ( ) ( )

2 1

1

4 ,

, 1,2,..., .

i i i i i i

zz rr i

i i

s

r r r i n

      −

−

= + =

  =
 (12c) 

 

The unknown parameters 𝑠𝑖 , 𝑖 = 1,2, . . . ,2𝑛 in the Eqns. (11) 

and (12) are calculated using the boundary conditions (2a) and 

(3a). The following system of equations is obtained: 

 

( )
02

1 2 1

0 2

ps
s

r 
+ = −  (13a) 

 

( )( )

( )( )

2

2 1

1 2 2

2 1

1 2

1 2 0, 1,2,..., 1;

i i

i i

i

i i

i i

i

s
s r

r

s
s r i n

r





−

+ +

+

− − +

− − + = = −

 (13b) 

 
( )

( )

( )

( )

1 1

2

2 1 2 1 2 22 2
0,

1,2,..., 1;

i i

i

i i ii i

i i

s
s s s

r r

i n

 

 

+ +

− + ++ − − =

= −

 (13c) 

2 1 2 0.n ns s− + =  (13d) 

 

Substituting the solution of the system of Eqns. (13) into 

Eqns. (12) the distribution of stress in the nonhomogeneous 

pipe is obtained.  

In the second approach based on the homogenized model 

the general solution of homogeneous equivalent of Eq. (4b) 

has the form: 

 

( ) ( ) ( )1 2

hom hom hom 0, 1u r s r s r r r −= +    (14) 

 

where, 

 

2 1A A =  (15) 

 

The stress components in the j-th component of the 

periodicity cell are equal to: 

 
( ) ( ) ( ) ( )

( ) ( )

1 2 1hom 1

1 hom

2 1

1 hom ;

rr rr rr A B s r

A B s r





   



−

− −

= = = + +

− −
 (16a) 

 
( ) ( ) ( )

( ) ( )

1 1

hom

2 1

hom , 1,2;

j

j j

j j

D E s r

D E s r j







 



−

− −

= + +

− − =
 (16b) 

 
( ) ( ) ( )( ) , 1,2

j j j

zz j rrG j  = + =  (16c) 

 

From the boundary conditions (5a) the values of constants 

𝑠ℎ𝑜𝑚
(1)

 and 𝑠ℎ𝑜𝑚
(2)

 are obtained: 

 

( )

( )( )

( )

( )( )

1 0 0

hom

1 0 0

2 0 0

hom

1 0 0

,

.

p r
s

A B r r

p r
s

A B r r

 

 





−

−

−
=

+ −

−
=

− −

 (17) 

 

By plugging Eqns. (17) into (16), the radial, circumferential, 

and axial stress in both components of the periodicity cell are 

determined. 

 

 

4. THE CALCULATIONS OF THERMAL STRESS 

 

The general solutions of Eq. (1) described by the 

nonhomogeneous pipe have the form: 

 
( ) ( ) ( ) ( ) ( )0 2 1 2

1

ln ,

, 1,2,..., ;

i i

i i i

i i

T r r t t r r

r r r i n

  −

−

= = +

  =
 (18a) 

 

( ) ( ) ( )( )
( )

( )

( ) ( ) ( )

2

2 1

0

1

1 2

1 1
,

1

, 1,2,..., .

i

i i i

i

ri
i i

i

r

i i

s
u r s r

r

x x dx
r

r r r i n




  



−

−

= − − +

+
−

−

  =

  
(18b) 

 

The solutions (18) generate the field of stress. 
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( ) ( )
( )

( )

( )

( ) ( ) ( )

2

2 1 2

0 2

1

2

1 1
,

1

, 1,2,..., ;

i

i

rr i

ii

ri
i i

i

r

i i

r s
s

r

x x dx
r

r r r i n






  



−

−

= + +

+
+

−

  =

  
(19a) 

 
( ) ( )

( )

( )

( )

( ) ( ) ( )

( )

( )

( ) ( ) ( )

2

2 1 2

0 2

0

1

2

1 1

1

1
,

1

, 1,2,..., ;

i
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




  




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  =
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( ) ( )

( )

( )
( )

( )

( ) ( )2 1 0

1

1
2 ,

2 1

, 1,2,..., .

i i
i izz

ii i

i i

r
s r

r r r i n

 
   

 
−

−

+
= −

−

  =

 (19c) 

 

The unknown parameters si, i = 1, 2, ..., 2n in Eq. (18a) will 

be determined from the boundary conditions (2b) and (3b). 

The following system of equations is obtained: 

 

( )1 2 0 1ln 1t t r r+ =  (20a) 

 

( )2 1 2 1 2 2 1ln 0, 1,2,..., 1i i i i it t t r r i n− + + +− − = = −  (20b) 

 
( ) ( )1

2 2 2 0, 1,2,..., 1
i i

i iK t K t i n
+

+− = = −  (20c) 

 

2 1 0nt − =  (20d) 

 

Whereas the parameters si, i = 1, 2, ..., 2n in Eqns. (18b) and 

(19) will be calculated satisfying the boundary conditions (2a) 

and (3a), leading to the system of equations: 

 

2

1 02

0

s
s t

r
+ = −  (21a) 

 

( )( ) ( )( )12

2 1 2 1

2 2

1 2 1 2

, 1,2,..., 1;

i ii

i i i i

i

i

i i

i

s
s r s r

r

s
t r i n

r

 
+

− +

+

− − − − +

+ = − = −

 (21b) 

 
( )

( )

( )

( )
2

2 1 2 121 1

2 2

2
, 1, 2,..., 1;

i i

i

i ii i

i

i

i

i

s
s s

r

s
t i n

r

 

 
− ++ +

+

+ − +

− = = −

 (21c) 

 

2 1 2 0n ns s− + =  (21d) 

 

where, 

 

( )

( )

( )

( )

1
1

01

2 1 2 2 1

1

1

1
2 ln ,

2

0,1,..., 1;

i
i

i i

i i i i i i

t

t r t r r r

i n


 



+
+

+

+ + +

+
= 

−

  
 − +  

  

= −

 
(22a) 

 
2 2

1

2
, 0,1,..., 1

4

i i

i

i

r r
r i n

r

+ −
= = −  (22b) 

 

By first solving the system of Eqns. (20) and next, the 

system (21), the constants ti, si, i = 1, 2, ..., 2n, will be 

determined, and after substituting their values into Eqns. (18) 

and (19), the state of thermal stress in the considered pipe will 

be found. 

In the second alternative approach based on the 

homogenization method, the Eq. (4a) is integrated. Its general 

solution has the following form: 

 

( ) ( ) ( ) ( )1 2

hom hom hom 0ln , 1T r t t r r r= +    (23) 

 

Next, the general solution of Eq. (4b) is constructed. For this 

purpose, to the general solution of homogeneous equivalent of 

equation of (4b), given in Eq. (14), some special solution 

should be added. The special solution has the form: 

 
( ) ( ) ( ) ( ) ( )1 1 2

hom hom hom 0ln , 1
t t

u r s r r s r r r= +    (24) 

 

where, 

 

( ) ( )1 21 2

hom hom

1 2

t
s t

A A

 −
=

−
 (25a) 

 

( ) ( ) ( )

( )
( )2 1 21 2 1 1 21 2

hom hom hom2

1 2 1 2

2t A A A
s t t

A A A A

 − + −
= +

− −
 (25b) 

 

The components of the stress tensor in the j-th component 

of the periodicity cell are given by 

 
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )

1 2 hom

1 21 1

1 hom 1 hom

1 1 2

1 hom 1 hom hom

2

hom 1 hom

ln

,

rr rr rr

t t t

t

A B s r A B s r

A B s r A s s

Bs T

 

  

 − − −

= = =

= + − − +

+ + + +

+ −

 (26a) 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( )

1 21 1

hom hom

1 1 2

hom hom hom

2

hom hom

ln

, 1,2,

j

j j j j

t t t

j j j

t

j j

D E s r D E s r

D E s r D s s

E s F T j

 

  − − −= + − − +

+ + + + +

+ − =

 (26b) 

 
( ) ( ) ( )( ) hom , 1,2

j j j

zz j rr jG H T j  = + − =  (26c) 

 

The boundary conditions (5b) are satisfied, if 
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( ) ( )

( )
1 2 0

hom hom

0

0,
ln

t t
r


= =  (27) 

 

Whereas, using the boundary conditions (5a), the values of 

constants 𝑠ℎ𝑜𝑚
(1)

 and 𝑠ℎ𝑜𝑚
(2)

 are obtained: 

 

( )

( ) ( ) ( )
( )( )

( )

( ) ( ) ( )
( )( )

2 1

hom 0 hom 0 01

hom

1 0 0

2 1

hom 0 hom 0 02

hom

1 0 0

,

,

t t

t t

S r S r r
s

A B r r

S r S r r
s

A B r r



 



 





−

−

−

+ −
=

+ −

+ −
=

− −

 (28) 

 

where, 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

hom 1 hom hom hom

2 1

hom 1 0 1 hom 0

,

ln .

t t t t

t t

S A s s Bs

S A B s r

= + +

=  − +

 (29) 

 

Substituting Eqns. (27) and (28) into (23) and (26), the 

radial, circumferential, and axial stress in every ring layer of 

the periodicity cell are calculated. 

5. RESULT ANALYSIS 

 

An analysis of the stress state will be derived using the 

dimensionless stress. The stress caused by the pressures will 

be related to the parameter p0. Although thermal stress is 

related to the parameter E**0, where E* = min(E1,E2), * = 

max(1,2). The analysis of the received relations shows that 

if the mathematical model of the pipe is based on the 

homogenization method, then the stress distribution caused by 

the pressures depends on five dimensionless parameters: the 

ratio between the internal and external radiuses of the pipe r0 

= R0/R1, the ratio between the Young modulus of the 

periodicity cell E1/E2, the two Poisson coefficients of the 

components of the periodicity cell and the parameter η=δ1/δ. 

The thermal stress is also dependent on the ratio between the 

coefficients of linear thermal expansion 1/2. It can be 

emphasized that within the problem framework of the 

considered problem the stress does not depend on the ratio 

between the coefficients of heat conductions K1/K2. However, 

if the pipe is treated as a nonhomogeneous solid, one should 

take into account the number of periodicity cells m (or the 

number of ring layers n) and also, when performing the 

calculations of the thermal stress, the parameter K1/K2. 

 

a)       a) 

 
b)      b) 

 
 

Figure 2. Distribution of radial stress along the pipe thickness; Figure 2a and 2a are related to the stress caused by normal 

pressures; Figure 2b and 2b present the stress caused by the difference in temperature; E1/E2 = 10 (or E2/E1 = 10); 2a for m = 10; 

2a for m = 20; 2b for m = 20; 2b for m = 40 
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a)       a) 

 
b)       b) 

 
 

Figure 3. Distribution of circumferential stress along the pipe thickness; Figure 3a, 3a are connected with the stress caused by 

normal pressures; Figure 3b, 3b present the stress caused by difference of temperature; in Figure 3a, 3a it is taken E1/E2 = e; in 

Figure 3b, 3b it is taken E2/E1 = e; in Figure 3a, 3b it is assumed m = 20; in Figure 3a, 3b it is assumed m = 40; grey lines and 

rhombuses are for e = 5; black lines and rhombuses are for e = 10 

 

In order to decrease the number of parameters and decrease 

the range of their changes, the following assumptions are used: 

1) The ratio between the internal and external radiuses of 

the pipe is 0.5, so r0 = R0/R1 = 0.5; 

2) The thickness of each ring layer being the component of 

pipe is the same, so  = 0.5; 

3) The Poisson’s ratios both components of periodicity cell 

are the same and 1 = 2 =0.3; 

4) One of the pipe components is a thermal insulator. The 

applied insulating materials are often characterized by a 

greater Young modulus but smaller coefficient of linear 

thermal expansion and smaller coefficient of thermal 

conductivity. For this reason, the following assumptions, that 

E1/E2 = 2/1 = K2/K1 are taken into account; 

5) In the aim of an emphasis of possible differences between 

the solutions obtained by the two presented approaches, some 

relatively large values of the parameter E1/E2 (or E2/E1) are 

assumed. 

Figure 2 show the distribution of radial stress along the pipe 

thickness. Figures 2a and 2a concern the problem, in which 

the stress is caused by normal pressures p0. Figures 2b and 2b 

present the stress distribution caused by differences in 

temperature on the external and internal pipe surfaces. The 

continuous lines describe the stress distribution in the pipe 

obtained within the framework of the homogenization method. 

Radial stress does not depend on the sequence of ring layers 

arranged in the periodicity cell. The distribution of radial stress 

received within the framework of direct approach depends on 

the sequence of ring layers. The relation is described by using 

black and grey triangles. The black triangles present the case, 

when the first component of periodicity cell is the ring layer 

with larger Young modulus, the grey triangles for the first 

layer with smaller Young modulus. From Figure 2 it follows 

that the values of radial stress for the homogenized model are 

located between the adequate values obtained within the direct 

approach calculated for the both sequences of insulating ring 

layers location in the periodicity cell. The difference between 

the locations of black and grey triangles decreases along with 

0
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an increase of the number of periodicity cells. The broken lines 

in Figures 2b and 2b, and in some next figures, describe the 

stress distribution in the homogeneous pipe with the parameter 

E* and *. 

The radial stress in the considered problem can be treated as 

a macro-characteristic, which does not depend on the choice 

of component of the periodicity cell. The calculations show 

that the proposed homogenization method allows to calculate, 

with a good accuracy, not only the macro-characteristics, but 

also micro-characteristics, which values depend on the choice 

of the considered component of periodicity cell. An example 

of such micro-characteristic is the behaviour of the 

circumferential stress, which is shown in Figure 3. When the 

homogenization method is applied, there is no information 

connected with the kind of ring layer in the specified point of 

pipe. At each point we obtain two equations to calculate the 

circumferential stress. The equation with the index 1 allows to 

determine of the circumferential stress in the ring layer of the 

first kind, and the one with the index 2 - in the ring layer of the 

second kind. Two continuous lines denoted by numbers 1 and 

2 (the indexes of types of layers) are appropriate for the values 

of circumferential stress in the periodicity cell. In Figure 3 the 

rhombuses are adequate for the direct approach. If the stress is 

calculated in the layers with odd numbers, the adequate 

rhombuses are consistent with the continuous line denoted by 

1, in the layers with even numbers, with the continuous line 

denoted by 2. This means that the continuous lines within the 

homogenized model correctly determine the distribution of 

stress in the both ring layers in periodicity cell. 

As follows from Figure 3, the highest value of 

circumferential stress in the elasticity theory problem is taken 

on the internal pipe surface, but in the case of thermal stress – 

on the external pipe surface. In both cases, it is the greatest 

tensile stress. In order to compare the difference calculation of 

greatest tensile stress, which is caused by an application of 

both proposed approaches, the sequence of ring layers in the 

periodicity cell is chosen in such manner, that in the place of 

appearance of the greatest circumferential stress there is the 

ring layer with greater Young modulus. For this reason, when 

calculating the circumferential stress in the problem of 

elasticity theory, it is assumed that E1/E2 > 1, and in the case 

of thermal stress we assumed that E2/E1 > 1. 

 

Table 1. Dependence of the tensile stress values on the dimensionless parameter E1/E2 and the number of periodicity cells m 

 
  Hom. m = 40 m = 20 m = 10 

( ) ( )0

0

max
p

r

p


 E1/E2 = 5 3.2954 -1.182% -2.341% -4.590% 

( ) ( )0

0

max
p

r

p


 E1/E2 = 10 4.0037 -1.770% -3.495% -6.804% 

 
( ) ( )

1 1 0

max 1
th

E



 
 E2/E1 = 5 1.1103 0.905% 1.800% 3.562% 

( ) ( )

1 1 0

max 1
th

E



 
 E2/E1 = 10 1.4982 0.897% 1.763% 3.405% 

 

a)                                             b) 

 
 

Figure 4. Distribution of axial stress along the pipe thickness; Figure 4a: for the axial stress caused by normal pressures; 4b: for 

the ones caused by temperature differences; m = 20; 4a for E1/E2 = e; 4b for E2/E1 = e; the grey lines and rhombuses for e = 5; the 

black lines and rhombuses for e = 10 
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In the Table 1 the highest values of tensile stress calculated 

using the homogenization method (column “Hom.”) are given. 

The relative deviations (given in percent’s) obtained when 

comparing the values with adequate values received in the 

direct approach for the numbers of periodicity cells: columns 

m=40, 20, 10. Based on the results presented in Table 1, it can 

be concluded that the double increase in layer number caused 

the double decrease in the difference between the stress 

analysed. It means, that for the adequate number of cells, the 

mathematical model of the problem can be based on the 

homogenization method. 

The results analogous to analysed ones are obtained in the 

case of the axial stress, see Figure 4. 

 

 

6. THE MODELLING OF GRADIENT PIPE 

 

Let the parameter  describe the structure of considered 

nonhomogeneous pipe changes along the pipe thickness (see 

Figure 5). In the case where every pipe component is 

considered as an independent thermoelastic body (direct 

approach), the procedure for solving the problem is the same 

as in the case of a pipe with periodic structure. As before, Eqns. 

(1) will be solved and next the boundary conditions (2) and (3) 

will be used, so the problem will be reduced to solving the 

linear system algebraic Eqns. (20) and (21). 

 

 
 

Figure 5. The scheme of considered problem 

 

Consider the possibility of applying of the relations (6) and 

(10) to the description of the gradient body. Eqns. (6) and (10) 

should be supplemented by the relation determining the heat 

flux in the direction to layering: 

 

hom

homr

dT
q K

dr
= −  (30a) 

 

where, 

 

( )
1 2

hom

2 11

K K
K

K K 
=

+ −
 (30b) 

 

Taking into account the dependence of parameter  on the 

variable r, the equation of heat conduction has the form: 

 

( ) hom

hom 0
dTd

rK r
dr dr

 
= 

 
 (31) 

Substituting the constitutive relations (6a) and (10) into the 

equilibrium equation of a representative cell. 

 
hom homhom

0
rrrrd

dr r

  −
+ =  (32) 

 

the following differential equation to determine of radial 

averaged displacement within the representative cell is 

obtained: 

 

( )

( ) ( )
( )

2

hom hom hom

1 1 22 2

1 hom 1 2

hom 0

1

, ,1 .

d u du ud dB
A rA A r

r dr dr drdr r

d T
T r r

dr r

 
+ − − = 

 

  −
= + 

 (33) 

 

The boundary conditions still have the form of Eqns. (5). 

The solution of differential Eq. (31), which satisfies the 

boundary conditions (5b) is given in the form: 

 

( )

( ) ( )
0

1
1 1

hom

0 hom hom

0

,

1.

r r

T r dx dx

xK x xK x

r r



−

   
=      

  

 

   (34) 

 

It will be additionally assumed that the function (r) is the 

linear function which satisfies the conditions (r0) = 1, (r0) = 

0: 

 

( ) 0

0

1
, 1

1

r
r r r

r


−
=  

−
 (35) 

 

This kind of gradient material is used as a gradient coating 

to protect of the slowly changing transition from the material 

properties of substrate to the material properties of the material 

of external (or internal) insulating coating. For some 

simplification of the analysis, in this article, the gradient-

passing ring layer will be considered independently. The 

investigations will be limited to the thermal stress, so in the 

boundary condition (5a) it will be assumed that p0 = 0. 

Taking into account the relation (35), the function Thom(r), 

after integration in the Eq. (34), can be written in the form: 

 

( ) ( )

( )
hom

0

0 0 0

1 ln
, 1

1 ln

A

A

T r r K r
r r

r K r

− +
=  

− +
 (36a) 

 

where, 

 

1 0 2

1 2

A

K r K
K

K K

−
=

−
 (36b) 

 

The differential Eq. (33), which is an equation with 

changing coefficients, will be solved numerically using the 

finite difference method. The interval [r0,1] is divided into N 

equal subintervals. In every internal node the differentials in 

Eq. (33) are replaced with well-known difference equations 

based on the nodes. In this manner, we will obtain the 

equations in the number N-1, which includes (n+1) unknown 

parameters described the values of the radial displacement ui 

= uhom(i) in the nodes i = r0 + ir, where r = (1- r0)/N, i = 

0, 1, ..., N: 
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( ) ( )

( )

2

1 1 1 1

2

2 0.5

, 1,2,..., 1,

i i i i i i i i

i

u u u a r u u b r u

c r i N

− + + −− + +  − −  =

=  = −
 (37) 

 

where, 

 

( )1

1

1
, , 1,2,..., 1i i

d rA
a r i N

rA dr
= = = −  (38a) 

 

22

1

1
, , 1,2,..., 1i i

dB
b A r r i N

drr A


 
= − = = − 

 
 (38b) 

 

( ) ( )1 hom 1 2

hom

1

1
,

, 1,2,..., 1.

i

i

d T
c T

A dr r

r i N

  − 
= + 

 

= = −

 (38c) 

 

The obtained system of equations should be supplemented 

by two equations obtained by substituting the constitutive 

relations (6a) into homogenous equivalents of the boundary 

conditions (5a). In the obtained relations, the differential 

duhom/dr on the internal ends are replaced by the well-known 

difference equations based on five nodes 

 

( )hom 0

0 1 2 3 4

25 4 1
4 3

12 3 4

du r
r u u u u u

dr
 = − + − + −  (39) 

 

The equation for the differential at the right end r = 1 is 

obtained from Eq. (39), substituting the parameter r by the 

parameter -r, and index i (i = 0, 1, 2, 3 and 4) replacing by 

the index N-i. 

The calculations are performed for the parameters N and 2N, 

selecting the parameter N in such a manner that the difference 

between obtained approximations of radial displacement does 

not exceed 0.5%. The calculations show that the required 

accuracy will be received, if N=40 or N=80 in the dependence 

on parameters.  

a)                                                          b) 

 
 

Figure 6. Distribution of dimensionless radial displacement, Figure 6a; and dimensionless radial stress, Figure 6b along the pipe 

thickness: m = 20; black laines and rhombuses for E1/E2 = e > 1; grey laines and rhombuses for E2/E1 = e > 1 

 

Thermal stress is related to the parameter E**0. The stress 

state in the homogenized model depends on the six 

dimensionless parameters: r0, E1/E2, 1, 2, 1/2 and K1/K2. If 

the pipe non-homogeneity is taken directly into consideration, 

number of representative cells m is also an additional 

parameter. The assumptions presented in Section 5 “Result 

analysis” beyond assumption 20, which will be replaced by the 

relation (35) determined the form of function (r), are given 

into consideration. 

The distributions of macro-characteristics that is 

characteristics averaged within the representative cell, are 

presented. Figure 6a shows the radial displacement along the 

thickness of the pipe, and Figure 6b presents the radial stress. 

The distributions of radial displacement and stress in the 

substitutive gradient pipe, which properties are determined 

using the homogenization, are given by the continuous lines. 

The distributions that considered directly the non-

homogeneity are presented as rhombuses. One can observe 

complete qualitative agreement and a very good quantitative 

agreement of both solutions.  

It should be noted that if E1/E2 > 1 (the black lines in Figure 

6), the material with thermal properties of the insulator (K1/K2 

< 1, as follows from the assumption 4 presented in Section 5 

for the choice of the parameters investigated) is on the internal 

pipe surface. If E1/E2 < 1 (K1/K2 > 1, the grey lines in Figure 

6) the insulating properties are on the outer surface of the pipe. 

That is, that the gradient materials described by the parameters 

E1/E2 and E2/E1 (E1/E2=E2/E1=e), have fundamentally 

different thermomechanical properties. For this reason, the 

black and grey lines (or rhombuses) in Figures 6 differ 

considerably. 

Figures 7 show the distribution of circumferential stress, 

which in the considered problem depend on the kind of 

component in the representative cell, so the stress is a micro-

characteristics. The lines with number 1 are for the ring layers 

with a greater Young modulus, and the lines with number 2 for 

the layers with a smaller Young modulus. As is seen from 

these figures, the solution of the problem based on the 

homogenized model also in this case allows one to correctly 
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determine the stress state in every component of the 

representative cell. 

For the determination of quantitative differences between 

the solutions based on both considered approaches, the Table 

2 is presented. In the column “Hom.” in Table 2 the values of 

circumferential stress on the internal and external pipe 

surfaces obtained on the basis of homogenization method are 

presented. It was assumed that in the point r = r0 there is the 

first ring layer of the representative cell, and in the point r = 1 

there is the second layer. In the subsequent columns, the 

relative deviations (in percent) of these values from the 

adequate values are obtained considering the number of 

representative cells m. For the minimization of the influences 

of numerical errors during the calculations, the values in the 

column “Hom.”, it was assumed that N=320. Based on the 

results of calculations from Table 2 it can be concluded that 

double increase of the cell number causes almost double 

decrease in the difference between the stress analysed. That is, 

that also in the case of gradient solids for adequate numbers of 

cells, the mathematical model can be based on the 

homogenization method. It can be emphasized that the 

difference between the solution is greater if E1 > E2 (K1 < K2), 

so the properties of the insulator are on the internal surface of 

the pipe. 

 

a)                                             b) 

 
 

Figure 7. Distribution of circumferential stress along the pipe thickness: m = 20; the black lines and rhombuses are for E1/E2 = 

e > 1; the grey lines and rhombuses are for E2/E1 = e > 1; Figure 7a for e = 5; 7b for e = 10; number 1 is adequate for 

circumferential stress in layers with a higher Young modulus; number 2 is for circumferential stress in layers with a smaller 

Young modulus 

 

Table 2. Dependence of circumferential stress on the pipe surface on the dimensionless parameter E1/E2 and number of 

representative cells m 

 

   “Hom.” m = 80 m = 40 m = 20 m = 10 

 

E1 > E2 
E1/E2 = 5 -0.8185 -0.393% -0.761% -1.417% -2.467% 

E1/E2 = 10 -1.0217 -1.125% -2.192% -4.140% -7.410% 

E1 < E2 
E2/E1 = 5 -1.4977 0.118% 0.231% 0.443% 0.819% 

E2/E1 = 10 -1.7270 0.232% 0.444% 0.884% 1.674% 

 

E1 > E2 
E1/E2 = 5 0.1568 -0.638% -1.262% -2.480% -4.788% 

E1/E2 = 10 0.09616 -0.915% -1.820% -3.588% -6.957% 

E1 < E2 
E2/E1 = 5 1.3866 0.343% 0.682% 1.348% 2.636% 

E2/E1 = 10 1.8161 0.254% 0.508% 1.041% 1.979% 

 

 

7. FINAL REMARKS 

 

In the paper, it is shown, that in the framework of the 

considered problems as well as for the multi-layered pipe with 

the periodic structure and the multi-layered pipe with gradient 

structure, the homogenized model can be applied. The 

proposed approach to homogenization allows us to correctly 

calculate not only the averaged characteristics in the 

representative cell (the macro-characteristics) but also the 

characteristics dependent on the choice of the component in 

the representative cell (the micro-characteristics). If the pipe 

has periodic structure, the solution based on the 

homogenization method takes the form of simple engineering 

relations. Whereas if the pipe structure is investigated directly 

in the thermoelastic problem, two systems of linear equations 

with the dimension 4m, where m is the number of periodicity 

cell, need to be solved. 

When describing the gradient pipe using the 

homogenization method, one will not obtain an analytical 

solution. The numerical method was proposed, which leads to 

a system of 40 – 80 linear algebraic equations. It seems that 

within the framework of the considered problem, the 
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homogenization method is effective, when the number of 

representative cells considerably exceeds the number 20. It can 

be emphasized, that the presented investigations allow to 

conclude, that the proposed homogenization method can 

correctly describe the solutions of more complicated problems, 

in which an independent consideration of representative cell 

components can be extremely labour-consuming or sometimes 

simply impossible to accomplish. 
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NOMENCLATURE 

 

E Young modulus, MPa 

K thermal conductivity, W.m-1. K-1 

m number of the representative cells 

n number of the ring layers 

p0 normal pressure applied to the inner pipe surface, 

MPa 

 outer radius of pipe, m 

 inner radius of pipe, m 

(r, φ, 

z) 

dimensionless cylinder coordinates related to the 

inner radius of pipe 

T temperature deviation in the points of pipe from 

the temperature of outer medium, K 

u dimensionless radial displacement related to the 

inner radius of pipe 

 

Greek symbols 

 

 coefficient of linear thermal expansion, K-1 

 dimensionless thickness of representative cells 

θ0 temperature difference in its inner and outer 

surface of pipe, K 

λ, µ Lame’ constants, MPa 

µ Kircchoff coefficients (the second Lame constant), 

MPa 
 Poisson coefficient 

σ tensor stress, MPa 

σrr radial components of stress tensor, MPa 

σφφ circumferential components of stress tensor, MPa 

σzz axial components of stress tensor, MPa 
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